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ABSTRACT 

 

In this paper, the condition under which composite multiplication operators on )(L2  -space become the 

characterizations of posinormal and quasi-posinormal composite multiplication operators have been given. 

Also p-posinormal, k-quasi-posinormal and (p,k) -quasi-posinormal  operators have been obtained in terms 

of radon-nikodym derivative 0f  .  
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1. INTRODUCTION  

 

Let ),,X(  be a  -finite measure space. Then a mapping T from X into X is said to be a 

measurable transformation if  )E(T 1 for every E .A measurable transformation T is said to be non-

singular if  0))E(T( 1    whenever 0)E(  . If T is non-singular then the measure 1T  defined as 

))E(T()E(T 11    for every E in  , is an absolutely continuous measure on  with respect to  .Since 

 is a  -finite measure, then by the Radon-Nikodym theorem, there exists a non-negative function 0f  in 

)(L1   such that  
 df)E(T

E
0

1  for every E . The function 0f  is called the Radon-Nikodym derivative 

of 1T  with respect to . 

 Every non- singular measurable transformation T from X into itself induces a linear transformation 

TC  on )(Lp  defined as TffCT   for every f in )(Lp  . In case TC  is continuous from )(Lp   into itself, then 

it is called a composition operator on )(Lp   induced by T. We restrict our study of the composition operators 

on )(L2   which has Hilbert space structure. If u is an essentially bounded complex-valued measurable 

function on X, then the mapping uM on )(L2   defined by fufMu  , is a continuous operator with range in 

)(L2  . The operator uM  is known as the multiplication operator induced by u. 

  

http://www.ijnrd.org/


                                             © 2023 IJNRD | Volume 8, Issue 5 May 2023 | ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2305190 International Journal of Novel Research and Development (www.ijnrd.org)  
 

b692 

 

A composite multiplication operator is linear transformation acting on a set of complex valued   

measurable functions f  of the form 

TfTu)f(MC)f(M uTT,u 
 

Where u is a complex valued,   measurable function. In case 1u  almost everywhere, T,uM  becomes a 

composition operator, denoted by TC . 

In the study considered is the using conditional expectation of composite multiplication operator on 
2L -spaces. For each ),,X(Lf p   ,  p1 , there exists an unique )(T 1


 -measurable function )f(E  

such that 

  
A A

d)f(Egdfg  

for every )(T 1


 -measurable function g , for which the left integral exists. The function )f(E  is called the 

conditional expectation of f  with respect to the subalgebra )(T 1


 . As an operator of )(Lp  , E  is the 

projection onto the closure of range of T  and E  is the identity on )(Lp  , 1p   if and only if   )(T 1 . 

Detailed discussion of E  is found in [1-4]. 

 

1.1 Posinormal  

 An operator )H(BA , A  is said to be posinormal if AAcAA 2   for some 0c  . 

 

1.2 p-posinormal  

 An operator )H(BA , A  is said to be p-posinormal if p2p )AA(c)AA(    

for some 0c  , 1p0  . 

 

1.3 Quasi-posinormal  

 An operator )H(BA , A  is said to be quasi-posinormal if 222 AAcA)AA(A    

for some 0c  . 

 

1.4  k-Quasi-posinormal  

 

 An operator )H(BA , A  is said to be k-quasi-posinormal if 

)1k()1k(2kk AAcA)AA(A   for some 0c  ,where k is a positive integer. 

 

1.5  (p,k) -Quasi-posinormal  

 

 An operator )H(BA , A  is said to be (p,k) -quasi-posinormal if  

kpk2kpk A)AA(AcA)AA(A    

for some 0c  , 1p0  . 

 

 

2. RELATED WORK IN THE FIELD  

 

The study of weighted composition operators on 2L spaces was initiated by R.K.Singh and 

D.C.Kumar [5]. During the last thirty years, several authors have studied the properties of various classes of 

weighted composition operator. Boundedness of the composition operators in )(Lp
 , )p1(  spaces, 

where the measure spaces are  -finite, appeared already in [6]. Also boundedness of weighted operators on 

)E,X(C  has been studied in [7]. Recently S.Senthil, P.Thangaraju, Nithya M, Surya devi B and D.C.Kumar, 

have proved several theorems on n-normal , n-quasi-normal, k-paranormal, and (n,k) paranormal of 
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composite multiplication operators on 2L spaces [8-12]. In this paper we investigate composite multiplication 

operators on )(L2  -space become Quasi-P-Normal operators and n-Power class Q operator have been 

obtained in terms of radon-nikodym derivative 0f  .  

 

3. CHARACTERIZATION ON COMPOSITE MULTIPLICATION OF POSINORMAL AND 

QUASI-POSINORMAL OPERATORS ON 
2L -SPACE  

 

 

3.1 Proposition: 

Let the composite multiplication operator ))(L(BM 2
T,u  .Then for 0u   

ffufMM)i( 0
2

T,uT,u   

)f(ETfTufMM)ii( 0
2

T,uT,u    

)Tf(u)f()MC()f(M)iii( n
n

n
uTT,u

n 
,   

n32
n Tu...........Tu.Tu.Tuu   

1
0T,u T)f(EfufM)iv(       

n)1n(
00T,u

n
T)f(ET)fu(EfufM)v(     

      where )1n(
0

2
0

1
0

)1n(
0 T)fu(E....T)fu(ET)fu(ET)fu(E     

 

Theorem 3.2 

Let the composite multiplication operator ))(L(BM 2
T,u  . Then T,uM is posinormal if and only if 

ffuC)f(ETfTu 0
22

0
2    almost everywhere, for all 0C   

 

Proof: 

Suppose T,uM is posinormal. Then T,uT,u
2

T,uT,u MMCMM    for all 0C  . 

This implies that  

0f,f)MMCMM( T,uT,u
2

T,uT,u   for all )(Lf 2   

Since )f(ETfTufMM 0
2

T,uT,u    and  ffufMM 0
2

T,uT,u  0u   we have 

  
E

0
22

0
2 0dffuC)f(ETfTu(  for every E . 

 ffuC)f(ETfTu 0
22

0
2   almost everywhere, for all 0C   

 

Corollary 3.3 

The composition operator TC  on ))(L(B 2   is posinormal if and only if  

ffC)f(ETf 0
2

0  almost everywhere, for all 0C   

 

Proof: 

The proof is obtained from Theorem 3.2 by putting 1u  . 

 

Theorem 3.4 

Let the composite multiplication operator ))(L(BM 2
T,u  . Then T,uM is quasi-posinormal if and only if  

1
0

22
0

2 T)fu(ECfu    almost everywhere, for all 0C  . 
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Proof: 

Suppose T,uM is quasi-posinormal. Then T,u
2

T,u

222
T,uT,u MMC)MM(    for all 0C  . 

This implies that  

0f,f)MMC)MM(( T,u
2

T,u

222
T,uT,u   for all )(Lf 2   

Since ffufMM 0
2

T,uT,u  and fT)fu(EfufMM 1
0

2
0

2
T,u

2
T,u

2    0u  , we have 

   

E

1
0

2
0

222
0

4 0dfT)fu(EfuCffu  for every E . 


1

0
22

0
2 T)fu(ECfu   almost everywhere, for all 0C   

 

Corollary 3.5 

The composition operator TC  on ))(L(B 2   is quasi-posinormal if and only if  

1
0

2
0 T)f(ECf   almost everywhere, for all 0C   

 

Proof: 

The proof is obtained from Theorem 3.4 by putting 1u  . 

 

Theorem 3.6 

Let the composite multiplication operator ))(L(BM 2
T,u  . Then T,uM  is quai-posinormal if and only if 

)f(ET)uf(ETfTuTuC)f(ETfTu 0
2

0
2222

0
4    almost everywhere, for all 0C  . 

 

Proof: 

Suppose T,uM  is quai-posinormal. Then T,u
2

T,u
222

T,uT,u MMC)MM(    for all 0C  . 

This implies that  

0f,f)MMC)MM(( T,u
2

T,u
222

T,uT,u   for all )(Lf 2   

Since )f(ETfTufMM 0
2

T,uT,u    and  

)f(ET)uf(ETfTuTufMM 0
2

0
22

T,u

2

T,u
2   , 0u   we have 

 

  
E

0
2

0
2222

0
2 0d)f(ET)uf(ETfTuTuC))f(ETfTu(  for every E . 

 )f(ET)uf(ETfTuTuC)f(ETfTu 0
2

0
2222

0
4   almost everywhere, for all 0C   

 

Corollary 3.7 

The composition operator 


TC  on ))(L(B 2   is quai-posinormal if and only if  

)f(ET)f(ETfC)f(ETf 0
2

0
22

0   almost everywhere, for all 0C   

 

Proof: 

The proof is obtained from Theorem 3.6 by putting 1u  . 
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4. CHARACTERIZATION ON COMPOSITE MULTIPLICATION OF P-POSINORMAL AND K- 

QUASI-POSINORMAL OPERATORS ON 
2L -SPACE  

 

Theorem 4.1 

Let the composite multiplication operator ))(L(BM 2
T,u  . Then T,uM  is p-posinormal if and only if  

ffuC)f(ETfTu
p

0
p22p

0
p2  almost everywhere, for all 0C   

 

Proof: 

Suppose T,uM  is p-posinormal. Then p
T,uT,u

2p
T,uT,u )MM(C)MM(   for all 0C  . 

This implies that  

0f,f))MM(C)MM(( p
T,uT,u

2p
T,uT,u   for all )(Lf 2   

Since )f(ETfTufMM 0
2

T,uT,u    and ffufMM 0
2

T,uT,u   we have  

  
E

p
0

22p
0

2 0df)fu(C))f(ETfTu(  for every E . 

 ffuC)f(ETfTu
p

0
p22p

0
p2  almost everywhere, for all 0C   

 

Corollary 4.2 

The composition operator TC  on ))(L(B 2   is p-posinormal if and only if  

ffC)f(ETf
p

0
2p

0  almost everywhere, for all 0C   

 

Proof: 

The proof is obtained from Theorem 4.1 by putting 1u  . 

 

Theorem 4.3 

Let the composite multiplication operator ))(L(BM 2
T,u  . Then T,uM  is k-quasi-posinormal if and only if  

)1k(
1k

k
00

2

)1k(
0

)1k(2k
k

)1k(
00

T)u(ET))uf(Euf(C

TfTuT))u(E(T)uf(Euf








 


 

almost everywhere, for all 0C  . 

 

Proof: 

Suppose T,uM  is k-quasi-posinormal. 

Then T,u
1k

T,u
1k2

T,u
k

T,uT,uT,u
k MMCM)MM(M      for all 0C  . 

This implies that  

0f,f)MMCM)MM(M( T,u
1k

T,u
1k2

T,u
k

T,uT,uT,u
k   for all )(Lf 2   

Since )f(ETfTufMM 0
2

T,uT,u    

 

 










 








E
)1k(

1k
k

00
2

)1k(
0

)1k(2k
k

)1k(
00

0d
f)T)u(ET))uf(Euf(C

TfTuT))u(E(T)uf(Euf(




for every E . 

 

     )1k(
1k

k
00

2

)1k(
0

)1k(2k
k

)1k(
00

T)u(ET))uf(Euf(C

TfTuT))u(E(ET)uf(Euf








 


 

almost everywhere, for all 0C  . 
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Corollary 4.4 

The composition operator TC  on ))(L(B 2   is k-quasi-posinormal if and only if  

k
00

2)1k(
0

)1k(
00 T))f(Ef(CTfT)f(Ef    almost everywhere, for all 0C   

 

Proof: 

The proof is obtained from Theorem 4.3 by putting 1u  . 

 

5.  (P, K)-QUASI-POSINORMAL COMPOSITE MULTIPLICATION OPERATORS ON 
2L -

SPACE 

 

Theorem 5.1 

Let the composite multiplication operator ))(L(BM 2
T,u  . Then T,uM  is (p,k)-quasi-posinormal if and only 

if  

kp
k

p
0

p2)1k(
00

2

)1k(p
0

)1k(p2kp
k

)1k(
00

T)ufu(ET))uf(EufC

TfTuT))u(E(T)uf(Euf





 


 

almost everywhere, for all 0C  . 

 

Proof: 

Suppose T,uM  is (p,k)-quasi-posinormal. 

Then T,u
kp

T,uT,uT,u
k2

T,u
kp

T,uT,uT,u
k M)MM(MCM)MM(M      for all 0C  . 

This implies that  

0f,f)M)MM(MCM)MM(M( T,u
kp

T,uT,uT,u
k2

T,u
kp

T,uT,uT,u
k    

for all )(Lf 2   

Since )f(ETfTufMM 0
2

T,uT,u    

 

 














 



E
kp

k
p

0
p2)1k(

00
2

)1k(p
0

)1k(p2kp
k

)1k(
00

0d
f)T)ufu(ET))uf(EufC

TfTuT))u(E(T)uf(Euf(




 

for every E . 

  

kp
k

p
0

p2)1k(
00

2

)1k(p
0

)1k(p2kp
k

)1k(
00

T)ufu(ET))uf(EufC

TfTuT))u(E(T)uf(Euf





 


 

almost everywhere, for all 0C  . 

 

Corollary 4.4 

The composition operator TC  on ))(L(B 2   is (p,k)-quasi-posinormal if and only if  

kp
k

p
0

)1k(
00

2)1k(p
0

)1k(
00 T)uf(ET))f(EfCTfT)f(Ef      almost everywhere, for all 0C   

 

Proof: 

The proof is obtained from Theorem 5.1 by putting 1u  . 
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