
 © 2023 IJNRD | Volume 8, Issue 3 March 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2303317 International Journal of Novel Research and Development (www.ijnrd.org)

d108

Automatic Duplicate Bug Report Detection

Vaishnavi

Dhadiwal

Ekta Jain Milind Kedare Devang Papinwar Saurabh Yadgire

Department of IT Department of IT Department of IT Department of IT Graduate Student

Pune Institute of

Computer Technology

Pune Institute of

Computer

Technology

Pune Institute of

Computer Technology

Pune Institute of

Computer Technology

University of Southern

California

Dhankawadi, Pune Dhankawadi, Pune Dhankawadi, Pune Dhankawadi, Pune Los Angeles

Abstract - Any software project will inevitably have bugs. They

may appear at any time, through-out any stage of the creation

or maintenance of software. Open source bug repositories are

used in projects to maintain the issue reports. When a new bug

report is received, a person called a ”Triager” reviews it and

designates it to a responsible developer. But one must first

determine whether or not the assignment is duplicate. The bug

reports are typically maintained using tracking systems. One of

the major issues with maintaining bug repositories is duplicate

bug reports. Numerous users frequently report the same bug

because of the uncoordinated manner in which bug reports are

submitted to the tracking system. Duplicate bug reports waste

time, money, and other resources. It complicates the job of

triagers and necessitates extensive study and validation.

Index Terms - Deep learning, JIRA, Convolutional Neural

Networks.

I. INTRODUCTION

 A bug repository is an important aspect of many open-

source projects and corporate projects for development and

maintenance, which enables both developers and users to report

bugs, request more efficient features, and suggest the flaws

present. It allows users around the globe to behave as “testers”

for the software, increasing the chances of discovering

problems and ultimately improving the quality of the software.

Additionally, it allows the software to grow in response to user

demands, which allows it to meet the needs of more users.

However, these benefits come at a price. This type of test is

asynchronous and poorly structured because the project relies

on a large number of users as testers. In addition, the cost of a

user checking the repository (checking if the issue has been

resolved) is higher than the cost of creating a new bug report.

Therefore, some reported issues are duplicates of previously

reported errors and there may be the same bug reported multiple

times. To avoid this, each bug report submitted should be

checked to make sure there are duplicates. Due to the large

number of existing error reports, it is difficult to investigate all

the present error reports to find duplicates, manually.

A. Motivation

 Duplicate bug reports take up the time needed to

“translate” bug reports into a more technical language, relevant

to developers. Duplicate bug report detection is a critical

process that can significantly improve development quality and

efficiency. It also helps organizations provide their customers

with better services. The purpose is to increase developer

productivity as manual work could be decreased because they

would not have to consider several reports for the same bug,

allowing them to fix each bug more quickly.

B. Scope

The Project includes using Deep Learning algorithms on JIRA

bug report dataset to detect duplicate bugs. The project focuses

on implementation of research papers to achieve state-of-the-

art performance on Duplicate Bug Report Detection Task. The

project aims to explore all the different obstacles that are likely

to be faced for a production ready system.

II. LITERATURE SURVEY

 In [1], the researchers proposed an innovative deep

learning-based approach for automatically detecting and

classifying duplicate bug reports. For extraction of features, the

suggested method used a Convolution neural network based

deep learning algorithm. The CNN model uses a variety of

convolution filters to capture local information and analyse all

words in bug reports from a variety of angles. Additionally, the

deep learning model uses two layers—Similarity Measurement

Layer and Fully Connected Layer—to determine how similar

bug reports are to one another. The sentence form of the bug

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 3 March 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2303317 International Journal of Novel Research and Development (www.ijnrd.org)

d109

reports is compared using the similarity measurement metric

contained in the similarity measurement layer. The similarity

score between two bug reports is calculated using the Fully

Connected Layer. Bug reports are then categorised as duplicate

or non-duplicate based on similarity scores. The performance

was evaluated across publicly accessible datasets such as

Mozilla, Eclipse, NetBeans, Gnome, Open Office, and Firefox.

F-measure, precision, accuracy and recall metrics were used to

assess the experimental findings.

 In [2], authors used the Constantly Querying approach to

duplicate bug report prevention. Users can detect duplicate bug

reports as they enter them using the Constantly Querying

approach. They can search for duplicate bug reports using the

string of their active bug report. For each new word the user

inputs, the bug tracker is constantly queried for duplicate

reports, much like search engine suggestions. Before the user

has finished creating a bug report, duplicate bug reports may be

discovered and suggested by quickly searching the issue

tracker. Using TF-IDF and cosine distance, they developed a

simplified information retrieval model to locate related

documents from the prefixed queries. Stemming our vocabulary

was found to generally produce inconsistent statistical proof of

performance improvement. This novel bug deduplication task

called continuously querying bug reports had the potential to

stop duplicates from happening in 42% or more of observed

duplicate bug report occurrences.

 In [3], the authors offered a method for automatically

identifying duplicate bug reports using execution traces. They

extract stack traces from every bug report, split the resultant

execution traces into duplicate groups, and then do the detection

on the duplicate groups. Then, the Hidden Markov Model is

developed and trained for each duplicate group. Incoming bug

reports are classified using the HMMs that were created. Lastly,

each incoming bug reports' stack trace is compared and

categorized using the output scores. By calculating the recall

and the Mean Average Precision for bug reports from the

Firefox and GNOME datasets, they achieved recall scores of

80% and 63% respectively and average MAP value of 87% and

71.5%.

 In [4], Jianjun et al. offered a unique method for identifying

duplicate bug reports using DC-CNN. In this method, each bug

report is transformed into a two-dimensional matrix using word

embeddings, and the two single-channel matrices of a pair of

bug reports are joined to form a dual-channel matrix. The CNN

model is then given the dual-channel matrix to extract the

features and hidden semantics. They have examined the

performance of DC-CNN with the help of three open-source

datasets—Open Office, Eclipse, and Net Beans—as well as a

bigger dataset created by combining the datasets of these three

datasets. It was observed that the performance of the DC-CNN

is superior than other deep learning-based techniques.

 In [5], the author offers SiameseQAT, a method for

detecting duplicate bug reports that takes into account

information from individual defects as well as information

retrieved from issue clusters. The SiameseQAT combines

context and semantic learning on structured and unstructured

features, as well as corpus topic extraction-based features, with

a unique loss function known as Quintet Loss, which takes the

centroid of duplicate clusters and their contextual information

into account. They verified the technique using more than 500

thousand bug reports from the well-known open-source

software repositories Eclipse, NetBeans, and Open Office.

They tested duplicate retrieval and classification, reporting a

Recall@25 mean of 85% for retrieval and 84% AUROC for

classification tasks, both of which were much better than earlier

studies.

 The author in [6] focuses on bug reports generated by both

the system and the user of the software. Software bugs can

emerge for a variety of causes. Bug reports can also include

other programme problems, particularly for experimental or

unstable versions of the product. This dissertation proposes a

model of automated triaging based on textual, category, and

contextual similarity criteria. The suggested approach extracts

a total of 80 textual characteristics from problem reports.

Moreover, using Latent Dirichlet Allocation, themes are

modelled from the whole corpus of text (LDA). Lastly, using

Support Vector Machine, two sets are created for duplicate and

non-duplicate bug reports for binary classification. A Bugzilla

dataset is used for simulation.

 In order to solve the problem of accurate duplicate/similar

bug detection/retrieval, the authors in [7] introduced a bi-LSTM

and CNN based deep learning model. When a new bug is found,

its encoding is first calculated using the model, and after that,

cosine similarity is used to compute how similar it is to each

bug in the master set. Then, duplicate bugs can be filed based

on the top k related bugs or by setting a similarity criteria. They

reported the findings of in-depth tests conducted on freely

accessible datasets including Open Office, Eclipse, and

NetBeans. The recall percentage and accuracy statistics are

almost 80%..

 In [8], the authors compare the effectiveness of information

retrieval-based (IR) and machine learning-based (ML)

approaches for automatically identifying duplicate bug reports.

Experiment findings demonstrate that the ML-based technique

performs more effectively than IR-based. Although the IR-

based technique is more frequently employed in related studies

for research purposes, patents indicate that it is also applied in

practical applications. Nonetheless, it is suggested that future

studies in research and practical implementation of bug triage

systems employ the ML-based approach. Performance

indicators for the ML-based technique are also superior to those

for IR-based.

III. PROPOSED METHODOLOGY

1. Build Dataset : Collect data from JIRA API and convert into

a dataset to be loaded in Python.

2. Data Preprocessing : Preprocessing of data includes

removing of unwanted data keeping columns and

rows which are to be considered to train the model.

Additionally, removing stop words and punctuation from

summary and description features.

3. Train Model : To record the document’s semantic

regularities, a word2vec model is employed. Each text-

based bug report is transformed into a single-channel

matrix. We combine the single-channel matrices’ reports

into pairs of bug reports that are represented by dual-

channel matrices in order to analyse the relationships

between the reports. Then, we divide them into two groups:

the training set and the testing set. We use

the training set as input to train the CNN model during the

training phase. The testing set is provided to the trained

model during the deployment phase in order

to estimate the likelihood that each pair of bug reports would

be similar, which is a separate probability. To determine if

two bug reports are duplicates or not, the

similarity is then contrasted with the predetermined

threshold.

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 3 March 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2303317 International Journal of Novel Research and Development (www.ijnrd.org)

d110

4. UI Components : Through the UI, the user will be able to

query the summary or description of the newest bug in our

web application and retrieve with ids and their short brief

along with the status of the bug report as resolved or not

resolved. The user will be able to know more about the bug

report by clicking on bug id which will redirect him to a new

page containing the detailed description of the web page.

V. CONCLUSION

 In this research, we offer a unique method for identifying

duplicate bug reports using DC- CNN. In order to create a pair

of bug reports each represented by a dual-channel matrix, we

concatenate two bug reports each represented by two single-

channel matrices. The CNN model is then given the dual-

channel matrix to extract the hidden semantics and features.

VI. FUTURE SCOPE

In future, we look forward to optimising the dataset and allow

users to enter special characters and data in multiple languages.

VII. REFERENCES

[1] A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal and

K. -S. Kwak, “Duplicate Bug Report Detection and

Classification System Based on Deep Learning Technique”

in IEEE Access, vol. 8, pp. 200749-200763, 2020, doi:

10.1109/ACCESS.2020.3033045.

[2] Abram Hindle and Curtis Onuczko. 2019. Preventing

duplicate bug reports by continuously querying bug reports.

Empirical Softw. Engg. 24, 2 (April2019),902–

936.https://doi.org/10.1007/s10664-018-9643-4

[3] Ebrahimi, Neda Trabelsi, Abdelaziz Islam, Md Hamou-

Lhadj, Abdel Wahab Khan-mohammadi, Kobra. (2019). An

HMM-Based Approach for Automatic Detection and

Classification of Duplicate Bug Reports Information and

Software Technology. doi:113.10.1016/j.infsof.2019.05.007

[4] Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei.

2020. Duplicate Bug Report Detection Using Dual-Channel

Convolutional Neural Networks. In Proceedings of the 28th

International Conference on Program Comprehension

(ICPC '20). Association for Computing Machinery, New

York, NY, USA, 117–127.

https://doi.org/10.1145/3387904.3389263

[5] T. M. Rocha and A. L. D. C. Carvalho, "SiameseQAT: A

Semantic Context-Based Duplicate Bug Report Detection

Using Replicated Cluster Information," in IEEE Access,

vol. 9, pp. 44610-44630, 2021, doi:

10.1109/ACCESS.2021.3066283.

[6] Anuradha Sharma , Sachin Sharma 2015. Bug Report

Triaging using Textual, Categorical and Contextual

Features using Latent DIRICHLET Allocation. In the

International Journal for Innovative Research in Science

Technology (IJIRST).

[7] J. Deshmukh, K. M. Annervaz, S. Podder, S. Sengupta and

N. Dubash, "Towards Accurate Duplicate Bug Retrieval

Using Deep Learning Techniques," 2017 IEEE

International Conference on Software Maintenance and

Evolution (ICSME), Shanghai, China, 2017, pp. 115-124,

doi: 10.1109/ICSME.2017.69.
[8] Behzad Soleimani Neysiani* and Seyed Morteza Babamir.

Duplicate Detection Models for Bug Reports of Software

Triage Systems: A Survey. Lupine publishers. Doi:

10.32474/CTCSA.2019.01.000123

http://www.ijnrd.org/
https://doi.org/10.1007/s10664-018-9643-4

