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Abstract: 3% Copper-doped Zinc Oxide nanoparticles (i.e., Zn0.97Cu0.03O) have been prepared through the co-precipitation 

technique. The synthesized nanocrystalline sample has been investigated utilizing X-ray diffraction (XRD), UV–visible, 

Photoluminescence (PL) spectroscopy, Scanning Electron Microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The 

lattice parameters and detailed crystallographic investigation were analyzed using Rietveld refinement. The synthesized sample's 

XRD patterns confirmed the average crystalline size between 40 and 62 nm and the hexagonal wurtzite crystal structure of the 

P63mc space group. SEM images have been utilized to analyze the morphology; they show an agglomerated oval-shaped particle 

structure and an uneven grain size distribution. The prepared nanoparticles' average particle size observed by SEM micrographs 

and the values determined by XRD patterns match quite well. The XPS findings exhibited oxygen vacancies (Vo) in the 

synthesized specimen. In consent with the XPS consequences, PL outcomes confirm the appearance of defects-related states and 

Vo's. According to UV-visible spectroscopy results, the band gap (Eg) of made nanoparticles of the Zn0.97Cu0.03O has been found 

to be 3.28 eV. 

 
 
IndexTerms - XPS, Rietveld Refinement, PL, Spintronics, DMSs. 

 

 

I. INTRODUCTION 

 

Different transition metal (TM) doped semiconductor metal oxides have piqued the researchers' curiosity. Such 

semiconductors are called diluted magnetic semiconductors (DMSs), and their prospective uses in spintronics devices have 

garnered considerable interest in this field of research [1]. Because III-V type semiconductors are moderately soluble in TM, 

most previous work on DMSs has focused on them [2, 3]. Zinc oxide (ZnO), a semiconductor metal oxide of the II-VI type, has 

garnered significant attention as a DMS due to its enormous near 60 meV exciton binding energy and broad near about 3.37 eV 

band gap [4]. It is desired to develop an effective, economical, and reproducible method for producing DMSs on an enormous 

scale for practical applications. By using spintronic devices, it is possible to combine the information-storing capabilities of 

magnetic components with logic semiconductors in a single material [5, 6].  Zinc Oxide substituted with 3d TM (e.g., Mn [7, 

8], Co [9], Cu [10], Ni [11], and Cr [12]) has thus been thoroughly explored kind of a hopeful DMS for potential uses in 

spintronic devices. The Cu-substituted ZnO tantra has drawn considerable notice because of the potential for low formation 

energy caused by the radius match-up of Zn and Cu ions [13]. 

 A promising semiconductor material, Zinc Oxide finds application in solar cells, photodiodes, gas sensors, photo-

detectors, piezoelectric transducers, UV-light emitting diodes (UV-LEDs), transparent conductive oxides, and optical and 

magnetic devices because of its broad direct band gap and high exciton binding energy at 300 K [14, 15, 16, 17, 18]. Because 
of inherent flaws such as interstitial atoms and oxygen vacancies, it functions as an n-type semiconductor under ordinary 

circumstances [19, 20]. Numerous techniques, including auto-combustion [21], hydrothermal [22], ball-milling [23], co-

precipitation, and sol-gel [24], are frequently used to synthesize ZnO nanoparticles. The co-precipitation technique is 

recommended because it is inexpensive and enables homogeneity control. Furthermore, this is a reasonably easy procedure for 
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preparing Cu-doped ZnO nanoparticles. Additionally, research has shown that doping ZnO with elements like Al [25], Fe [26], 

Mn [27], Co [28, 29], and Cu [30] can be changed its electrical, magnetic, and optical characteristics. The Cu dopant is very 

appealing because of its similar physical and chemical characteristics to Zn and low resistivity [31]. Therefore, it may be 

applied to enhance ZnO's optical and electrical conductivity. 

 Cu incorporation is said to impact the number of charge carriers and decrease the band gap, greatly enhancing ZnO's 

electrical conductivity at room temperature [18, 32]. According to some studies, doping of Cu into the ZnO thin films 

introduced multiple Vo;s, which played an essential role in altering the electric and optical properties [30]. Some studies have 

also explored the ZnO nanoparticle's structural and optical characteristics [33, 34]. Additionally, nanoparticles offer an 

exceptional platform for producing many oxygen vacancies (VO’s) necessary to generate ferromagnetism and change the band 

gap. Thus, nanoparticles magnetism and band gap change are considered hopeful research areas 

 In the current study, we prepared the Zn0.97Cu0.03O nanoparticles through co-precipitation to study their structural, 
electronic, and optical characteristics. We used X-ray diffraction (XRD) to investigate the synthesized nanoparticle's structural 

properties. X-ray electron spectroscopy has been applied to examine the sample's electronic structure. UV-visible and PL 

spectroscopy have been utilized to investigate the optical characteristics of the synthesized nanoparticles. 

 

II. SAMPLE SYNTHESIS  

Zn0.97Cu0.03O nanoparticles sample was prepared using the co-precipitation method. The primary materials used to 
synthesize the sample were high-purity analytical-grade Zinc Acetate dihydrate, Copper Acetate monohydrate, and Potassium 

Hydroxide (Make; Sigma-Aldrich). Deionized water was used to dissolve the stoichiometric amounts of all reactants and make an 

aqueous solution. The mixture was continually stirred and heated to 60 ºC. 1 M solution of KOH has been spilled drop by drop 

while constantly stirring to keep pH at roughly 10. The solution was kept at 90 ºC for five minutes while being constantly stirred. 

It was then allowed to drop to room temperature while being continuously stirred and heated to 90 ºC once more. 5 ml of oleic 

acid has been added to the mixture as a surfactant at 90 ºC. The mixture was gradually cooled until it reached room temperature 

with constant stirring. A couple of drops of HNO3 have been poured to achieve a pH of 7. Acetone and hot deionized water were 

used to clean the residue. The precipitate has been dried on a hot plate at 60 ºC for three hours. The dried powder has been 

annealed in an electric furnace for three hours at 300 ºC. Various techniques were used to characterize the different properties of 

the prepared powder sample of the nanoparticles. 

 

III. CHARACERIZATION TECHNIQUES 

The XRD patterns were obtained for structural and phase purity analysis using the diffractometer (Panalytical: X’Pert 

PRO), which utilizes the line source Cu-Kα with wavelength (λ) ≈ 1.5406 A˚. XPS has been used to identify and evaluate the 

chemical state of the constituent elements. PL spectrum has been employed to explore defect-related characteristics and assess the 

vacancies in the prepared sample. The PL spectra were taken within the 350 nm to 650 nm wavelength range at 300 K using a 

fluorescence spectrophotometer with an excitation wavelength of 300 nm. UV-vis. absorption spectrum has been applied to 

investigate the band gap of the formed specimen. Absorption spectrum have been recorded in the 200 to 800 nm wavelength 

range using a UV-visible spectrometer at 300 K. 

 

IV. RESULTS AND DISCUSSION 

4.1. XRD Investigation 

The phase and crystal structures of the synthesized sample have been examined using XRD. Using the FP-Suite-TB 

software, the Rietveld refinement analysis of the XRD peaks was performed to determine the detailed crystal structure of the 

sample. Fig. 1 demonstrates the XRD pattern of the prepared Zn0.97Cu0.03O nanoparticles specimen. The synthesized material's 

XRD peaks are consistent with a wurtzite-type ZnO crystal structure (JCPDS card no. 36-1451) [13, 35]. The XRD of 

Zn0.97Cu0.03O nanoparticles, with peaks commensurate to the (100), (002), (101), (102), (110), (103), (200), (112), and (201) 

planes, indicates the existence of ZnO phase, which ascribed to a wurtzite crystal structure [13, 35]. This pattern does not indicate 
any other CuO, Cu, or binary Zn-Cu phase peaks. Fig. 2 indicates Rietveld refinement of a prepared sample of nanoparticles. The 

specimen diffractogram consists of two overlapping sets: the simulated counterpart (Rwp) from Rietveld refinement, shown with  

circles, and experimental data (Rexp), shown with solid lines. Cyan-colored lines on the bottom indicate differences among the 

simulated outcomes of the Rietveld analysis and the experimental data [13]. 
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Fig.1:  XRD peaks of the Zn0.97Cu0.03O sample. 

  
Fig.2: Rietveld refinement of the prepared Zn0.97Cu0.03O sample. 

The Zn0.97Cu0.03O sample's Rexp and Rwp values are 1.9 and 1.3, respectively, and the Chi-squared value (X2) has been found 

near about 3.07. The low X2 and R factors values propose that refinements are comparatively credible [36]. 

 The wurtzite structure of the P63mc space group, which has atomic positions of (1/3, 2/3, 0.3817) for O and (1/3, 2/3, 

0) for Zn, is consistent with all of the diffraction peaks for the Zn0.97Cu0.03O nanoparticles [37]. The lattice parameters a and c, as 

determined by the Rietveld refinement analyses, have been found to have values of 3.2496 Å and 5.2072 Å, respectively, for the 

prepared sample. Cu doping has been found to alter the lattice size because of the ionic size variations among Cu (Cu2+≈ 0.57 Å) 

and Zn (Zn2+≈ 0.60 Å) ions with the similar coordination number [38]. Others have also reported an achievable lattice contraction 

because of the doping of Cu in the ZnO matrix [39, 40]. 

The prepared nanoparticles' average crystallite size has been calculated using the Scherrer formula below. 

D =
0.9λ 

β Cosθ
 

 

In this case, D stands for crystallite size, λ for X-ray radiation wavelength, θ for diffraction angle, and 𝛽 for full width at 

half maximum (FWHM) [41]. The synthesized samples' crystallite size has been found within the 40 to 62 nm range. The value of 

c/a, determined to be 1.6, indicates an optimally closed-packed hexagonal configuration [42]. 

4.2. SEM Analysis 

SEM micrographs have been utilized to examine the size, shape, and surface morphology of the Zn0.97Cu0.03O 

nanoparticles' grains or particles. Fig. 3 displays SEM images of the formed Zn0.97Cu0.03O sample. Fig. 3 depicts the surface 
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morphology of the formed sample, which has an agglomerated oval-shaped particle structure and an uneven grain size 

distribution. Most of the particles are between 40 and 62 nm in size. As a result, the average particle size of nanoparticles, as 

determined from the XRD patterns, corresponds nicely with the results seen in the SEM images. 

 

 
Fig.3:  SEM image of Zn0.97Cu0.03O nanoparticles sample. 

4.3. XPS analysis 

XPS analyses investigated the constituents' chemical composition and state of Zn0.97Cu0.03O nanoparticles. The C1s 

signal (284.8 eV) has been standardized for the charge and binding energy modifications. Fig. 4 shows the survey spectra of 

Zn0.97Cu0.03O nanoparticles. In the prepared nanoparticles sample, the elements Zn, O, Cu, and C were identified as having the 

strongest signals in the XPS survey spectrum; no signal for any other element was found. Fig. 5 displays the characteristics of the 

Zn2p signal for the synthesized sample. Zn2p3/2 and Zn2p1/2 peaks, arising from high spin-orbit coupling, have been found for 

Zn0.97Cu0.03O nanoparticles at 1022.28 and 1045.30 eV, respectively. These binding energy observations agree with previously 
demonstrated binding energy values for ZnO [43]. The energy separation among the Zn2p3/2 and Zn2p1/2 peaks is 23 eV, 

compatible with the earlier stated values [44]. It indicates the chemical environment of Zn2+ is unaffected by the doping of Cu2+ 

into the ZnO matrix. 

 
Fig.4: XPS survey spectra of the Zn0.97Cu0.03O sample. 
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Fig.5: High-resolution XPS Zn2p spectrum of Zn0.97Cu0.03O nanoparticles. 

 
Multicomponent oxygen species are present at the surfaces of the prepared sample, as revealed by the asymmetric 

structure of the O1s XPS spectrum displayed in Fig. 6 [45]. Three Gaussian peaks have been fitted to the synthesized 

nanocrystalline sample's O1s XPS spectra, as shown in Fig. 7. 

 
Fig.6: O1s high-resolution XPS spectrum of the Zn0.97Cu0.03O nanoparticles. 

http://www.ijrti.org/


  © 2021 IJNRD | Volume 6, Issue 11 November 2021 | ISSN: 2456-4184 | IJNRD.ORG 
 

IJNRD2111005 International Journal of Novel Research and Development (www.ijnrd.org)  

 

36 

 
Fig.7: Three Gaussian peaks fitted in the O1s XPS spectrum of the Zn0.97Cu0.03O sample. 

Fig. 7 shows the three deconvoluted O1s peaks in the Zn0.97Cu0.03O nanoparticles, detected at the binding energies of 530.35 eV, 

531.82 eV, and 533.12 eV. These peaks are designated in the following manner. Due to the presence of lattice oxygen in the 

structure of ZnO, the lower binding energy peak is induced, and the middle peak originates from the presence of Vo’s in the ZnO 

lattice [35]. Adsorbed oxygen molecules (OH-, adsorbed H2O, and chemisorbed oxygen) on nanocrystals' surfaces cause a higher 

binding energy peak [35, 46]. These results show the oxygen vacancies in the synthesized Zn0.97Cu0.03O nanocrystalline sample. 

 The XPS spectrum of the Cu2p peaks for the Zn0.97Cu0.03O sample is displayed in Fig. 8. The two broad peaks, 2p3/2 

and 2p1/2, in Cu2p spectra originate from spin-orbit splitting of the Cu2p states. 

 
Fig.7: XPS Cu2p spectrum of the Zn0.97Cu0.03O sample. 

The Cu2p3/2 and Cu2p1/2 peaks are detected in the prepared sample at 933.92 eV and 953.96 eV, respectively. The spin-orbit 

doublet splitting of the Cu2p3/2 and Cu2p1/2 peaks have a binding energy separation of 20 eV [43]. Furthermore, satellite peaks in 

the sample are detected at 944.05 eV. These properties are because of the divalent state of Cu ions in the ZnO matrix [47]. 

 
4. 4. Optical properties  

 
4.4.1. Photoluminescence studies  

The Zn0.97Cu0.03O nanoparticles' structural flaws have been examined using PL spectroscopy. At room temperature, PL 
spectra have been taken at an excitation wavelength of 300 nm, and they are displayed in Fig. 8 for prepared samples. It is found 

that PL spectra of the synthesized sample exhibit the emission regions (bands) listed below: (i) Ultra-violet, (ii) Violet, (iii) Blue, 

(iv) Green, (v) Yellow and (vi) Orange emission [48]; all these regions are depicted in Fig. 8. 
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Fig.8: PL spectra of the Zn0.97Cu0.03O sample. 

At 385 nm, the UV peak related to near-band emission (NBE) was observed, possibly caused by free excitons recombination [49]. 

Three peaks have been detected in the violet zone. The first peak, generated by a transition among Zinc interstitials (Zni) and the 

valence band of ZnO, was detected at 406 nm [50]. The remaining two peaks, the second found at 446 nm, are attributable to the 

migration from the bottom layer of the conduction band (Ec) to Zinc vacancy (Znv), and third at 448 nm, because of the movement 

of electrons from the Zni condition to the top of the valence band (Ev) [51]. Defect luminescence or deep-level emission; 

generated by Vo, is responsible for the blue discharge peaks (blue radiation region) detected at 448 nm and 466 nm in the sample 

[52, 53]. The transfer from the shallow donor level of the Zn i to the Ev band is responsible for the peak at 481 nm [49]. Due to the 

presence of Vo on the ZnO surface, two peaks appeared in the green region, one at 497 nm and the other at 530 nm [54]. 

Transition among the flabbily captured electron and the firmly captured hole in the singly ionized Vo
+ is responsible for the peak 

observed at 525 nm in green emission and 615 nm in orange emission [55]. These results show that oxygen vacancies are present 
in the synthesized sample of Zn0.97Cu0.03O nanoparticles and are in apparent concurrence with the XPS findings. 

 

4. 4.2. UV visible Spectroscopy  

 
As displayed in Fig. 9, UV-vis. absorption spectrum for the Zn0.97Cu0.03O sample that measurements taken at 300 and 

800 nm wavelengths show a distinct peak in the UV area. Absorption edge of the Zn0.97Cu0.03O nanocrystalline specimen has been 

observed at 376 nm. 

 
Fig.9: The UV-vis. absorption spectrum of the Zn0.97Cu0.03O sample. 
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Tauc's equation, which describes the link among incident photon energy and the semiconductors' absorption coefficient, 

has been utilized to estimate the optical band gap of the nanocrystalline material formed. Tauc’s equations [56]:   

𝛼ℎ𝜐 = 𝐴 (ℎ𝜐 − 𝐸𝑔)𝑛 

In this equation, an exponent n is 1/2 for the direct band gap, A is a constant, Eg is the semiconductor material's band 

gap, h is the Planck constant, and α is the absorption coefficient. 
The Tauc plot of the synthesized sample is displayed in Fig.10. The band gap (Eg) for the Zn0.97Cu0.03O nanoparticles is 

obtained through plotting a (αhυ)2 versus photon energy (hυ) graph and expanding this plot's straight-line section to the hυ axis. 

The value of Eg obtained for the Zn0.97Cu0.03O sample is 3.28 eV. 

 
Fig.10: Tauc plot for the Zn0.97Cu0.03O nanoparticles. 

Similar results were found by Bhardwaj et al., who attributed the band gap's decrease to the prominent flaw levels found in the 

Cu-substituted ZnO nanoparticles [57]. Energy gap is frequently altered by changes in the size and structure of the substance as 

well as the density of defects brought on by the impurity atoms [58]. An inversely proportional relationship is typically present 

between the energy band gap and crystallite size [59]. 

 

V. Conclusions 

 
The 3% Cu-doped ZnO (i.e., Zn0.97Cu0.03O) nanocrystalline sample was synthesized by the co-precipitation technique. 

Their structural, electronic, and optical properties have been studied. The outcomes showed that Cu doping happens through the 

substitution illation of Cu2+ ions in the ZnO matrix, as displayed from a comprehensive crystallographic investigation by the 

Rietveld refinement of the XRD data. The band gap (Eg) of the prepared sample has been calculated by the UV visible 

spectroscopy outcomes, indicating that the obtained value of Eg was 3.28 eV. The present work depicts a correlation among the 

crystal and electronic structure, band gap, and optical characteristics of the made Zn0.97 Cu0.03O nanoparticles. XPS and PL results 

show the presence of Vo’s and defect level states in the synthesized sample. This co-precipitation approach is economic, easy, and 

fast doping that can be acclimated to variant TM elements to acquire DMS with optical properties. 

 

. 
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