INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) | IJNRD.ORG An International Dpen Access, Peer-reviewed, Refereed Journal

Inverse Signed Total Domination of Corona Product of a Path with a Complete Graphs

C. Shobha Rani
Department of Mathematics Corresponding author: C. Shobha Rani M. Kethan
Department of Management IIBS College

Abstract

Graph theory is one of the important branch of mathematics and find the applications in several branches of Science \& Technology. In this paper, we study the maximal inverse signed dominating functions, maximal inverse signed total dominating functions of Corona Product graph of a path with a complete graph denoted by $G=P_{\mathrm{n}} \square K_{m}$, Here P_{n} denotes the path with n vertices and K_{m} denotes the complete graph with m vertices. This graph is useful in communication networks and also in internet services.

Keywords: Corona Product Graph, Inverse Signed Dominating Functions, Inverse Signed Total Dominating Functions, Inverse Signed Domination Number, Inverse Signed Total Domination Number.

Subject Classification: 68R10

1. Introduction

Cockayne et al. [3] have studied towards a theory of domination in graphs. Inverse domination and inverse total domination concepts are introduced by kulli [7,8,9,10]. Allan and Laskar [1] have studied on domination, Independent domination numbers of a graph. Domke et al. [4] have studied the inverse domination number of a graph.

Now we introduce the concept of inverse signed domination as follows:
Let $f: V \rightarrow\{-1,+1\}$ is called an inverse signed dominating function (ISDF) of G, if $f\left[N\left(v_{i}\right)\right]=\sum_{u \in N\left[v_{i}\right]} f(u) \leq 0$, for each $v \in V$. An ISDF f of G is called a Maximal ISDF, if for all $g>f, g$ is not an ISDF. The weight of f, denoted $f(G)$, is the sum of the function value of all vertices in G. That is $f(G)=\sum_{x \in V} f(x)$. The inverse signed domination number (ISDN) of G is denoted by $\gamma_{\mathrm{s}}{ }^{\circ}(G)$.

We studied inverse signed total domination in [2, 11]. Huang et al. [6] introduce the concept of Inverse signed total domination numbers as follows:

If $\quad f: V \rightarrow\{-1,+1\}$ is called an inverse signed total dominating function (ISTDF) of G, if
$f\left(N\left(v_{i}\right)\right)=\sum_{u \in N\left(v_{i}\right)} f(u) \leq 0$, for each $v \in V$. An ISTDF f of G is called a Maximal ISTDF, if for all $g>f, g$ is not a ISTDF. The weight of f, denoted $f(G)$, is the sum of the function value of all vertices in G. That is $f(G)=\sum_{x \in V} f(x)$. The inverse signed total domination number (ISTDN) of G is denoted by $\gamma_{\mathrm{st}^{0}}(G)$. Frucht and Harary [5] introduced a new product on two graphs G_{1} and G_{2}, called corona product denoted by $G_{1} \square G_{2}$.

2. Corona Product of a Path P_{n} with a Complete Graph K_{m}

The corona product of a path P_{n} with a complete graph K_{m} is a graph $P_{\mathrm{n}} \square K_{m}$ obtained by taking one copy of a \boldsymbol{n} vertex path P_{n} and n copies of K_{m} and then joining the $i^{\text {th }}$ vertex of P_{n} to every vertex of $i^{\text {th }}$ copy of K_{m}.

3. Inverse Signed Dominating Functions

Theorem 3.1: A function $f: V \rightarrow\{-1,+1\}$ is defined by $f\left(v_{i}\right)=\left\{\begin{array}{l}+1, \text { if } 1 \leq i \leq\left(\frac{m}{2}\right) \text { of each copy of } K_{m} \text { in } G \\ -1, \text { otherwise }\end{array}\right.$
is a maximal inverse signed dominating function (MISDF) of a graph $\mathrm{G}=P_{\mathrm{n}} \square K_{m}$ and ISDN is $\gamma_{s}^{0}(G)=-n$, if m is even.

Proof:

Consider the graph $\mathrm{G}=P_{\mathrm{n}} \square K_{m}$ with $|V|$ number of vertices and $|E|$ number of edges.
Let f be a function defined in the hypothesis.
Case (1): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+2)$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and three vertices of P_{n} in G.

Thus $\sum_{u \in N\left[v_{i}\right]} f(u)=(-1)+(-1)+(-1)+\left[\left(\frac{m}{2}\right)(-1)+\left(\frac{m}{2}\right)(+1)\right]=-3 \Rightarrow f$ is an ISDF.
Case (2): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+1)$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and two vertices of P_{n} in G

Thus $\sum_{u \in N\left[v_{i}\right]} f(u)=(-1)+(-1)+\left[\left(\frac{m}{2}\right)(-1)+\left(\frac{m}{2}\right)(+1)\right]=-2 \Rightarrow f$ is an ISDF.
Case (3): Let $\mathrm{v}_{i} \in K_{m}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=m_{\text {in }} G$, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and one vertex of P_{n} in G and $f\left(v_{i}\right)=-1$ or +1 .
$\operatorname{If} \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \pm 1$, then $\sum_{u \in N\left[v_{i}\right]} f(u)=(-1)+\left[\left(\frac{m}{2}\right)(-1)+\left(\frac{m}{2}\right)(+1)\right]=-1 \Rightarrow f$ is an ISDF.
Hence for all the above possibilities, we get $\sum_{u \in N\left[v_{i}\right]} f(u)<0, \forall v_{i} \in V$
This implies that the function f is an ISDF.
Now we check for maximality of f, define $\mathrm{g}: \mathrm{V} \rightarrow\{-1,+1\}$ by
$g\left(v_{i}\right)= \begin{cases}+1, & \text { if } 1 \leq i \leq \frac{m}{2} \text { of each copy of } K_{m} \text { in } G \\ +1, & \text { if } v_{i}=v_{k} \in P_{n} \text { in } G \\ -1, & \text { otherwise }\end{cases}$
Case (1): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+2)$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and three vertices of P_{n} in G.

If $v_{k} \in N\left[v_{i}\right]$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=1+(-1)+(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=-1$
If $v_{k} \notin N\left[v_{i}\right]$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=(-1)+(-1)+(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=-3$
In this case g is an ISDF.
Case (2): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+1)$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and two vertices of P_{n} in G

If $v_{k} \in N\left[v_{i}\right]$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=1+(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=0 \Rightarrow g$ is an ISDF.
If $v_{k} \notin N\left[v_{i}\right]$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=(-1)+(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=-2 \Rightarrow g$ is an ISDF.
Case (3): Let $\mathrm{v}_{i} \in K_{m}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=m$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and one vertex of P_{n} in G and. $g\left(\mathrm{v}_{\mathrm{i}}\right)=-1$ or +1
(i) Let $\mathrm{v}_{k} \in N\left[v_{i}\right]$

If $g\left(\mathrm{v}_{\mathrm{i}}\right)= \pm 1$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=1+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=1 \Rightarrow g$ is not an ISDF.
(ii) Let $\mathrm{v}_{k} \notin N\left[v_{i}\right]$

If $g\left(\mathrm{v}_{\mathrm{i}}\right)= \pm 1$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=-1 \Rightarrow g$ is an ISDF.
This implies that g is not an ISDF, because $\sum_{u \in N\left[v_{i}\right]} g(u)>0$, for some $v_{i} \in V$
Hence f is a maximal inverse signed dominating function on G.
Now $\sum_{u \in V(G)} f(u)=\underbrace{(-1)+---+(-1)}_{n \text {-times }}+[\underbrace{\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)}_{n \text {-times }}]=-n$
Finally, ISDN is $\gamma_{s}^{0}(G)=-n$, if m is even.
Theorem 3.2: A function $f: V \rightarrow\{-1,+1\}$ is defined by $f\left(v_{i}\right)= \begin{cases}+1, & \text { if } 1 \leq i \leq\left(\frac{m+1}{2}\right) \text { of each copy of } K_{m} \text { in } G \\ -1, & \text { otherwise }\end{cases}$
is a maximal inverse signed dominating function (MISDF) of a graph $\mathrm{G}=P_{\mathrm{n}} \square K_{m}$ and ISDN is $\gamma_{s}^{0}(G)=0$, if m is odd.
Proof: Let f be a function defined in the hypothesis.
Case (1): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+2)$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and three vertices of P_{n} in G.

Thus $\sum_{u \in N\left[v_{i}\right]} f(u)=(-1)+(-1)+(-1)+\left[\left(\frac{m+1}{2}\right)(+1)+\left(\frac{m-1}{2}\right)(-1)\right]=-2$
Case (2): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{m}+1$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and two vertices of P_{n} in G.
Thus $\sum_{u \in N\left[v_{i}\right]} f(u)=(-1)+(-1)+\left[\left(\frac{m+1}{2}\right)(+1)+\left(\frac{m-1}{2}\right)(-1)\right]=-1$

Case (3): Let $\mathrm{v}_{i} \in K_{m}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=m$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and one vertex of P_{n} in G and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=-1$ or +1 .

If $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)= \pm 1$, then $\sum_{u \in N\left[v_{i}\right]} f(u)=(-1)+\left[\left(\frac{m+1}{2}\right)(+1)+\left(\frac{m-1}{2}\right)(-1)\right]=0$
Hence for all the above possibilities, we get $\sum_{\left.u \in N V_{v_{i}}\right]} f(u) \leq 0, \forall v_{i} \in V$
This implies that the function f is an ISDF.
Now we check for maximality of f, define $\mathrm{g}: \mathrm{V} \rightarrow\{-1,+1\}$ by
$g\left(v_{i}\right)= \begin{cases}+1, & \text { if } 1 \leq i \leq \frac{m+1}{2} \text { of each copy of } K_{m} \text { in } G \\ +1, & \text { if } v_{i}=v_{k} \in P_{n} \text { in } G \\ -1, & \text { otherwise }\end{cases}$
Case (1): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+2)$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and three vertices of P_{n} in G

If $v_{k} \in N\left[v_{i}\right]$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=1+(-1)+(-1)+\left[\left(\frac{m-1}{2}\right)(-1)+\left(\frac{m+1}{2}\right)(+1)\right]=0$
If $v_{k} \notin N\left[v_{i}\right]$, then $\sum_{\left.u \in N v_{i v}\right]} g(u)=(-1)+(-1)+(-1)+\left[\left(\frac{m-1}{2}\right)(-1)+\left(\frac{m+1}{2}\right)(+1)\right]=-2$
Case (2): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{m}+1$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and two vertices of P_{n} in G.
If $v_{k} \in N\left[v_{i}\right]$, then $\sum_{\left.u \in N v_{i}\right]} g(u)=1+(-1)+\left[\left(\frac{m-1}{2}\right)(-1)+\left(\frac{m+1}{2}\right)(+1)\right]=1$
If $v_{k} \notin N\left[v_{i}\right]$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=(-1)+(-1)+\left[\left(\frac{m-1}{2}\right)(+1)+\left(\frac{m+1}{2}\right)(-1)\right]=-3$
Case (3): Let $\mathrm{v}_{i} \in K_{m}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=m$ in G, then $\mathrm{N}\left[\mathrm{v}_{\mathrm{i}}\right]$ contains m vertices of K_{m} and one vertex of P_{n} in G and $g\left(\mathrm{v}_{\mathrm{i}}\right)=-1$ or +1 .
(i) Let $\mathrm{v}_{k} \in N\left[v_{i}\right]$

If $g\left(\mathrm{v}_{\mathrm{i}}\right)= \pm 1$, then $\sum_{u \in N\left[v_{i}\right]} g(u)=1+\left[\left(\frac{m-1}{2}\right)(-1)+\left(\frac{m+1}{2}\right)(+1)\right]=2$
(ii) Let $\mathrm{v}_{k} \notin N\left[v_{i}\right]$

If $\mathrm{g}\left(\mathrm{v}_{\mathrm{i}}\right)= \pm 1$, then $\sum_{\left.u \in N V_{i}\right]} g(u)=(-1)+\left[\left(\frac{m-1}{2}\right)(-1)+\left(\frac{m+1}{2}\right)(+1)\right]=0$
This implies that g is not an ISDF, because $\sum_{u \in N\left[v_{i}\right]} g(u)>0$, for some $v_{i} \in V$. Hence f is a maximal inverse signed dominating function on G .

Now

$$
\sum_{u \in V(G)} f(u)=\underbrace{(-1)+---+(-1)}_{n \text {-times }}+[\underbrace{\left(\frac{m+1}{2}\right)(+1)+\left(\frac{m-1}{2}\right)(-1)}_{n \text {-times }}]=0
$$

Finally, ISDN is $\gamma_{s}^{0}(G)=0$, if m is odd.

4. Inverse Signed Total Dominating Functions

Theorem 4.1: A function $f: V \rightarrow\{-1,+1\}$ is defined by $f\left(v_{i}\right)= \begin{cases}+1, & \text { if } 1 \leq i \leq\left(\frac{m}{2}\right) \text { of each copy of } K_{m} \text { in } G \\ -1, & \text { otherwise }\end{cases}$
is a maximal inverse signed total dominating function (MISTDF) of a graph $\mathrm{G}=P_{\mathrm{n}} \square K_{m}$ and ISTDN is $\gamma_{s t}^{0}(G)=-n, \quad$ if m is even.

Proof:

Consider the graph $\mathrm{G}=P_{\mathrm{n}} \square K_{m}$ with $|V|$ number of vertices and $|E|$ number of edges.
Let f be a function defined in the hypothesis.
Case (1): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+2)$ in G, then $\mathrm{N}\left(v_{i}\right)$ contains m vertices of K_{m} and two vertices of P_{n} in G

Thus $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+(-1)+\left[\left(\frac{m}{2}\right)(-1)+\left(\frac{m}{2}\right)(+1)\right]=-2 \Rightarrow f$ is an ISTDF.
Case (2): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+1)$ in G, then $\mathrm{N}\left(v_{i}\right)$ contains m vertices of K_{m} and one vertex of P_{n} in G.
Thus $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+\left[\left(\frac{m}{2}\right)(-1)+\left(\frac{m}{2}\right)(+1)\right]=-1 \Rightarrow f$ is an ISTDF.
Case (3): Let $\mathrm{v}_{i} \in K_{m}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=m$ in G, then $\mathrm{N}\left(v_{i}\right)$ contains $(m-1)$ vertices of K_{m} and one vertex of P_{n} in G and $f\left(\mathrm{v}_{\mathrm{i}}\right)=-1$ or +1 .

If $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=-1$, then $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+\left[\left(\frac{m}{2}-1\right)(-1)+\left(\frac{m}{2}\right)(+1)\right]=0 \Rightarrow f$ is an ISTDF.
If $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=+1$, then $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+\left[\left(\frac{m}{2}\right)(-1)+\left(\frac{m}{2}-1\right)(+1)\right]=-2 \Rightarrow f$ is an ISTDF.
Hence for all the above possibilities, we get $\sum_{u \in N\left(v_{i}\right)} f(u) \leq 0, \forall v_{i} \in V$
This implies that the function f is an ISTDF. Now we check for maximality of f, define $\mathrm{g}: \mathrm{V} \rightarrow\{-1,+1\}$ by $g\left(v_{i}\right)= \begin{cases}+1, & \text { if } 1 \leq i \leq \frac{m}{2} \text { of each copy of } K_{m} \text { in } G \\ +1, & \text { if } v_{i}=v_{k} \in P_{n} \text { in } G \\ -1, & \text { otherwise }\end{cases}$

Case (1): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+2)$ in G, then $\mathrm{N}\left(v_{i}\right)$ contains m vertices of K_{m} and two vertices of P_{n} in G

If $v_{k} \in N\left(v_{i}\right)$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=1+(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=0$
If $v_{k} \notin N\left(v_{i}\right)$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(-1)+(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=-2$
In this case g is an ISTDF.
Case (2): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+1)$ in G, then $\mathrm{N}\left(v_{i}\right)$ contains m vertices of K_{m} and one vertex of P_{n} in G.

If $v_{k} \in N\left(v_{i}\right)$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=1+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=+1 \Rightarrow g$ is not an ISTDF.
If $v_{k} \notin N\left(v_{i}\right)$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=-1 \Rightarrow g$ is an ISTDF.
Case (3): Let $\mathrm{v}_{i} \in K_{m}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=m$ in G, then $\mathrm{N}\left(v_{i}\right)$ contains $(m-1)$ vertices of K_{m} and one vertex of P_{n} in G and $g\left(\mathrm{v}_{\mathrm{i}}\right)=-1$ or +1 . Let $\mathrm{v}_{k} \in N\left(v_{i}\right)$

If $g\left(\mathrm{v}_{\mathrm{i}}\right)=-1$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(+1)+\left[\left(\frac{m}{2}-1\right)(-1)+\left(\frac{m}{2}\right)(+1)\right]=+2 \Rightarrow f$ is not an ISTDF.
If $g\left(\mathrm{v}_{\mathrm{i}}\right)=+1$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(+1)+\left[\left(\frac{m}{2}\right)(-1)+\left(\frac{m}{2}-1\right)(+1)\right]=0 \Rightarrow f$ is an ISTDF.
Let $\mathrm{v}_{k} \notin N\left(v_{i}\right)$
If $g\left(\mathrm{v}_{\mathrm{i}}\right)=-1$, then $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+\left[\left(\frac{m}{2}-1\right)(-1)+\left(\frac{m}{2}\right)(+1)\right]=0 \Rightarrow f$ is an ISTDF.
If $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=+1$, then $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+\left[\left(\frac{m}{2}\right)(-1)+\left(\frac{m}{2}-1\right)(+1)\right]=-2 \Rightarrow f$ is an ISTDF.
This implies that g is not an ISTDF, because $\sum_{u \in N\left(v_{i}\right)} g(u)>0$, for some $v_{i} \in V$
Hence f is a maximal inverse signed total dominating function on G.
Now $\sum_{u \in V(G)} f(u)=\underbrace{(-1)+---+(-1)}_{n \text {-times }}+[\underbrace{\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)}_{n \text {-times }}]=-n$
Finally, ISTDN is $\gamma_{s t}^{0}(G)=-n$, if m is even.
Theorem 4.2: A function $f: V \rightarrow\{-1,+1\}$ is defined by $f\left(v_{i}\right)=\left\{\begin{array}{l}+1, \text { if } 1 \leq i \leq\left(\frac{m-1}{2}\right) \text { of each copy of } K_{m} \text { in } G \\ -1, \text { otherwise }\end{array}\right.$ is a maximal inverse signed total dominating function (MISTDF) of a graph $\mathrm{G}=P_{\mathrm{n}} \square K_{m}$ and ISTDN is $\gamma_{s t}^{0}(G)=-2 n$, if m is odd.

Proof: Let f be a function defined in the hypothesis.
Case (1): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+2)$ in G, then $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ contains m vertices of K_{m} and two vertices of P_{n} in G

Thus $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+(-1)+\left[\left(\frac{m-1}{2}\right)(+1)+\left(\frac{m+1}{2}\right)(-1)\right]=-3$
Case (2): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+1)$ in G, then $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ contains m vertices of K_{m} and one vertex of P_{n} in G.
Thus $\sum_{u \in N\left[v_{i}\right]} f(u)=(-1)+\left[\left(\frac{m-1}{2}\right)(+1)+\left(\frac{m+1}{2}\right)(-1)\right]=-2$

Case (3): Let $\mathrm{v}_{i} \in K_{m}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=m$ in G, then $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ contains ($m-1$) vertices of K_{m} and one vertex of P_{n} in G and $f\left(\mathrm{v}_{\mathrm{i}}\right)=-1$ or +1 .

If $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=-1$, then $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=-1$
If $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=+1$, then $\sum_{u \in N\left(v_{i}\right)} f(u)=(-1)+\left[\left(\frac{m-3}{2}\right)(+1)+\left(\frac{m+1}{2}\right)(-1)\right]=-3$
Hence for all the above possibilities, we get $\sum_{u \in N\left[v_{i}\right]} f(u) \leq 0, \forall v_{i} \in V$
This implies that the function f is an ISTDF. Now we check for maximality of f , define $\mathrm{g}: \mathrm{V} \rightarrow\{-1,+1\}$ by $g\left(v_{i}\right)= \begin{cases}+1, & \text { if } 1 \leq i \leq \frac{m-1}{2} \text { of each copy of } K_{m} \text { in } G \\ +1, & \text { if } v_{i}=v_{k} \in P_{n} \text { in } G \\ -1, & \text { otherwise }\end{cases}$

Case (1): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+2)$ in G, then $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ contains m vertices of K_{m} and two vertices of P_{n} in G

If $v_{k} \in N\left(v_{i}\right)$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=1+(-1)+\left[\left(\frac{m+1}{2}\right)(-1)+\left(\frac{m-1}{2}\right)(+1)\right]=-1$
If $v_{k} \notin N\left(v_{i}\right)$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(-1)+(-1)+\left[\left(\frac{m+1}{2}\right)(-1)+\left(\frac{m-1}{2}\right)(+1)\right]=-3$
Case (2): Let $\mathrm{v}_{i} \in P_{\mathrm{n}}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{m}+1)$ in G, then $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ contains m vertices of K_{m} and one vertex of P_{n} in G.
If $v_{k} \in N\left(v_{i}\right)$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=1+\left[\left(\frac{m+1}{2}\right)(-1)+\left(\frac{m-1}{2}\right)(+1)\right]=0$
If $v_{k} \notin N\left(v_{i}\right)$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(-1)+\left[\left(\frac{m-1}{2}\right)(+1)+\left(\frac{m+1}{2}\right)(-1)\right]=-2$
Case (3): Let $\mathrm{v}_{i} \in K_{m}$ be such that $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=m$ in G, then $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)$ contains $(m-1)$ vertices of K_{m} and one vertex of P_{n} in G and $g\left(\mathrm{v}_{\mathrm{i}}\right)=-1$ or +1 .

$$
\text { Let } \mathrm{v}_{k} \in N\left(v_{i}\right)
$$

If $g\left(\mathrm{v}_{\mathrm{i}}\right)=-1$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(+1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=1$
If $g\left(\mathrm{v}_{\mathrm{i}}\right)=+1$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(+1)+\left[\left(\frac{m-3}{2}\right)(+1)+\left(\frac{m+1}{2}\right)(-1)\right]=-1$
Let $\mathrm{v}_{k} \notin N\left(v_{i}\right)$
If $g\left(v_{i}\right)=-1$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(-1)+\left[\left(\frac{m}{2}\right)(+1)+\left(\frac{m}{2}\right)(-1)\right]=-1$
If $g\left(\mathrm{v}_{\mathrm{i}}\right)=+1$, then $\sum_{u \in N\left(v_{i}\right)} g(u)=(+1)+\left[\left(\frac{m-3}{2}\right)(+1)+\left(\frac{m+1}{2}\right)(-1)\right]=-1$
This implies that g is not an ISTDF, because $\sum_{u \in N\left[v_{i}\right]} g(u)>0$, for some $v_{i} \in V$

Hence f is a maximal inverse signed total dominating function on G.
Now $\sum_{u \in V(G)} f(u)=\underbrace{(-1)+---+(-1)}_{n \text {-times }}+[\underbrace{\left(\frac{m-1}{2}\right)(+1)+\left(\frac{m+1}{2}\right)(-1)}_{n \text {-times }}]=-2 n$
Finally, ISTDN is $\gamma_{s t}^{0}(G)=-2 n$, if m is odd.

Conclusion

In this paper, we studied about the inverse signed domination number and inverse signed total domination number of a corona product of path with a complete graph. Here ISDN and ISTDN are equal, if m is even, i.e. $\gamma_{s}^{0}(G)=\gamma_{s t}^{0}(G)=-n$. ISDN and ISTDN are different, if m is odd, i.e. $\gamma_{s}^{0}(G)=0$ and $\gamma_{s t}^{0}(G)=-2 n$.

REFERENCES

[1] Allan, R.B. and Laskar, R.C., On domination, Independent domination numbers of a graph, Discrete Math., 23(2) (1978), 73-76.
[2] Atapour, M., Norouzian, S., Sheikholeslami, S.M., and Volkmann, L., Bounds on the inverse signed total domination numbers in graphs, Opuscula Math. 36, No. 2 (2016), 145-152.
[3] Cockayne, E.J. and Hedetniemi, S.T., Towards a theory of domination in graphs, Networks, 7(3) (1977), 247-261.
[4] Domke, G.S., Dunbar, J.E. and Markus, L.R., The inverse domination number of a graph, Ars Combinatoria, 72 (2004), 149-160.
[5] Frucht, R. and Harary, F., On the corona of two graphs, Aequationes Mathematicae, 4(3) (1970), 322-325.
[6] Huang,Z., Feng,Z., and Xing, H., Inverse signed total domination numbers of some kinds of graphs, In International Conference on Information Computing and Applications, Springer Berlin Heidelberg, (2012), pp. 315-321.
[7] Kulli,V.R. and Sigarkanti,S.C., Inverse domination in graphs, Nat. Acad. Sci. Lett., 14(12) (1991) 473-475.
[8] Kulli,V.R., Inverse domination and Inverse total domination in digraphs, International Journal of Advanced Research in Computer Science \& Technology, 2(1) (2014), 106-109.
[9] Kulli,V.R., and Iyer, R.R., Inverse total domination in graphs, Journal of Discrete Mathematical Sciences and Cryptography, 10(5) (2007), 613-620.
[10] Kulli,V.R., Inverse total domination in corona and join of graphs, Journal of Computer and Mathematical Sciences, 7(2) (2016), 61-64.
[11] Mojdeh, D.A., and Samadi, B., On the inverse signed total domination number in graphs, Opuscula Math. 37, no. 3 (2017), 447 - 456.

