

Inverse Signed Total Domination of Corona Product of a Path with a Complete Graphs

C. Shobha Rani Department of Mathematics Corresponding author: C. Shobha Rani M. Kethan Department of Management IIBS College

Abstract: Graph theory is one of the important branch of mathematics and find the applications in several branches of Science & Technology. In this paper, we study the maximal inverse signed dominating functions, maximal inverse signed total dominating functions of Corona Product graph of a path with a complete graph denoted by $G = P_n \square K_m$, Here P_n denotes the path with *n* vertices and K_m denotes the complete graph with *m* vertices. This graph is useful in communication networks and also in internet services.

Keywords: Corona Product Graph, Inverse Signed Dominating Functions, Inverse Signed Total Dominating Functions, Inverse Signed Domination Number, Inverse Signed Total Domination Number.

Subject Classification: 68R10

1. Introduction

Cockayne et al. [3] have studied towards a theory of domination in graphs. Inverse domination and inverse total domination concepts are introduced by kulli [7,8,9,10]. Allan and Laskar [1] have studied on domination, Independent domination numbers of a graph. Domke et al. [4] have studied the inverse domination number of a graph.

Now we introduce the concept of inverse signed domination as follows:

Let $f: V \to \{-1, +1\}$ is called an inverse signed dominating function (ISDF) of G, if $f[N(v_i)] = \sum_{u \in N[v_i]} f(u) \le 0$, for

each $v \in V$. An ISDF f of G is called a Maximal ISDF, if for all g > f, g is not an ISDF. The weight of f, denoted f(G), is the sum of the function value of all vertices in G. That is $f(G) = \sum_{x \in V} f(x)$. The inverse signed domination number (ISDN) of G is denoted by $\chi Q(G)$.

(ISDN) of *G* is denoted by $\gamma_s^0(G)$.

We studied inverse signed total domination in [2, 11]. Huang et al. [6] introduce the concept of Inverse signed total domination numbers as follows:

If $f: V \to \{-1, +1\}$ is called an inverse signed total dominating function (ISTDF) of G, if $f(N(v_i)) = \sum_{u \in N(v_i)} f(u) \le 0$, for each $v \in V$. An ISTDF f of G is called a Maximal ISTDF, if for all g > f, g is not a ISTDF.

© 2023 IJNRD | Volume 8, Issue 4 April 2023 | ISSN: 2456-4184 | IJNRD.ORG The weight of f, denoted f(G), is the sum of the function value of all vertices in G. That is $f(G) = \sum_{x \in V} f(x)$. The inverse signed total domination number (ISTDN) of G is denoted by $\gamma_{st}^0(G)$. Frucht and Harary [5] introduced a new product on two graphs G_1 and G_2 , called corona product denoted by $G_1 \square G_2$.

2. Corona Product of a Path P_n with a Complete Graph K_m

The corona product of a path P_n with a complete graph K_m is a graph $P_n \Box K_m$ obtained by taking one copy of a n-vertex path P_n and n copies of K_m and then joining the i^{th} vertex of P_n to every vertex of i^{th} copy of K_m .

3. Inverse Signed Dominating Functions

Theorem 3.1: A function $f: V \to \{-1, +1\}$ is defined by $f(v_i) = \begin{cases} +1, & \text{if } 1 \le i \le \left(\frac{m}{2}\right) \\ -1, & \text{otherwise} \end{cases}$ of each copy of K_m in G

is a maximal inverse signed dominating function (MISDF) of a graph $G = P_n \square K_m$ and ISDN is $\gamma_s^0(G) = -n$, if *m* is even.

Proof:

Consider the graph $G = P_n \square K_m$ with |V| number of vertices and |E| number of edges.

Let f be a function defined in the hypothesis.

Case (1): Let $v_i \in P_n$ be such that $d(v_i) = (m+2)$ in G, then $N[v_i]$ contains *m* vertices of K_m and three vertices of P_n in G.

Thus
$$\sum_{u \in N[v_i]} f(u) = (-1) + (-1) + (-1) + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = -3 \Rightarrow f \text{ is an ISDF.}$$

Case (2): Let $v_i \in P_n$ be such that $d(v_i) = (m+1)$ in G, then $N[v_i]$ contains m vertices of K_m and two vertices of P_n in G

Thus
$$\sum_{u \in N[v_i]} f(u) = (-1) + (-1) + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = -2 \Rightarrow f \text{ is an ISDF.}$$

Case (3): Let $v_i \in K_m$ be such that $d(v_i) = m \text{ in } G$, then $N[v_i]$ contains m vertices of K_m and one vertex of P_n in G and $f(v_i) = -1$ or +1.

If
$$f(v_i) = \pm 1$$
, then $\sum_{u \in N[v_i]} f(u) = (-1) + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = -1 \Rightarrow f$ is an ISDF.

Hence for all the above possibilities, we get $\sum_{u \in N[v_i]} f(u) < 0, \forall v_i \in V$

This implies that the function f is an ISDF.

Now we check for maximality of f, define $g: V \rightarrow \{-1, +1\}$ by

$$g(v_i) = \begin{cases} +1, & \text{if } 1 \le i \le \frac{m}{2} \text{ of each copy of } K_m \text{ in } G \\ +1, & \text{if } v_i = v_k \in P_n \text{ in } G \\ -1, & \text{otherwise} \end{cases}$$

Case (1): Let $v_i \in P_n$ be such that $d(v_i) = (m+2)$ in G, then $N[v_i]$ contains m vertices of K_m and three vertices of P_n in G.

$$\begin{aligned} \text{If } v_k &\in N[v_i], \ then \sum_{u \in N[v_i]} g(u) = 1 + (-1) + (-1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = -1 \\ \text{If } v_k &\notin N[v_i], \ then \sum_{u \in N[v_i]} g(u) = (-1) + (-1) + (-1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = -3 \end{aligned}$$

In this case g is an ISDF.

Case (2): Let $v_i \in P_n$ be such that $d(v_i) = (m+1)$ in G, then $N[v_i]$ contains m vertices of K_m and two vertices of P_n in G.

If
$$v_k \in N[v_i]$$
, then $\sum_{u \in N[v_i]} g(u) = 1 + (-1) + \left\lfloor \left(\frac{m}{2}\right)(+1) + \left(\frac{m}{2}\right)(-1) \right\rfloor = 0 \Rightarrow g$ is an ISDF.
If $v_k \notin N[v_i]$, then $\sum_{u \in N[v_i]} g(u) = (-1) + (-1) + \left\lfloor \left(\frac{m}{2}\right)(+1) + \left(\frac{m}{2}\right)(-1) \right\rfloor = -2 \Rightarrow g$ is an ISDF.

Case (3): Let $v_i \in K_m$ be such that $d(v_i) = m$ in G, then $N[v_i]$ contains m vertices of K_m and one vertex of P_n in G and. $g(v_i) = -1$ or +1

(i) Let
$$v_k \in N[v_i]$$

If
$$g(\mathbf{v}_i) = \pm 1$$
, then $\sum_{u \in N[v_i]} g(u) = 1 + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = 1 \Rightarrow g$ is not an ISDF.
(ii) Let $\mathbf{v}_k \notin N[v_i]$

If
$$g(v_i) = \pm 1$$
, then $\sum_{u \in N[v_i]} g(u) = (-1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = -1 \Rightarrow g$ is an ISDF.

This implies that g is not an ISDF, because $\sum_{u \in N[v_i]} g(u) > 0$, for some $v_i \in V$

Hence f is a maximal inverse signed dominating function on G.

Now
$$\sum_{u \in V(G)} f(u) = \underbrace{(-1) + \dots + (-1)}_{n-times} + \underbrace{\left(\frac{m}{2}\right)(+1) + \left(\frac{m}{2}\right)(-1)}_{n-times} = -n$$

Finally, ISDN is $\gamma_s^0(G) = -n$, if *m* is even.

Theorem 3.2: A function
$$f: V \to \{-1, +1\}$$
 is defined by $f(v_i) = \begin{cases} +1, & \text{if } 1 \le i \le \left(\frac{m+1}{2}\right) \\ -1, & \text{otherwise} \end{cases}$ of each copy of K_m in G

is a maximal inverse signed dominating function (MISDF) of a graph $G = P_n \square K_m$ and ISDN is $\gamma_s^0(G) = 0$, if *m* is odd. **Proof:** Let *f* be a function defined in the hypothesis.

Case (1): Let $v_i \in P_n$ be such that $d(v_i) = (m+2)$ in G, then $N[v_i]$ contains m vertices of K_m and three vertices of P_n in G.

Thus
$$\sum_{u \in N[v_i]} f(u) = (-1) + (-1) + (-1) + \left[\left(\frac{m+1}{2}\right)(+1) + \left(\frac{m-1}{2}\right)(-1)\right] = -2$$

Case (2): Let $v_i \in P_n$ be such that $d(v_i) = m + 1$ in G, then $N[v_i]$ contains m vertices of K_m and two vertices of P_n in G.

Thus
$$\sum_{u \in N[v_i]} f(u) = (-1) + (-1) + \left[\left(\frac{m+1}{2} \right) (+1) + \left(\frac{m-1}{2} \right) (-1) \right] = -1$$

d357

Case (3): Let $v_i \in K_m$ be such that $d(v_i) = m \text{ in } G$, then $N[v_i]$ contains *m* vertices of K_m and one vertex of P_n in *G* and $f(v_i) = -1 \text{ or } +1.$

If
$$f(v_i) = \pm 1$$
, then $\sum_{u \in N[v_i]} f(u) = (-1) + \left[\left(\frac{m+1}{2} \right) (+1) + \left(\frac{m-1}{2} \right) (-1) \right] = 0$

Hence for all the above possibilities, we get $\sum_{u \in N[v_i]} f(u) \le 0, \forall v_i \in V$

This implies that the function f is an ISDF.

Now we check for maximality of f , define $g: V \rightarrow \{-1, +1\}$ by

$$g(v_i) = \begin{cases} +1, & \text{if } 1 \le i \le \frac{m+1}{2} \text{ of each copy of } K_m \text{ in } G \\ +1, & \text{if } v_i = v_k \in P_n \text{ in } G \\ -1, & \text{otherwise} \end{cases}$$

Case (1): Let $v_i \in P_n$ be such that $d(v_i) = (m+2) \text{ in } G$, then $N[v_i]$ contains *m* vertices of K_m and three vertices of P_n in G

If
$$v_k \in N[v_i]$$
, then $\sum_{u \in N[v_i]} g(u) = 1 + (-1) + (-1) + \left[\left(\frac{m-1}{2}\right)(-1) + \left(\frac{m+1}{2}\right)(+1)\right] = 0$
If $v_k \notin N[v_i]$, then $\sum_{u \in N[v_i]} g(u) = (-1) + (-1) + (-1) + \left[\left(\frac{m-1}{2}\right)(-1) + \left(\frac{m+1}{2}\right)(+1)\right] = -2$

Case (2): Let $v_i \in P_n$ be such that $d(v_i) = m + 1$ in G, then $N[v_i]$ contains m vertices of K_m and two vertices of P_n in G.

If
$$v_k \in N[v_i]$$
, then $\sum_{u \in N[v_i]} g(u) = 1 + (-1) + \left[\left(\frac{m-1}{2} \right) (-1) + \left(\frac{m+1}{2} \right) (+1) \right] = 1$

If $v_k \notin N[v_i]$, then $\sum_{u \in N[v_i]} g(u) = (-1) + (-1) + \left[\left(\frac{m-1}{2} \right) (+1) + \left(\frac{m+1}{2} \right) (-1) \right] = -3$

Case (3): Let $V_i \in K_m$ be such that $d(v_i) = m \text{ in } G$, then $N[v_i]$ contains m vertices of K_m and one vertex of P_n in G and $g(v_i) = -1 \text{ or } +1.$

(i) Let
$$\mathbf{v}_k \in N[v_i]$$

If $g(v_i) = \pm 1$, then $\sum_{u \in N[v_i]} g(u) = 1 + \left[\left(\frac{m-1}{2} \right) (-1) + \left(\frac{m+1}{2} \right) (+1) \right] = 2$

(ii) Let
$$v_k \notin N[v_i]$$

(ii) Let
$$V_k \notin N[V_i]$$

If $g(V_i) = \pm 1$, then $\sum_{u \in N[v_i]} g(u) = (-1) + \left[\left(\frac{m-1}{2} \right) (-1) + \left(\frac{m+1}{2} \right) (+1) \right] = 0$

This implies that g is not an ISDF, because $\sum_{u \in N[v_i]} g(u) > 0$, for some $v_i \in V$. Hence f is a maximal inverse signed dominating function on G.

Now
$$\sum_{u \in V(G)} f(u) = \underbrace{(-1) + \dots + (-1)}_{n-times} + \left\lfloor \underbrace{\left(\frac{m+1}{2}\right)(+1) + \left(\frac{m-1}{2}\right)(-1)}_{n-times} \right\rfloor = 0$$

Finally, ISDN is $\gamma_s^0(G) = 0$, if *m* is odd.

IJNRD2304352

d358

4. Inverse Signed Total Dominating Functions

Theorem 4.1: A function $f: V \to \{-1, +1\}$ is defined by $f(v_i) = \begin{cases} +1, & \text{if } 1 \le i \le \left(\frac{m}{2}\right) \text{ of each copy of } K_m \text{ in } G \\ -1, & \text{otherwise} \end{cases}$

is a maximal inverse signed total dominating function (MISTDF) of a graph $G = P_n \square K_m$ and ISTDN is $\gamma_{st}^0(G) = -n$, if *m* is even.

Proof:

Consider the graph $G = P_n \Box K_m$ with |V| number of vertices and |E| number of edges.

Let f be a function defined in the hypothesis.

Case (1): Let $v_i \in P_n$ be such that $d(v_i) = (m+2)$ in G, then $N(v_i)$ contains *m* vertices of K_m and two vertices of P_n in G

Thus
$$\sum_{u \in N(v_i)} f(u) = (-1) + (-1) + \left[\left(\frac{m}{2}\right)(-1) + \left(\frac{m}{2}\right)(+1)\right] = -2 \Rightarrow f \text{ is an ISTDF.}$$

Case (2): Let $v_i \in P_n$ be such that $d(v_i) = (m+1)$ in G, then $N(v_i)$ contains *m* vertices of K_m and one vertex of P_n in G.

Thus
$$\sum_{u \in N(v_i)} f(u) = (-1) + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = -1 \Rightarrow f$$
 is an ISTDF.

Case (3): Let $v_i \in K_m$ be such that $d(v_i) = m$ in G, then $N(v_i)$ contains (m-1) vertices of K_m and one vertex of P_n in G and $f(v_i) = -1$ or +1.

If
$$f(v_i) = -1$$
, then $\sum_{u \in N(v_i)} f(u) = (-1) + \left[\left(\frac{m}{2} - 1 \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = 0 \Rightarrow f$ is an ISTDF.

If
$$f(v_i) = +1$$
, then $\sum_{u \in N(v_i)} f(u) = (-1) + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} - 1 \right) (+1) \right] = -2 \Rightarrow f$ is an ISTDF.

Hence for all the above possibilities, we get $\sum_{u \in N(v_i)} f(u) \le 0, \forall v_i \in V$

This implies that the function f is an ISTDF. Now we check for maximality of f, define $g: V \to \{-1, +1\}$ by $\begin{bmatrix} +1, & \text{if } 1 \le i \le \frac{m}{2} & \text{of each copy of } K_m \text{ in } G \end{bmatrix}$

$$g(v_i) = \begin{cases} +1, & \text{if } v_i = v_k \in P_n \text{ in } G \\ -1, & \text{otherwise} \end{cases}$$

Case (1): Let $v_i \in P_n$ be such that $d(v_i) = (m+2)$ in G, then $N(v_i)$ contains m vertices of K_m and two vertices of P_n in G

If
$$v_k \in N(v_i)$$
, then $\sum_{u \in N(v_i)} g(u) = 1 + (-1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = 0$
If $v_k \notin N(v_i)$, then $\sum_{u \in N(v_i)} g(u) = (-1) + (-1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = -2$

In this case g is an ISTDF.

Case (2): Let $v_i \in P_n$ be such that $d(v_i) = (m+1)$ in G, then $N(v_i)$ contains m vertices of K_m and one vertex of P_n in G.

If
$$v_k \in N(v_i)$$
, then $\sum_{u \in N(v_i)} g(u) = 1 + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = +1 \Longrightarrow g$ is not an ISTDF

If
$$v_k \notin N(v_i)$$
, then $\sum_{u \in N(v_i)} g(u) = (-1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = -1 \Rightarrow g$ is an ISTDF.

Case (3): Let $v_i \in K_m$ be such that $d(v_i) = m \text{ in } G$, then $N(v_i)$ contains (m-1) vertices of K_m and one vertex of P_n in G and $g(v_i) = -1$ or +1. Let $v_k \in N(v_i)$

If
$$g(\mathbf{v}_i) = -1$$
, then $\sum_{u \in N(\mathbf{v}_i)} g(u) = (+1) + \left[\left(\frac{m}{2} - 1 \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = +2 \Rightarrow f$ is not an ISTDF.
If $g(\mathbf{v}_i) = +1$, then $\sum_{u \in N(\mathbf{v}_i)} g(u) = (+1) + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} - 1 \right) (+1) \right] = 0 \Rightarrow f$ is an ISTDF.
Let $V \notin N(v)$

If
$$g(\mathbf{v}_i) = -1$$
, then $\sum_{u \in N(\mathbf{v}_i)} f(u) = (-1) + \left[\left(\frac{m}{2} - 1 \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = 0 \Longrightarrow f$ is an ISTDF.

If
$$f(v_i) = +1$$
, then $\sum_{u \in N(v_i)} f(u) = (-1) + \left[\left(\frac{m}{2}\right)(-1) + \left(\frac{m}{2}-1\right)(+1)\right] = -2 \Rightarrow f$ is an ISTDF.

This implies that g is not an ISTDF, because $\sum_{u \in N(v_i)} g(u) > 0$, for some $v_i \in V$

Hence f is a maximal inverse signed total dominating function on G.

Now
$$\sum_{u \in V(G)} f(u) = \underbrace{(-1) + \cdots + (-1)}_{n-times} + \left\lfloor \underbrace{\left(\frac{m}{2}\right)(+1) + \left(\frac{m}{2}\right)(-1)}_{n-times} \right\rfloor = -n$$

Finally, ISTDN is $\gamma_{st}^0(G) = -n$, if *m* is even.

Theorem 4.2: A function $f: V \to \{-1, +1\}$ is defined by $f(v_i) = \begin{cases} +1, \text{ if } 1 \le i \le \left(\frac{m-1}{2}\right) \\ -1, \text{ otherwise} \end{cases}$ of each copy of K_m in G

is a maximal inverse signed total dominating function (MISTDF) of a graph $G = P_n \square K_m$ and ISTDN is $\gamma_{st}^0(G) = -2n$, if *m* is odd.

Proof: Let *f* be a function defined in the hypothesis.

Case (1): Let $v_i \in P_n$ be such that $d(v_i) = (m+2)$ in G, then $N(v_i)$ contains m vertices of K_m and two vertices of P_n in G

Thus
$$\sum_{u \in N(v_i)} f(u) = (-1) + (-1) + \left[\left(\frac{m-1}{2} \right) (+1) + \left(\frac{m+1}{2} \right) (-1) \right] = -3$$

Case (2): Let $v_i \in P_n$ be such that $d(v_i) = (m+1)$ in G, then $N(v_i)$ contains m vertices of K_m and one vertex of P_n in G.

Thus
$$\sum_{u \in N[v_i]} f(u) = (-1) + \left[\left(\frac{m-1}{2} \right) (+1) + \left(\frac{m+1}{2} \right) (-1) \right] = -2$$

Case (3): Let $v_i \in K_m$ be such that $d(v_i) = m \text{ in } G$, then $N(v_i)$ contains (m-1) vertices of K_m and one vertex of P_n in G and $f(v_i) = -1$ or +1.

If
$$f(v_i) = -1$$
, then $\sum_{u \in N(v_i)} f(u) = (-1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = -1$

If
$$f(v_i) = +1$$
, then $\sum_{u \in N(v_i)} f(u) = (-1) + \left[\left(\frac{m-3}{2} \right) (+1) + \left(\frac{m+1}{2} \right) (-1) \right] = -3$

Hence for all the above possibilities, we get $\sum_{u \in N[v_i]} f(u) \le 0, \forall v_i \in V$

This implies that the function f is an ISTDF. Now we check for maximality of f, define $g: V \to \{-1, +1\}$ by $\left[+1, \text{ if } 1 \le i \le \frac{m-1}{2} \text{ of each copy of } K_m \text{ in } G\right]$

$$g(v_i) = \begin{cases} +1, & \text{if } v_i = v_k \in P_n \text{ in } G \\ -1, & \text{otherwise} \end{cases}$$

Case (1): Let $v_i \in P_n$ be such that $d(v_i) = (m+2)$ in G, then $N(v_i)$ contains m vertices of K_m and two vertices of P_n in G

If
$$v_k \in N(v_i)$$
, then $\sum_{u \in N(v_i)} g(u) = 1 + (-1) + \left[\left(\frac{m+1}{2} \right) (-1) + \left(\frac{m-1}{2} \right) (+1) \right] = -1$
If $v_k \notin N(v_i)$, then $\sum_{u \in N(v_i)} g(u) = (-1) + (-1) + \left[\left(\frac{m+1}{2} \right) (-1) + \left(\frac{m-1}{2} \right) (+1) \right] = -3$

Case (2): Let $v_i \in P_n$ be such that $d(v_i) = (m+1)$ in G, then $N(v_i)$ contains m vertices of K_m and one vertex of P_n in G.

If
$$v_k \in N(v_i)$$
, then $\sum_{u \in N(v_i)} g(u) = 1 + \left[\left(\frac{m+1}{2} \right) (-1) + \left(\frac{m-1}{2} \right) (+1) \right] = 0$
If $v_k \notin N(v_i)$, then $\sum_{u \in N(v_i)} g(u) = (-1) + \left[\left(\frac{m-1}{2} \right) (+1) + \left(\frac{m+1}{2} \right) (-1) \right] = -2$

Case (3): Let $v_i \in K_m$ be such that $d(v_i) = m \text{ in } G$, then $N(v_i)$ contains (m-1) vertices of K_m and one vertex of P_n in G and $g(v_i) = -1$ or +1.

Let
$$V_k \in N(v_i)$$

If $g(v_i) = -1$, then $\sum_{u \in N(v_i)} g(u) = (+1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = 1$ If $g(v_i) = +1$, then $\sum_{u \in N(v_i)} g(u) = (+1) + \left[\left(\frac{m-3}{2} \right) (+1) + \left(\frac{m+1}{2} \right) (-1) \right] = -1$

Let
$$V_k \notin N(v_i)$$

If $g(v_i) = -1$, then $\sum_{u \in N(v_i)} g(u) = (-1) + \left[\left(\frac{m}{2} \right) (+1) + \left(\frac{m}{2} \right) (-1) \right] = -1$

If
$$g(v_i) = +1$$
, then $\sum_{u \in N(v_i)} g(u) = (+1) + \left[\left(\frac{m-3}{2} \right) (+1) + \left(\frac{m+1}{2} \right) (-1) \right] = -1$

This implies that g is not an ISTDF, because $\sum_{u \in N[v_i]} g(u) > 0$, for some $v_i \in V$

Hence f is a maximal inverse signed total dominating function on G.

Now
$$\sum_{u \in V(G)} f(u) = \underbrace{(-1) + \dots + (-1)}_{n-times} + \left\lfloor \underbrace{\left(\frac{m-1}{2}\right)(+1) + \left(\frac{m+1}{2}\right)(-1)}_{n-times} \right\rfloor = -2n$$

Finally, ISTDN is $\gamma_{st}^0(G) = -2n$, if *m* is odd.

Conclusion

In this paper, we studied about the inverse signed domination number and inverse signed total domination number of a corona product of path with a complete graph. Here ISDN and ISTDN are equal, if m is even, i.e. $\gamma_s^0(G) = \gamma_{st}^0(G) = -n$. ISDN and ISTDN are different, if m is odd, i.e. $\gamma_s^0(G) = 0$ and $\gamma_{st}^0(G) = -2n$.

REFERENCES

- [1] Allan, R.B. and Laskar, R.C., On domination, Independent domination numbers of a graph, Discrete Math., 23(2) (1978), 73-76.
- [2] Atapour, M., Norouzian, S., Sheikholeslami, S.M., and Volkmann, L., Bounds on the inverse signed total domination numbers in graphs, Opuscula Math. 36, No. 2 (2016), 145–152.
- [3] Cockayne, E.J. and Hedetniemi, S.T., Towards a theory of domination in graphs, Networks, 7(3) (1977), 247-261.
- [4] Domke, G.S., Dunbar, J.E. and Markus, L.R., The inverse domination number of a graph, Ars Combinatoria, 72 (2004), 149-160.
- [5] Frucht, R. and Harary, F., On the corona of two graphs, Aequationes Mathematicae, 4(3) (1970), 322 325.
- [6] Huang,Z., Feng,Z., and Xing, H., Inverse signed total domination numbers of some kinds of graphs, In International Conference on Information Computing and Applications, Springer Berlin Heidelberg, (2012), pp. 315-321.
- [7] Kulli, V.R. and Sigarkanti, S.C., Inverse domination in graphs, Nat. Acad. Sci. Lett., 14(12) (1991) 473-475.
- [8] Kulli, V.R., Inverse domination and Inverse total domination in digraphs, International Journal of Advanced Research in Computer Science & Technology, 2(1) (2014), 106-109.
- [9] Kulli, V.R., and Iyer, R.R., Inverse total domination in graphs, Journal of Discrete Mathematical Sciences and Cryptography, 10(5) (2007), 613-620.
- [10] Kulli, V.R., Inverse total domination in corona and join of graphs, Journal of Computer and Mathematical Sciences, 7(2) (2016), 61-64.
- [11] Mojdeh, D.A., and Samadi, B., On the inverse signed total domination number in graphs, Opuscula Math. 37, no. 3 (2017), 447 456.

International Research Journal Research Through Innovation