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Abstract:  The objective of this machine learning (ML) project is to develop a system that can detect objects in real-time using the 

YOLO (You Only Look Once) algorithm and the OpenCV (Open Source Computer Vision) library, and save the images of the 

detected objects. The system will be built using Python programming language. The project will start by installing and setting up the 

necessary libraries, including YOLO, OpenCV, and NumPy. Next, the system will use the YOLO algorithm to detect objects in the 

frames captured by the webcam. YOLO is an object detection algorithm that is highly accurate and efficient, making it an ideal choice 

for this project. Once an object is detected, the system will use OpenCV to draw a bounding box around it and save the image of the 

object to the local file system. To ensure that the system can detect a wide range of objects, the YOLO algorithm will be trained on a 

COCO dataset of annotated images. The training dataset will include a variety of objects such as animals, vehicles, and household 

items. This project can have practical applications in various fields, such as security, surveillance, and object recognition. 
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I. INTRODUCTION 

  Object detection is a fundamental research direction that spans across various fields like computer vision, deep learning, and 

artificial intelligence. Its purpose is to identify the target of interest in an image, determine its category, and provide its bounding box. 

Object detection serves as a critical prerequisite for more complex computer vision tasks such as target tracking, event detection, 

behavior analysis, and scene semantic understanding. The practical applications of object detection are vast and include vehicle 

automation, video and image retrieval, intelligent video surveillance, medical image analysis, industrial inspection, and more. 

  Traditional object detection algorithms that involve manual feature extraction usually follow six steps, including preprocessing, 

window sliding, feature extraction, feature selection, feature classification, and post-processing. While these algorithms are designed 

for specific recognition tasks, they have several limitations like small data size, poor portability, high time complexity, window 

redundancy, lack of robustness for diversity changes, and good performance only in specific environments. 

  In 2012, Krizhevsjy [8] and his colleagues proposed the AlexNet image classification model based on Convolutional Neural 

Network (CNN) architecture. They participated in the ImageNet [9] image classification competition and won it with a significant 

margin of 11% accuracy over the second-place model that used traditional algorithms. Since then, many scholars have started 

applying deep convolutional neural networks to object detection tasks and have proposed various excellent algorithms. These 

algorithms can be broadly categorized into two types: the single-stage detection algorithm based on region proposal and the two-stage 

detection algorithm based on regression. Some (not all) of the stage detectors are given below: 
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Fig.1 Types of Stage detector frameworks 

II. LITERATURE REVIEW 

  Object detection has been a topic of interest in computer vision research for several years, and various approaches have been 

proposed to solve this problem. In recent years, deep learning-based methods have shown remarkable progress in object detection, and 

one of the most popular algorithms is You Only Look Once (YOLO) due to its high accuracy and efficiency. In this literature review, 

we will discuss the related works on object detection using YOLO, darknet and OpenCV. 

  Redmon et al. (2016) [1] proposed the first version of the YOLO algorithm, which can detect objects in real-time with a single pass 

through the neural network. The algorithm divides the input image into a grid of cells and predicts the objectness score and bounding 

box coordinates for each cell. The YOLO algorithm achieved high accuracy and efficiency, making it a popular choice for object 

detection tasks. 

  In YOLOv2, Redmon and Farhadi (2017) proposed several improvements to the original YOLO algorithm, including batch 

normalization, anchor boxes, and multiscale training. These improvements resulted in a significant improvement in accuracy while 

maintaining real-time performance [2]. YOLOv3, proposed by Redmon and Farhadi (2018), further improved the accuracy of the 

algorithm by using a feature pyramid network and a technique called "swish" activation. The YOLOv3 algorithm achieved state-of-

the-art performance on several benchmark datasets and became one of the most popular algorithms for object detection [3]. 

  Darknet is an open-source neural network framework that is used for training deep neural networks. Darknet is the framework that is 

used to train the YOLO algorithm. It provides a set of tools for building and training deep neural networks for object detection and 

other computer vision tasks [4]. Redmon et al. (2018) proposed a method for training YOLO using the Darknet framework. The 

authors showed that the Darknet framework could be used to train YOLO on large datasets and achieve state-of-the-art performance 

on several benchmark datasets [3]. 

  Several studies have explored the use of YOLO and Darknet for specific applications, such as face detection and recognition. Li et 

al. (2019) proposed a YOLO-based face detection and recognition system using the Darknet framework, which achieved high 

accuracy and efficiency. The system was tested on various scenarios, including low-resolution images and images with occlusions [5]. 

OpenCV is an open-source computer vision library that provides a wide range of functionalities, including image processing, feature 

detection, and object detection. OpenCV has been widely used in computer vision research and applications, including object 

detection. 

  Bradski (2000) proposed the OpenCV library, which provides a set of functions for object detection using various techniques, 

including Haar cascades and feature detection. The library has been widely used in various applications, such as face recognition, 

pedestrian detection, and vehicle detection [6]. In recent years, several studies have explored the use of OpenCV for object detection 

using deep learning-based methods. Liu et al. (2020) proposed a system that combines YOLOv3, Darknet, and OpenCV for real-time 

object detection, which achieved high accuracy and efficiency. The system was tested on various scenarios, including vehicle 

detection, pedestrian detection, and object recognition [7]. 

  In conclusion, YOLO, Darknet, and OpenCV are popular tools for object detection in computer vision research and applications. 

YOLO provides high accuracy and efficiency in object detection, while Darknet provides a set of tools for building and training deep 

neural networks. OpenCV provides a wide range of functionalities for image processing and object detection. The combination of 

YOLO, Darknet, and OpenCV has shown promising results in real-time object detection applications. 
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III. TYPES OF DETECTION FRAMEWORKS 

3.1 Two-Stage Target Detection Framework 

3.1.1 R-CNN 

In 2014, Girshick proposed the R-CNN [6] algorithm, which was the first successful target detection model based on 

convolutional neural networks. The improved R-CNN model achieves a 66% mAP. The model first employs Selective Search to 

extract around 2000 region proposals for each image to be detected. Next, the size of each extracted proposal is uniformly scaled to a 

fixed-length feature vector, and these features are input into the SVM classifier for classification. Finally, a linear regression model is 

trained to perform the regression operation of the bounding box. Although the accuracy of R-CNN is significantly better than 

traditional detection methods, the amount of calculation is extensive, and the computation efficiency is low. Furthermore, directly 

scaling the region proposal to a fixed-length feature vector may result in object distortion. 

 

Fig.2 R-CNN Architecture 

3.1.2 Fast R-CNN 

In 2015, Girshick proposed the Fast R-CNN [10] model, achieving a mAP of 70.0% in the joint dataset of VOC2007 and 

VOC2012[11]. The model's structure is illustrated in figure below. Three modifications were made to R-CNN to develop Fast R-

CNN. First, the SVM classification method in R-CNN was replaced with the softmax function. Second, the model employed the 

region of interest pooling layer to replace the last pooling layer in the convolutional layer, drawing on the pyramid pooling layer in 

SPP-Net to convert the feature of the candidate box into a feature map with a fixed size for full connection layer access. Finally, the 

last softmax classification layer of the CNN network was substituted with two parallel fully connected layers. Despite these 

improvements, Fast R-CNN still falls short of meeting the needs of real-time detection. 

 

Fig.3 Fast R-CNN Architecture 

3.1.3 Faster R-CNN  

The Faster R-CNN [12] model proposed by Ren in 2015 utilizes region proposal networks to replace the previous Selective 

Search method for generating region proposals. This model consists of two modules, one being a fully convolutional neural network 

used to generate all region proposals, and the other being the Fast R-CNN detection algorithm. These two modules share a set of 

convolutional layers. The input image is propagated forward through the CNN network to the final shared convolutional layer. The 

feature map for the input of the RPN network is obtained on one hand, and on the other hand, the image is propagated forward to a 

specific convolutional layer to produce a higher-dimensional feature map. Although Faster R-CNN achieves excellent detection 

accuracy, it still cannot achieve real-time detection. 
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Fig.4 Faster R-CNN Architecture 

 

3.2 One-Stage Target Detection Framework 

3.2.1 YOLOv1 

 In 2016, Joseph Redmon proposed the YOLOv1[1] object detection model, which does not require the region proposal 

extraction process. Instead, the model is a simple CNN network structure that uses the entire image as input and returns the location 

and category of the bounding box at the output layer. The image is divided into an SS grid, where each grid cell predicts B bounding 

box and confidence scores for those boxes, resulting in a total of B (4+1) values predicted for each cell. YOLOv1 can achieve fully 

real-time detection, with a detection speed of 45fps per second on a single TitanX. However, YOLO has poor recognition 

performance when dealing with objects in group form, although it produces fewer background errors. 

 

Fig.5 YOLOv1 Architecture 

3.2.2 YOLOv2 

In 2016, Joseph Redmon proposed the YOLOv2[2] model with the main aim of improving recall and localization while 

maintaining classification accuracy. YOLOv2 uses a new fully convolutional feature extraction network called Darknet-19, which 

consists of 19 convolutional layers and 5 maximum pooling layers. To improve the recall and accuracy, YOLOv2 introduced several 

changes, such as adding a batch normalization layer to the convolutional layer and removing dropout, introducing anchor box 

mechanism, using k-means clustering on the training set bounding box, and multi-scale training. Despite these improvements, the 

model still needs to improve the detection of targets with high overlap and small targets. 

3.2.3 YOLOv3 

 In 2018, Joseph Redmon proposed the YOLOv3[3], which is considered the most balanced object detection model in terms 

of detection speed and accuracy. The model uses a multi-label classification approach, replacing the original softmax layer with a 

logistic regression layer. Multiple scales are used for prediction and are combined using upsampling fusion similar to FPN. Three 

scales are merged to improve the detection of small targets. The feature extraction network used is Darknet-53, which is deeper than 

Darknet-19 used in YOLOv2.  
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3.2.4 SSD (Single Shot Multibox Detector  

In 2016, Liu proposed the SSD model for object detection [13]. This model adopts the regression concept of the YOLO 

algorithm and is inspired by the anchor box mechanism introduced in the Faster R-CNN detection model. The SSD model proposes to 

use feature maps from both high and low levels to enhance the effect of multi-scale object detection. The model's basic architecture is 

VGG, and the last two fully connected layers are replaced by convolutional layers. The anchor mechanism from the RPN network is 

used to improve detection performance. The SSD model achieves a mAP of 74.3% on VOC2007 at 59 FPS on an Nvidia Titan X. 

However, the SSD model has a poor classification result for small targets, and the feature maps of different scales are independent, 

which can result in simultaneous detection of the same object by boxes of different sizes. 

 

Fig.6 SSD Architecture 

3.2.5 YOLOv4  

In 2020, Alexey Bochkovskiy proposed YOLOv4[14], which achieves a new benchmark with the best balance of speed and 

accuracy. The YOLOv4 model builds on the original YOLO detection framework, adding several new features such as Weighted 

Residual Connection, Cross Stage Partial connection, Cross mini–Batch Normalization, Self-adversarial training, Mish activation, 

Mosaic data augmentation, DropBlock, and CIou. These innovations, combined with the use of CSP Darknet53 as the backbone 

network and the addition of an SPP module to increase the receptive field and separate the most important context features, have 

resulted in improved accuracy and speed over YOLOv3. Additionally, YOLOv4 uses PANet instead of FPN for path aggregation and 

follows the head structure of YOLOv3. The YOLOv4 model improves accuracy and speed by 10% and 20%, respectively, compared 

to YOLOv3. 

 

IV. METHODOLOGY USED 

  The proposed methodology for this research project aims to develop an ML-based system that detects objects in a webcam feed 

using YOLO and OpenCV and saves the images of detected objects to a folder. The system would be able to detect various objects 

such as cars, people, animals, and other objects in real-time. The YOLOv3 algorithm will be used for object detection, which is a 

state-of-the-art deep learning algorithm that has proven to be effective in real-time object detection with high accuracy. YOLOv3 uses 

a fully convolutional network to predict object classes and bounding boxes directly from the full image in one evaluation. The 

OpenCV library, which is a widely used computer vision library, will be used to capture the video stream from the webcam and to 

process the images. OpenCV provides a simple API for capturing video from different sources, such as cameras and video files, and it 

also includes many image processing functions that will be used to crop and save the images of the detected objects. 

  The proposed system will consist of the following steps: 

4.1 Capture Video from the Webcam Using OpenCV 

Capturing video from a webcam is a fundamental step in many computer vision applications. OpenCV is an open-source 

library that provides a wide range of functionalities for image and video processing. It offers various modules that can be used for 

video capture, manipulation, and analysis. The 'video capture' module of OpenCV provides a simple and easy-to-use interface to 

capture video from a webcam or a video file [6]. 

To capture video from a webcam using OpenCV, we can use the VideoCapture class provided by the library. The 

VideoCapture class provides a constructor that takes an integer value representing the index of the camera device. The index starts 

from 0, which means the first camera device connected to the computer. We can also specify the video file name to capture video 

from a video file. Once the video is captured, we can use the read method of the VideoCapture class to read the frames from the video 

stream. The read method returns a boolean value indicating whether the frame is read successfully or not. If the frame is read 

successfully, it returns a NumPy array representing the image data. 
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4.2 Preprocess the Video Frames to Prepare Them for Object Detection Using YOLOv3 

Preprocess the video frames to prepare them for object detection using YOLOv3" involves modifying the input frames to a 

format that is suitable for the YOLOv3 model to perform object detection accurately. The preprocessing steps include resizing the 

input frames to match the input size required by the YOLOv3 model, converting the frames to a suitable format such as BGR, and 

normalization of pixel values. The YOLOv3 model expects an input image size of 416x416 pixels, so the input frames are resized to 

this dimension before being passed to the model. The resizing step is necessary to ensure that the object detection model performs 

accurately on the frames since the model is trained on images of this size. 

After resizing the frames, they are converted to the BGR format since the YOLOv3 model was trained on the BGR format. 

Finally, the pixel values of the frames are normalized to values between 0 and 1. Normalization is important for consistency in the 

values of the input features since the model expects normalized inputs. The preprocessing is usually done with the help of creation of 

"blob".  In object detection, creating a blob is an essential step in the preprocessing stage. A blob is a binary large object, which is a 

format used to store images or videos in a database. A blob consists of a sequence of bytes representing the image data, metadata such 

as height and width, and other relevant information. The main purpose of creating a blob is to prepare the input image for object 

detection using deep learning models such as YOLO, SSD, or Faster R-CNN. 

The process of creating a blob involves resizing the input image to a specific size, normalizing the pixel values, and finally 

converting it into a format that can be inputted into the deep learning model. The resizing step is necessary to ensure that the input 

image is of the same size as the images used to train the deep learning model. Normalizing the pixel values is important to ensure that 

the input image has a similar distribution of pixel values as the images used for training. This is typically done by subtracting the 

mean pixel value from each pixel and dividing by the standard deviation. 

The final step is to convert the image into a format that can be inputted into the deep learning model. Most deep learning 

models take input images in the form of a four-dimensional array, where the first dimension is the batch size, followed by the number 

of channels, height, and width. To convert the resized and normalized image into this format, we use the OpenCV dnn. 

blobFromImage() function. 

Creating a blob is a crucial step in object detection as it ensures that the input image is of the correct size and format for the 

deep learning model. This helps in improving the accuracy of the object detection system. Furthermore, by normalizing the pixel 

values and resizing the image to the same size as the training images, we can ensure that the deep learning model is able to learn 

features from the input image that are consistent with the features learned from the training images. 

4.3 Use YOLOv3 to Detect Objects in the Video Frames 

Object detection is an essential task in computer vision, which aims to locate and recognize objects of interest within an 

image or video stream. YOLOv3 (You Only Look Once version 3) is a real-time object detection algorithm that is widely used due to 

its high accuracy and fast processing speed. It is a neural network-based object detection system that can detect a wide range of 

objects in real-time. To detect objects in the video frames, we use YOLOv3, which involves passing the preprocessed frames through 

a deep neural network. YOLOv3 uses a fully convolutional neural network to predict bounding boxes and class probabilities for 

objects in an image or video. The network architecture consists of three main parts: feature extraction, object detection, and bounding 

box prediction. During the feature extraction process, YOLOv3 extracts features from the input image using a deep convolutional 

neural network. The extracted features are then used to detect objects in the image. The object detection process involves dividing the 

image into a grid and predicting class probabilities and bounding boxes for each cell in the grid. Finally, the bounding box prediction 

process refines the predicted bounding boxes to accurately localize the detected objects. 

 

Fig.7 YOLO Structure 

Neural networks such as YOLOv3 are trained to identify and locate objects within an image or video. Once the neural 

network is trained, it needs to be used to make predictions on new data. To do this, the neural network needs to be loaded into the 

project and set up for use. The neural network is generally loaded into a network object using a framework such as OpenCV, and the 
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network object is then used to make predictions on input data. In the case of YOLOv3, the network object is created from a 

configuration file and a set of weights, which are used to define the structure and parameters of the neural network. 

Once the network object is created, the input data needs to be preprocessed to ensure that it can be fed into the neural 

network. This may include resizing the input image or video frame, converting it to the appropriate data type, and normalizing the 

pixel values. After preprocessing the input data, the next step is to feed it into the neural network to obtain the output. In YOLOv3, 

the output is a set of predicted bounding boxes, object classes, and confidence scores. 

net.forward(net.getUnconnectedOutLayersNames()) function is used to pass the preprocessed input data through the neural network 

and obtain the output. Specifically, it performs a forward pass through the network and returns the output for the layers that are not 

connected to any other layers. Thenet.getUnconnectedOutLayersNames() function is used to obtain the names of the output layers that 

are not connected to any other layers in the network. These layers are typically the final layers in the network that output the predicted 

bounding boxes, object classes, and confidence scores. Thenet.forward() function is used to perform the forward pass through the 

network and obtain the output for the specified layers. The output is returned as a list of numpy arrays, where each array corresponds 

to the output for a specific layer. 

By using these functions, the predicted bounding boxes, object classes, and confidence scores can be obtained from the 

neural network output, and used to draw bounding boxes around detected objects and label them with their corresponding object class. 

4.4 For Each Detected Object, Crop the Corresponding Region of Interest (ROI) from the Video Frame 

After detecting an object in the video frame, the next step is to extract the region of interest (ROI) from the frame. The ROI 

refers to the portion of the image that contains the detected object. This is necessary for further processing, such as saving the image 

or performing additional analysis. To extract the ROI from the video frame, the coordinates of the bounding box surrounding the 

object are used. The bounding box represents the smallest rectangle that encompasses the object, and it is identified by the object 

detection algorithm. The coordinates of the bounding box include the top-left corner (x,y) and the width (w) and height (h) of the box. 

To crop the ROI from the video frame, the region of the image within the bounding box is extracted using the coordinates of 

the box. This can be achieved using functions provided by image processing libraries like OpenCV. The crop function takes the 

coordinates of the bounding box and returns the portion of the image within the box. This cropped image can then be saved or used 

for further analysis.The process of cropping the ROI for each detected object can be automated using a loop that iterates over the 

detected objects. For each object, the loop extracts the ROI using the bounding box coordinates and processes it as necessary. 

Overall, the ROI extraction step is crucial in object detection as it allows for further analysis of the detected objects. It is 

important to ensure that the ROI is accurately extracted to avoid any loss of important information. 

4.5 Save the Cropped Images of the Detected Objects to a Folder 

Once the region of interest (ROI) for each detected object is obtained through cropping, the next step is to save these cropped 

images to a folder for further analysis or use. This can be achieved in Python using the OpenCV library.To save the cropped images, 

the following steps can be followed: 

1) Create a new folder to store the cropped images using the os library. os.makedirs() function is used to create a folder to save our 

cropped images. 

2) Loop through each detected object and save its corresponding cropped image. We use roi = frame [y:y+h, x:x+w] where frame is 

the original video frame. The x, y, w, and h variables represent the bounding box coordinates for the current object. These coordinates 

are used to extract the corresponding ROI from the frame using array slicing. Finally, the cv2.imwrite() function is used to save the 

cropped image to a file in the save_folderfolder. The imwrite() function in OpenCV is used to write the cropped image to a file. The 

first argument is the filename to save the image as. The second argument is the image data to be saved, which is the roi variable 

containing the cropped image. 

The proposed system has potential applications in security and surveillance systems, automated inventory management, and 

autonomous driving systems. 

V. RESULTS 

  The proposed method of using YOLOv3 and OpenCV to detect and save images of objects in real-time from a webcam was 

evaluated using various metrics. The experiment was conducted using a laptop with Intel Core i5 7th generation processor and 8GB 

RAM. The system was tested on three different object classes: person, car, and laptop. The results were evaluated in terms of 

detection accuracy, precision, recall, and FPS.The accuracy of the system was measured using mean average precision (mAP) metric, 

which is a common evaluation metric for object detection tasks.  

  The mAP for the system was found to be 91%, indicating high accuracy in object detection.Precision and recall were also calculated 

to evaluate the system's performance. The precision of the system was found to be 92%, indicating that the system correctly identified 

92% of the detected objects. The recall of the system was found to be 90%, indicating that the system correctly identified 90% of the 

total objects in the video stream.The system's performance in terms of FPS was also evaluated, and it was found to achieve a real-time 

http://www.ijnrd.org/


© 2023 IJNRD | Volume 8, Issue 5 May 2023 | ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2305452 International Journal of Novel Research and Development (www.ijnrd.org)  
 

e443 

 

processing speed of 20 FPS. This indicates that the system is capable of detecting and saving images of objects in real-time with a 

high level of accuracy. 

  Overall, the experimental results indicate that the proposed method of using YOLOv3 and OpenCV for object detection in real-time 

from a webcam is highly effective and efficient. The system can accurately detect and save images of various objects in real-time with 

a high level of precision and recall.  Here are some of the screenshots of the working project: 

 

 

Fig.8 screenshots of working project 

VI. CONCLUSION 

  In conclusion, we have successfully implemented an object detection system using YOLOv3 and OpenCV to detect and save images 

of objects in real-time video streams from a webcam. We have shown that our system is able to accurately detect and localize objects 

in a variety of settings and scenarios. Our system is also able to handle multiple objects in a single frame and save the cropped images 

of the detected objects to a folder. The use of deep learning algorithms and computer vision techniques has significantly improved the 

accuracy and speed of object detection in recent years. Our implementation of YOLOv3 is able to achieve high accuracy in real-time 

video streams, making it a valuable tool for a range of applications such as security surveillance, automated monitoring, and robotics. 

  One of the key strengths of our implementation is its simplicity and efficiency. We have demonstrated that with a few lines of code 

and basic hardware, it is possible to implement an effective object detection system. Additionally, our implementation is flexible and 

customizable, making it easy to adapt to different use cases and environments. 

  Overall, our project provides a useful starting point for those interested in implementing object detection systems using YOLOv3 

and OpenCV. We hope that our work will inspire further research and development in this area and contribute to the continued 

advancement of computer vision technology. 
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