
 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a743

INTRODUCTION TO SHELL SCRIPTING

Author Name: Gunjan Malakar

DESIGNATION: Adhoc Teacher

Address: Amolapatty Chariali, Dibrugarh Assam

Abstract: In its simplest of forms a variable is a placeholder that holds value in computer memory. This value

can be a number, text or filename/directory. In the previous unit we have discussed the concept of shell; a shell is

an interface between the kernel and the user. We can also say that a shell is a command interpreter, which

processes commands entered by user on the command line. In UNIX a shell allows a user to create, assign or

delete variables. However, variables are temporary which means they are automatically deleted when the shell

session is closed. These types of variables which are available only to the current shell are known as shell

variables. If we want to make a shell variable persistent, we have to use the concept of environment variable.

Keywords: shell, command interpreter, variable, Kernel, environmental variable.

Concept of Environment Variable

An environment variable is a value that is available widely and can be used by other applications on the UNIX

system.

Environment variables can be categorized in three types:

1. Local Environment Variable

Local environment variables are defined only for the current session, they last only for the current session like remote login

session or local terminal session. Local environment variables are not specified in configuration files and can be created or

removed by special commands.

2. User Environment Variable

As the name suggest user environment variables are defined for a particular user and are executed every time a user logs in

using a local terminal session or a remote login session. User environment variables are loaded from the configuration files

like .bashrc, .bas_profile, .bash_login, .profile present in the home directory.

3. System wide Environment Variables

The system wide environment variables are available widely for all users in the system. They are basically present in the

following directories /etc/environment, /etc/profile, /etc/bash.bashrc, /etc/profile.d. They are loaded every time a user logs in

locally or remotely.

The command env is used to list all the current environment variables.

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a744

Rules for writing Variable Names

Firstly the name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or the underscore symbol

(_).

By convention, UNIX shell variables will have their names in UPPERCASE.

Example

VARIABLE_NAME

VARIABLE_1

_VARIABLENAME

*NOTE we cannot use special characters like ! , *, or – because they hold a special meaning on the shell.

Variable Declaration

Variables are defined in the following manner –

VARIABLENAME=VARIABLEVALUE

Example

NAME=”GUNJAN MALAKAR”

In this example the variable name NAME is assigned with the value “GUNJAN MALAKAR”. These types of variables are

called scalar variables; a scalar variable is a variable that can hold only one value at a given point in time.

Accessing Variable Values

We have learnt that a variable is used to store data or information, but in some point of time we need to access the value

stored in a variable , so to access the value stored in a variable , we have to prefix the variables name with the dollar sign ($)

The following example accesses the value of the defined variable NAME and prints it on the STDOUT

NAME= “GUNJAN MALAKAR”

echo $NAME

The output of the above example will be −

Gunjan Malakar

Read-only Variables
UNIX shell allows us to mark a variable read-only, once a variable is marked read-only, its value cannot be changed.

For example, the following script generates an error while trying to change the value of NAME −

NAME="Gunjan Malakar"

readonly NAME

NAME="Gunjan"

The above example will generate the following result if we try to change the value of variable NAME −

/bin/sh: NAME: This variable is read only.

Unsetting Variables
Unsetting a variable means directing the shell to remove the variable from the list of variables it is tracking. The unset

variable cannot be accessed.

The syntax to unset a defined variable using the unset command −

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a745

unset variable name
NAME="GUNJAN MALAKAR"
unset NAME

echo $NAME

The above example does not print anything.

*NOTE You cannot use the unset command to unset variables that are marked readonly.

Variable Types

In UNIX there are three main variable types −

Local Variables –

Local variables are present within the current shell instance. They are not available to programs which are started by the shell.

Local variables are set at the command prompt.

Environment Variables –

Environment variables, as discussed in the earlier section are available only to the child process of the shell. It can be noticed that

environment variables are usually defined by the shell script when they are needed by the programs that it executes.

Shell Variables –

Shell variable as its name suggest is a special variable that is set by the shell for the correct functioning of the shell. Some

shell variables are environment variables while others are local variables

The following table shows the special variables in the shell scripts –

Command-Line Arguments
Command-line arguments also known as command line parameters are arguments that allows the user to control the flow of

the command or to specify the input data required for the command. UNIX shell allows users to pass run time argument to

commands using command–line arguments. The command-line argument $0 points to the actual command, program, shell

script or function and $1, $2, $3 ………. $9 are arguments to the command.

Let us consider an example we are considering a file name file.sh the contents of the file is “GUNJAN MALAKAR”

 SL. NO VARIABLE DESCRIPTION

1 $0 This variable describes the filename of the current script.

2 $n This variable corresponds to the arguments with which the script was invoked.

Here n is a positive number corresponds to the position of an argument

3 $# This variable describes the number of arguments supplied to a script

4 $* This variable describes all the arguments are double quoted. If a script receives

two arguments, $* is equivalent to $1 $2.

5 $@ This variable describes all the arguments are individually double quoted. If a

script receives two arguments, $@ is equivalent to $1 $2.

6 $? This variable describes the exit status of the last command executed.

7 $$ This variable describes the process number of the current shell.

8 $! This variable describes the process number of the last background command.

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a746

echo “File Name: $0”

echo “First Parameter: $1”

echo “Second Parameter: $2”

echo “Marked values: $@”

echo “Marked values: $*”

echo “Total number of parameters: $#”

The output of the above script is

File Name: ./filename.sh, Here file.sh is the name of the file

First Parameter: GUNJAN

Second Parameter: MALAKAR

Marked values: GUNJAN MALAKAR

Marked values: GUNJAN MALAKAR

Total number of parameters: 2

Special parameters $* and $@

UNIX shell provides two special parameters $* and $@ that allows the access of all the command-line arguments

once. However, the $* special parameter takes the entire list as one argument with spaces between and the $@

special parameter takes the entire list and separate it into separate arguments.

Note Special Parameter $ and $@ will act same unless they are enclosed in double quotes “”.

Exit Status variable $?

After a command is completed, the command returns a numerical value, this value is denoted by $? Known as the exit status.

Upon successful completion of the command the exit status is set to be numerical 0 and 1 if the command is unsuccessful.

Array
The definition of Array is: an array is a collection of homogenous (similar) elements that are stored in the RAM (random

access memory). Values stored in an array are identified using array name with subscripts. Array are single dimensional or

two dimensional. An array is used when we are trying to store the name of various students in a class as a set of variables

Let us consider an example of an illustration of array −

NAME01="GUNJAN"
NAME02="BHARGAB"

NAME03="SUBHAM"
NAME04="ROKTIM"

NAME05="KABITA"

We will use a single array to store the names of all the students mentioned above. To declare an array we will use

the following syntax

array_name[index]=value

Here array_name is the name of the array, index is the index of the item in the array that you want to set, and value is the

value you want to set for that item.

As an example, the following commands −

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a747

NAME[0]="GUNJAN"
NAME[1]="BHARGAB"

NAME[2]="SUBHAM"
NAME[3]="ROKTIM"

NAME[4]="KABITA"

If you are using the ksh shell, the syntax of array initialization is −

Set -A array_name value1 value2 ... value n

If you are using the bash shell, the syntax of array initialization is −

array_name = (value1 ... value n)

Accessing Array Values

To access any array variable, you can access it as follows -

${array_name[index]}

Here array_name is the name of the array, and index is the index of the value to be accessed. Following is an example to

understand the concept −

NAME[0]="GUNJAN"

NAME[1]="BHARGAB"
NAME[2]="SUBHAM"

NAME[3]="ROKTIM"

NAME[4]="KABITA"
echo "First Index: ${NAME[0]}"

echo "Second Index: ${NAME[1]}"

The above example will generate the following result −

First Index: GUNJAN

Second Index: BHARGAB

You can access all the items in an array in one of the following ways −

${array_name[*]}

${array_name[@]}

Here array_name is the name of the array you are interested in. Following example will help you understand the

concept −

NAME[0]="GUNJAN"

NAME[1]="BHARGAB"
NAME[2]="SUBHAM"

NAME[3]="ROKTIM"

NAME[4]="KABITA"
echo "First Method: ${NAME[*]}"

echo "Second Method: ${NAME[@]}"

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a748

The above example will generate the following result −

First Method: GUNJAN BHARGAB SUBHAM ROKTIM KABITA

Second Method: GUNJAN BHARGAB SUBHAM ROKTIM KABITA

VARIOUS OPERATORS IN UNIX

UNIX supports the following operators −

 Arithmetic Operators

 Relational Operators

 Boolean Operators

 String Operators

 File Test Operators

To perform mathematical operations in the shell we will use two external programs awk and expr. expr is a command line utility

in UNIX that evaluates an expression and outputs the corresponding value.

*Note expr evaluates integer or string expressions, it also includes pattern matching regular expressions.

val = ‘expr 2 + 2’

echo “Total value: $val”

The following points need to be considered while evaluating the above expression –

 There must be spaces between operators and expression. For example, 2+2 is not correct it should be written as 2 + 2.

 The complete expression should be enclosed between ‘‘(inverted commas).

Arithmetic Operators

The operators that perform arithmetic operations are called Arithmetic Operators.

Assume variable a holds 10 and variable b holds 20 then −

Show Examples

Operator Description Example

+ (Addition) It is used to perform addition, it adds values on either side of the

operator

`expr $a +

$b` will give

30

- (Subtraction) It is used to perform subtraction, it subtracts right hand operand from

left hand operand

`expr $a -

$b` will give

-10

*

(Multiplication)

It is used to perform multiplication , it multiplies values on either

side of the operator

`expr $a *

$b` will give

200

/ (Division) It is used to perform division, it divides left hand operand by right

hand operand

`expr $b /

$a` will give

2

% (Modulus) It is used to perform modular division it divides left hand operand by

right hand operand and returns remainder

`expr $b %

$a` will give

http://www.ijnrd.org/
https://www.tutorialspoint.com/unix/unix-arithmetic-operators.htm

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a749

0

= (Assignment) It is used for assignment operator it assigns right operand in left

operand

a = $b would

assign value

of b into a

== (Equality) It is Equality operator it compares two numbers, if both are same

then returns true.

[$a == $b]

would return

false.

!= (Not

Equality)

It is a not equality operator it compares two numbers, if both are

different then returns true.

[$a != $b]

would return

true.

*NOTE we should understand that all the conditional expressions should be inside square braces with spaces around

them, for example [$a == $b]is correct whereas, [$a==$b] is incorrect. In UNIX shell all the arithmetical

calculations are done using long integers.

Relational Operators

In UNIX Relational operators are used to compare the values of operands to produce a logical value. A logical value is either true or

false. This operator does not work on string values unless the values are numeric.

Assume variable a holds 10 and variable b holds 20 then –

Show Examples

Operator Description Example

-eq This logical operator checks if the values of two operands

are equal or not; if yes, then the condition becomes true.

[$a -eq $b] is not true.

-ne This logical operator checks if the value of two operands

are equal or not; if values are not equal, then the condition

becomes true.

[$a -ne $b] is true.

-gt This logical operator checks if the value of left operand is

greater than the value of right operand; if yes, then the

condition becomes true.

[$a -gt $b] is not true.

-lt This logical operator checks if the value of left operand is

less than the value of right operand; if yes, then the

condition becomes true.

[$a -lt $b] is true.

-ge This logical operator checks if the value of left operand is

greater than or equal to the value of right operand; if yes,

then the condition becomes true.

[$a -ge $b] is not true.

-le This logical operator checks if the value of left operand is

less than or equal to the value of right operand; if yes,

then the condition becomes true.

[$a -le $b] is true.

*NOTE we should understand that all the conditional expressions should be inside square braces with spaces around

them, for example [$a <= $b] is correct whereas, [$a <= $b] is incorrect.

BOOLEAN OPERATORS

Boolean operators are used to connect or define the relationship between two entities. The three Boolean operators are AND,

OR and NOT. Let us assume variable a holds 10 and variable b holds 20 then −

Operator Description Example

! The logical negation is used for inverting a true

condition to false and false to true.

[! false] is true.

-o The logical operator OR is true when one of the [$a -lt 20 -o $b -gt 100] is true.

http://www.ijnrd.org/
https://www.tutorialspoint.com/unix/unix-relational-operators.htm

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a750

Conditional statements in UNIX shell are used to execute/ transfer the control from one part of the program to another

depending on the condition.

There are two types of conditional statements in UNIX.

i.The if...else statement

ii.The case...esac statement

The if...else statements

If else statements are useful decision-making statements which can be used to select an option from a given set of options.

Unix Shell supports following forms of if…else statement −

 if...fi statement

 if...else...fi statement

 if...elif...else...fi statement

Test command

The test command is a special command in UNIX; it investigates the sort of tests we are performing and translates the result into success

or failure. It helps the shell to decide whether to execute the commands in the if block or the commands in the else block.

For example

echo Enter a number

read number

if test $number –ge 0

then

echo positive

fi

*Note The test command is used to carry out Numerical test, String tests and File tests.

File Test Operators

To test the UNIX file properties we use the file test operators. Let us assume a variable file that holds the file

name “test” and size 100 bytes and it has read, write and execute permission :-

Examples

Operator Description Example

-b file This command checks if file is a block special file; if yes,

then the condition becomes true.

[-b $file] is false.

-c file This command checks if file is a character special file; if

yes, then the condition becomes true.

[-c $file] is false.

-d file This command checks if file is a directory; if yes, then the [-d $file] is not true.

operands is true.

-a The logical operator AND are true when both the

condition are true otherwise false.

[$a -lt 20 -a $b -gt 100] is false.

http://www.ijnrd.org/
https://www.tutorialspoint.com/unix/if-fi-statement.htm
https://www.tutorialspoint.com/unix/if-else-statement.htm
https://www.tutorialspoint.com/unix/if-elif-statement.htm
https://www.tutorialspoint.com/unix/unix-file-operators.htm

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a751

condition becomes true.

-f file This command checks if file is an ordinary file as

opposed to a directory or special file; if yes, then the

condition becomes true.

[-f $file] is true.

-g file This command checks if file has its set group ID (SGID)

bit set; if yes, then the condition becomes true.

[-g $file] is false.

-k file This command checks if file has its sticky bit set; if yes,

then the condition becomes true.

[-k $file] is false.

-p file This command checks if file is a named pipe; if yes, then

the condition becomes true.

[-p $file] is false.

-t file This command checks if file descriptor is open and

associated with a terminal; if yes, then the condition

becomes true.

[-t $file] is false.

-u file This command checks if file has its Set User ID (SUID)

bit set; if yes, then the condition becomes true.

[-u $file] is false.

-r file This command checks if file is readable; if yes, then the

condition becomes true.

[-r $file] is true.

-w file This command checks if file is writable; if yes, then the

condition becomes true.

[-w $file] is true.

-x file This command checks if file is executable; if yes, then the

condition becomes true.

[-x $file] is true.

-s file This command checks if file has size greater than 0; if

yes, then condition becomes true.

[-s $file] is true.

-e file This command checks if file exists; is true even if file is a

directory but exists.

[-e $file] is true.

Let us consider an example

Enter a file name

read file_name

if [-f $file_name]

then

echo The File exists

else

echo No such file exists

fi

In the above example we have use the ‘[]’ instead of the test command. This avoids the repeated use of the test keyword, but

it is advisable to use a space immediately after ‘[‘and immediately before ‘]’.

String Operators

Array of characters are known as string. In UNIX String operators allow you to manipulate the contents of a variable without

resorting to AWK. Some shells such as bash 3.x or ksh93 supports most of the standard string manipulation functions.

Standard functions like length, index, and substr are also available. Strings can be concatenated by using double quoted

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a752

strings. We can ensure that variables exist and set default values for variables and catch errors that result from variables not

being set. You can also perform basic pattern matching.

Let us assume variable a holds "abc" and variable b holds "efg" then –

Operator Description Example

= The equality operator checks if the values of two

operands are equal or not; if yes, then the condition

becomes true.

[$a = $b] is not true.

!= The Not Equal operator checks if the value of two

operands are equal or not; if values are not equal then the

condition becomes true.

[$a != $b] is true.

-z The –z operator checks if the given string operand size is

zero; if it is zero length, then it returns true.

[-z $a] is not true.

-n The –n operator checks if the given string operand size is

non-zero; if it is nonzero length, then it returns true.

[-n $a] is not false.

str The str operator checks if str is not the empty string; if it

is empty, then it returns false.

[$a] is not false.

Let us consider an example

first_str=”Hello”

second_str=”world”

third_str=

[$first_str=$second_str]

echo $?

[$first_str!=$second_str]

echo $?

[-n $first_str]

echo $?

[-z “$third_str”]

echo $?

[-z $third_str]

echo $?

[“$third_str”]

echo $?

In this example we show the various operations that can be tested on strings and also the use of the meta character $?. The

metacharacter contains the result of the last command whether it is a success (0) or a failure (1). We must observe very

carefully that while carrying out the equality test there is a space on either side of “=”.

Nested if-elif Statements

If statements may have another if statement in the true and false block. This type of compound statement is called nested if

statement. But, this may not be the best solution when all the branches of if statement depend on a single variable.

The case...esac Statement

To minimize the situation encountered by the if….elif statements UNIX supports the case……..esac statements.

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a753

The syntax of case...esac statement is given below −

 case...esac statement

Let us consider an example to create a calculator

echo "Enter Two numbers: "

read first_number

read second_number

Input type of operation

echo "Enter Choice :"

echo "1. Addition"

echo "2. Subtraction"

echo "3. Multiplication"

echo "4. Division"

read choice

Switch Case to perform

calculator operations

case $ch in

 1)result=`echo $first_number + $second_number | bc`

 ;;

 2)result=`echo $first_number - $second_number | bc`

 ;;

 3)result=`echo $first_number * $second_number | bc`

 ;;

 4)result=`echo "$first_number / $second_number" | bc`

 ;;

esac

echo "Answer : $result"

The above example is a simple calculator that calculates the result based on the choice selected by the user for performing the

calculation we are using the binary calculator.

Loop Statements

Loop statements are used to execute and repeat a block of statements depending on the value of a condition.

UNIX supports the following loop statements:-

 The while loop

In UNIX shell a while loop is executed and repeat a statement block depending on the condition evaluated at the beginning

of the loop.

Syntax

While condition

do

statement1

statement2

done

 The for loop

In UNIX shell a for loop is used to execute and repeat a statement block depending on a condition which is evaluated at the

beginning of the loop.

Syntax

for condition in value

do

http://www.ijnrd.org/
https://www.tutorialspoint.com/unix/case-esac-statement.htm

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a754

statement1

statement2

done

 The until loop

In UNIX the until loop is same as the while loop except that the loop executes until the TEST-COMMAND executes

successfully.
Syntax
until condition

do

this

and this

done

 The select loop

In UNIX the select loop provides a way to create a menu from which users can select options.

The select loop is useful when you need to ask the user to choose one or more items from a list of choices.

Nesting Loops

Like if statements loops can also be nested, which means you can put one loop inside another similar one or different loops.

The nesting can go up to unlimited number of times .

Syntax

while first command

do

 Statement(s) to be executed if first command is true

 while second command

 do

 Statement(s) to be executed if second command is true

 done

 Statement(s) to be executed if first command is true

done

Example

Here is a simple example of loop nesting.

x=0

while ["$x" -lt 10] # this is loop1
do

 y="$x"

 while ["$y" -ge 0] # this is loop2
 do

 echo -n "$y "

 y=`expr $y - 1`
 done

 echo
 x=`expr $x + 1`

done

The output of the above program is shown below.

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a755

*Note echo –n option avoid printing a new line character

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

5 4 3 2 1 0

6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

The infinite Loop
An infinite loop continues forever if the required condition is not met. This type of loops executes forever without

terminating, they executes for an infinite number of times.

Example

In this example the while loop is used to display the numbers zero to nine −

#!/bin/sh

x=10

until [$x -lt 10]

do

 echo $x

 x=expr $x + 1`

done

This loop continues forever because x is always greater than or equal to 10 and it is never less than 10.

The break Statement

The break statement is used to transfer the control to the end of the statement block or terminate the execution of the entire

loop, after the execution of all the lines of code are executed successfully. A break is often associated with an if.

Syntax

The following break statement is used to come out of a loop −

break

The break command can also be used to exit from a nested loop using this format −

break n

Here n specifies the nth enclosing loop to the exit from.

Example

A simple program to display the first 10 natural numbers

x=1

while [$x -lt 10]

do

 echo $x

 if [$x -eq 10]

 then

 break

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a756

 fi

 x=`expr $x + 1`

done

Upon execution, you will receive the following result −

1

2

3

4

5

6

7

8

9

10

The continue statement

The continue statement is used to transfer the control to the beginning of a statement block in a loop.

Syntax

continue

Like with the break statement, an integer argument can be given to the continue command to skip commands from nested

loops.

continue n

Here n specifies the nth enclosing loop to continue from.

Example

A program to check odd or even −

x="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20"

for y in $x

do

 a=`expr $y % 2`

 if [$a -eq 0]

 then

 echo "even number"

 continue

 fi

 echo "odd number"

done

Conclusion

A variable is a placeholder that stores value. A shell is an interface between the kernel and the user. An environment variable

is a value that is available widely and can be used by other applications, environment variables are categorized in Local

environment variable, user environment variable and system wide environment variable. A local variable is defined only for

the current session, user environment variables are used for a particular and system wide are available widely for all users in

the system. To access a variable all variables must have a $ sign as prefix to the variable. In UNIX variables can be of Local

variables, environment variables and shell variables. Command-line arguments are arguments that allow user to control the

http://www.ijnrd.org/

 © 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2304097 International Journal of Novel Research and Development (www.ijnrd.org)

a757

flow of the command or to specify the input data required to the command. UNIX also uses two special parameter $* and $@

that allows the access of all the command-line arguments. An array is a collection of similar elements. To access any array

variable we can access it as ${array_name[index]}.

References:
UNIX in a Nutshell by Arnold Robbins (Shroff Publishers and Distributors)

The UNIX Programming Environment by Brian Kernighan &Rob Pike (Prentice-Hall of India)

The Design of the UNIX Operating System by Maurice Bach (Prentice-Hall of India)

UNIX concepts and Applications by Sumitabha Das (The McGraw- Hill Companies)

UNIX Shell Programming Yashavant Kanetkar

Advanced Programming in the UNIX Environment by W. Richard Stevens (Prentice-Hall)

Beginning Linux Programming by Richard Stones and Neil Matthew (Shroff publishers and Distributors)

Advanced UNIX A programmers Guide by Stephen Prata (SAMS)

UNIX Made Easy UNIX and Linux Basics and beyond by John Muster (Tata McGraw Hill)

The UNIX operating system by Kaare Christian, Susan Richter (John Wiley)

http://www.ijnrd.org/

