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Abstract - Any software project will inevitably have bugs. They 

may appear at any time, through-out any stage of the creation 

or maintenance of software. Open source bug repositories are 

used in projects to maintain the issue reports. When a new bug 

report is received, a person called a ”Triager” reviews it and 

designates it to a responsible developer. But one must first 

determine whether or not the assignment is duplicate. The bug 

reports are typically maintained using tracking systems. One of 

the major issues with maintaining bug repositories is duplicate 

bug reports. Numerous users frequently report the same bug 

because of the uncoordinated manner in which bug reports are 

submitted to the tracking system. Duplicate bug reports waste 

time, money, and other resources. It complicates the job of 

triagers and necessitates extensive study and validation. 

 

Index Terms - Deep learning, JIRA, Convolutional Neural 

Networks. 

 

 

I.  INTRODUCTION 

 A bug repository is an important aspect of many open-

source projects and corporate projects for development and 

maintenance, which enables both developers and users to report 

bugs, request more efficient features, and suggest the flaws 

present. It allows users around the globe to behave as “testers” 

for the software, increasing the chances of discovering 

problems and ultimately improving the quality of the software. 

Additionally, it allows the software to grow in response to user 

demands, which allows it to meet the needs of more users. 

However, these benefits come at a price. This type of test is 

asynchronous and poorly structured because the project relies 

on a large number of users as testers. In addition, the cost of a 

user checking the repository (checking if the issue has been 

resolved) is higher than the cost of creating a new bug report. 

Therefore, some reported issues are duplicates of previously 

reported errors and there may be the same bug reported multiple  

 

 

times. To avoid this, each bug report submitted should be 

checked to make sure there are duplicates. Due to the large 

number of existing error reports, it is difficult to investigate all 

the present error reports to find duplicates, manually.  

  

A.  Motivation 

 Duplicate bug reports take up the time needed to 

“translate” bug reports into a more technical language, relevant 

to developers. Duplicate bug report detection is a critical 

process that can significantly improve development quality and 

efficiency. It also helps organizations provide their customers 

with better services. The purpose is to increase developer 

productivity as manual work could be decreased because they 

would not have to consider several reports for the same bug, 

allowing them to fix each bug more quickly. 

 

B. Scope 

The Project includes using Deep Learning algorithms on JIRA 

bug report dataset to detect duplicate bugs. The project focuses 

on implementation of research papers to achieve state-of-the-

art performance on Duplicate Bug Report Detection Task. The 

project aims to explore all the different obstacles that are likely 

to be faced for a production ready system. 

 

II.  LITERATURE SURVEY 

 In [1], the researchers proposed an innovative deep 

learning-based approach for automatically detecting and 

classifying duplicate bug reports. For extraction of features, the 

suggested method used a Convolution neural network based 

deep learning algorithm. The CNN model uses a variety of 

convolution filters to capture local information and analyse all 

words in bug reports from a variety of angles. Additionally, the 

deep learning model uses two layers—Similarity Measurement 

Layer and Fully Connected Layer—to determine how similar 

bug reports are to one another. The sentence form of the bug 
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reports is compared using the similarity measurement metric 

contained in the similarity measurement layer. The similarity 

score between two bug reports is calculated using the Fully 

Connected Layer. Bug reports are then categorised as duplicate 

or non-duplicate based on similarity scores. The performance 

was evaluated across publicly accessible datasets such as 

Mozilla, Eclipse, NetBeans, Gnome, Open Office, and Firefox. 

F-measure, precision, accuracy and recall metrics were used to 

assess the experimental findings. 

 In [2],  authors used the Constantly Querying approach to 

duplicate  bug report prevention. Users can detect duplicate bug 

reports as they enter them using the Constantly Querying 

approach. They can search for duplicate bug reports using the 

string of their active bug report. For each new word the user 

inputs, the bug tracker is constantly queried for duplicate 

reports, much like search engine suggestions. Before the user 

has finished creating a bug report, duplicate bug reports may be 

discovered and suggested by quickly searching the issue 

tracker. Using TF-IDF and cosine distance, they developed a 

simplified information retrieval model to locate related 

documents from the prefixed queries. Stemming our vocabulary 

was found to generally produce inconsistent statistical proof of 

performance improvement. This novel bug deduplication task 

called continuously querying bug reports had the potential to 

stop duplicates from happening in 42% or more of observed 

duplicate bug report occurrences.  

 In [3], the authors offered a method for automatically 

identifying duplicate bug reports using execution traces. They 

extract stack traces from every bug report, split the resultant 

execution traces into duplicate groups, and then do the detection 

on the duplicate groups. Then, the Hidden Markov Model is 

developed and trained for each duplicate group. Incoming bug 

reports are classified using the HMMs that were created. Lastly, 

each incoming bug reports' stack trace is compared and 

categorized using the output scores. By calculating the recall 

and the Mean Average Precision for bug reports from the 

Firefox and GNOME datasets, they achieved recall scores of 

80% and 63% respectively and average MAP value of 87% and 

71.5%. 

 In [4], Jianjun et al. offered a unique method for identifying 

duplicate bug reports using DC-CNN. In this method, each bug 

report is transformed into a two-dimensional matrix using word 

embeddings, and the two single-channel matrices of a pair of 

bug reports are joined to form a dual-channel matrix. The CNN 

model is then given the dual-channel matrix to extract the 

features and hidden semantics. They have examined the 

performance of DC-CNN with the help of three open-source 

datasets—Open Office, Eclipse, and Net Beans—as well as a 

bigger dataset created by combining the datasets of these three 

datasets. It was observed that the performance of the DC-CNN 

is superior than other deep learning-based techniques. 

 In [5], the author offers SiameseQAT, a method for 

detecting duplicate bug reports that takes into account 

information from individual defects as well as information 

retrieved from issue clusters. The SiameseQAT combines 

context and semantic learning on structured and unstructured 

features, as well as corpus topic extraction-based features, with 

a unique loss function known as Quintet Loss, which takes the 

centroid of duplicate clusters and their contextual information 

into account. They verified the technique using more than 500 

thousand bug reports from the well-known open-source 

software repositories Eclipse, NetBeans, and Open Office. 

They tested duplicate retrieval and classification, reporting a 

Recall@25 mean of 85% for retrieval and 84% AUROC for 

classification tasks, both of which were much better than earlier 

studies. 

 The author in [6] focuses on bug reports generated by both 

the system and the user of the software. Software bugs can 

emerge for a variety of causes. Bug reports can also include 

other programme problems, particularly for experimental or 

unstable versions of the product. This dissertation proposes a 

model of automated triaging based on textual, category, and 

contextual similarity criteria. The suggested approach extracts 

a total of 80 textual characteristics from problem reports. 

Moreover, using Latent Dirichlet Allocation, themes are 

modelled from the whole corpus of text (LDA). Lastly, using 

Support Vector Machine, two sets are created for duplicate and 

non-duplicate bug reports for binary classification. A Bugzilla 

dataset is used for simulation. 

 In order to solve the problem of accurate duplicate/similar 

bug detection/retrieval, the authors in [7] introduced a bi-LSTM 

and CNN based deep learning model. When a new bug is found, 

its encoding is first calculated using the model, and after that, 

cosine similarity is used to compute how similar it is to each 

bug in the master set. Then, duplicate bugs can be filed based 

on the top k related bugs or by setting a similarity criteria. They 

reported the findings of in-depth tests conducted on freely 

accessible datasets including Open Office, Eclipse, and 

NetBeans. The recall percentage and accuracy statistics are 

almost 80%.. 

 In [8], the authors compare the effectiveness of information 

retrieval-based (IR) and machine learning-based (ML) 

approaches for automatically identifying duplicate bug reports. 

Experiment findings demonstrate that the ML-based technique 

performs more effectively than IR-based.  Although the IR-

based technique is more frequently employed in related studies 

for research purposes, patents indicate that it is also applied in 

practical applications. Nonetheless, it is suggested that future 

studies in research and practical implementation of bug triage 

systems employ the ML-based approach. Performance 

indicators for the ML-based technique are also superior to those 

for IR-based. 

 

 

III.  PROPOSED METHODOLOGY 

1. Build Dataset : Collect data from JIRA API and convert into 

a dataset to be loaded in Python. 

2. Data Preprocessing : Preprocessing of  data includes 

removing of unwanted data keeping columns and 

rows which are to be considered to train the model. 

Additionally, removing stop words and punctuation from 

summary and description features. 

3. Train Model : To record the document’s semantic 

regularities, a word2vec model is employed. Each text-

based bug report is transformed into a single-channel 

matrix. We combine the single-channel matrices’ reports 

into pairs of bug reports that are represented by dual-

channel matrices in order to analyse the relationships 

between the reports. Then, we divide them into two groups: 

the training set and the testing set. We use 

the training set as input to train the CNN model during the 

training phase. The testing set is provided to the trained 

model during the deployment phase in order 

to estimate the likelihood that each pair of bug reports would 

be similar, which is a separate probability. To determine if 

two bug reports are duplicates or not, the 

similarity is then contrasted with the predetermined 

threshold.  
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4. UI Components : Through the UI, the user will be able to 

query the summary or description of the newest bug in our 

web application and retrieve with ids and their short brief 

along with the status of the bug report as resolved or not 

resolved. The user will be able to know more about the bug 

report by clicking on bug id which will redirect him to a new 

page containing the detailed description of the web page. 

 

V. CONCLUSION 

 In this research, we offer a unique method for identifying 

duplicate bug reports using DC- CNN. In order to create a pair 

of bug reports each represented by a dual-channel matrix, we 

concatenate two bug reports each represented by two single-

channel matrices. The CNN model is then given the dual-

channel matrix to extract the hidden semantics and features. 

 

VI. FUTURE SCOPE 

In future, we look forward to optimising the dataset and allow 

users to enter special characters and data in multiple languages. 
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