MAMA BOT: A system based on ML, NLP and IOT for supporting women and families during pregnancy

Shreyas R¹, Shetty Aryan Amarnath¹, Yasaswini V¹, Pallavi B N¹
Mrs. Vinutha M S²

¹Department of Computer Science and Engineering, Dr. Ambedkar Institute of Technology, Bengaluru-560056,
²Assistant Professor, Department of Computer Science and Engineering Dr. AIT

Abstract: The Pregnancy Assistant Chatbot utilizes natural language processing (NLP) techniques and IOT to engage in interactive conversations with pregnant women and monitor their vitals. It aims to provide accurate and timely information about various aspects of pregnancy, such as prenatal care, nutrition, common discomforts, vital monitoring and preparation for childbirth. The chatbot employs a question-and-answer format to address specific queries and concerns raised by users, providing evidence-based information and guidance. Additionally, the Pregnancy Assistant Chat Bot provides features such as medication suggestions, preventive measures, information on nearby hospitals and pharmacies. Furthermore, it offers engaging content like stories and jokes to promote mood relaxation and emotional well-being during pregnancy. The chat bot acts as a virtual companion throughout the pregnancy journey, offering real-time assistance and information on various aspects of pregnancy, such as prenatal care, nutrition, exercise, common concerns, and emotional well-being. ML algorithms are employed to analyze user input and generate accurate and contextually relevant responses based on a vast database of medical knowledge and expert advice. NLP techniques are applied to enable the chat bot to understand and interpret natural language queries, ensuring a user-friendly and conversational interaction. The chat bot can provide personalized recommendations and suggestions by adapting to individual preferences, gestational stage, and specific medical conditions. To enhance the functionality and connectivity, the chat bot integrates with IoT devices and sensors that gather data on heart beat and temperature. This real-time data is processed and analyzed using ML algorithms, providing valuable insights and enabling proactive monitoring of the pregnancy progress. The chat bot can alert users to potential health risks or provide reassurance based on the collected data. The Pregnancy Assistant Chat Bot offers convenience and accessibility, enabling expectant mothers to seek guidance and support at any time and from anywhere using their preferred devices, including smartphones, tablets, or smart speakers. This technology has the potential to complement existing healthcare services and bridge the gap between prenatal visits, empowering women to make informed decisions and actively participate in their own care.

IndexTerms - Pregnancy, Parental care, Vitals monitoring, Symptoms, Exercise, Panic Button.

I. INTRODUCTION

This paper introduces the design and implementation of Mama-bot, a customer service chatbot for a retail setting. The chat bot utilizes natural language processing and machine learning techniques to assist customers with common inquiries, including health-related information and hospital locations. By employing a deep neural network (DNN) algorithm, the chat bot interacts with users to address their queries.

Advancements in healthcare technology, specifically machine learning (ML) and the Internet of Things (IoT), have the potential to revolutionize prenatal care. Recognizing the criticality of pregnancy and the need for optimal maternal health and fetal development, ML techniques enable the analysis of large datasets to extract valuable insights, while IoT facilitates seamless data collection from various sensors and devices.

By combining ML and IoT, a pregnancy assistant system can offer personalized support, real-time monitoring, and decision support for expectant mothers and healthcare professionals. This paper proposes a theoretical framework for a pregnancy assistant system based on ML and IoT. The framework incorporates ML concepts such as supervised learning, natural language processing, decision trees, and time-series analysis, along with IoT functionalities including sensor integration, data communication, cloud computing, and data security.

Through ML algorithms, the pregnancy assistant system can analyze data collected from wearable sensors, smart home devices, and other IoT-enabled devices to monitor maternal health parameters, track fetal development, and identify potential risks or anomalies. The system provides timely recommendations and alerts, empowering users to make informed decisions and take
proactive measures for their well-being. Furthermore, the integration of ML and IoT facilitates effective communication and collaboration between pregnant women and healthcare professionals.

ML algorithms can assist in data analysis, generate risk assessments, and offer decision support to healthcare providers, thereby improving the quality of care delivered. This paper discusses the theoretical foundations of ML and IoT in the context of pregnancy assistance, explores potential benefits, challenges, and ethical considerations, and highlights areas for future research and development to enhance the capabilities and effectiveness of the proposed pregnancy assistant system.

NEED OF THE STUDY.

Studying pregnancy assistance is crucial for several reasons:

- **Improve Maternal and Child Health Outcomes:** Pregnancy is a critical period for both the mother and the developing fetus. By studying pregnancy assistance, we can develop effective tools and resources that can contribute to better maternal and child health outcomes. Accessible and accurate assistance during pregnancy can help identify and address potential complications, provide essential information for prenatal care, and promote healthy behaviours.

- **Bridge Information Gaps:** Pregnant women often have numerous questions and concerns related to their health, prenatal care, symptoms, and overall well-being. A pregnancy assistance chatbot can help bridge information gaps by providing reliable and timely information, guidance, and support. By studying pregnancy assistance, we can understand the common information needs and develop tailored solutions to address them effectively.

- **Enhance Accessibility to Healthcare:** Not all pregnant women have equal access to healthcare resources, particularly in underserved areas or communities with limited medical facilities. A pregnancy assistance chatbot can act as a virtual resource, providing accessible and affordable support to pregnant women regardless of their geographical location. Studying pregnancy assistance can help design inclusive and equitable solutions that reach a wider population.

- **Empower Pregnant Women:** Pregnancy can be a transformative and sometimes challenging experience. By studying pregnancy assistance, we can empower pregnant women by providing them with accurate information, personalized guidance, and emotional support. A well-designed pregnancy assistance chatbot can help women make informed decisions, manage their health effectively, and feel more confident and empowered throughout their pregnancy journey.

- **Foster Preventive Care:** Early detection and preventive care play a crucial role in ensuring a healthy pregnancy. By studying pregnancy assistance, we can promote preventive care measures and provide guidance on healthy behaviors, nutrition, exercise, and overall wellness. A pregnancy assistance chatbot can serve as a proactive tool, helping pregnant women stay informed and take necessary steps to maintain their health and well-being.

- **Support Healthcare Professionals:** Pregnancy assistance chatbots can also assist healthcare professionals by providing accurate and up-to-date information, allowing them to focus on more complex cases and critical care. By studying pregnancy assistance, we can develop tools that complement healthcare providers' efforts, facilitate communication, and improve the overall efficiency and effectiveness of prenatal care.

- **Overall, studying pregnancy assistance is vital for improving maternal and child health, filling information gaps, enhancing accessibility to care, empowering pregnant women, promoting preventive care, and supporting healthcare professionals. It allows us to develop innovative solutions that leverage technology to provide valuable support and guidance during this important stage of life.**

II. LITERATURE REVIEW

[1] Nandini, K. K. Rahimunnis, proposed a paper with Disparities between urban and rural facilities create a significant gap in healthcare access. Limited awareness and resources in rural areas result in neglect of health monitoring during pregnancy. Pregnancy necessitates heightened care, but the absence of nearby hospitals discourages regular check-ups in villages. Regular monitoring is crucial to reduce fetal mortality and detect health issues. In this paper, a system was proposed enabling health monitoring through doctor-patient interaction via a mobile application. Sensors measure parameters like heartbeat rate, temperature, fetus movement, and blood pressure, with results recorded in the cloud. The application grants access to stored data, triggering alerts in the doctor's app for any fluctuations.

[2] E. Krisansanik, K. Tambunan and H. N. Irmanda proposed in their paper about how Pregnant women face high-risk conditions if certain disorders occur during their pregnancy. Factors contributing to this include a lack of routine check-ups, insufficient knowledge about pregnancy symptoms, and the high costs of treatment. To address these challenges, we aim to develop a Pregnancy Risk Detection System (PRDS), an expert system designed to assess the level of pregnancy risk based on experienced symptoms. Through observations at Panimbang Health Center, we have identified four levels of pregnancy risk criteria: accompanying diseases, complicated pregnancies, poor obstetric history, and poor maternal conditions. This research focuses on developing an IoT-based system for monitoring pregnant women at home to mitigate these risks and enhance maternal care during pregnancy.

[3] R. Ettiyon described in his paper about Pregnancy as a unique condition where women encounter various medical challenges throughout the gestation period. Conventional health monitoring systems often lack the versatility to adequately cater to the needs of pregnant women. However, the implementation of IoT technology ensures safe and effective healthcare for pregnant women by mitigating risks and enhancing privacy, religious, legal, and societal considerations. This paper highlights the significance of conducting a robust clinical trial to assess the effectiveness of an IoT-based healthcare system for pregnant women, especially
those with unregulated medical conditions in the community. The research focuses on conducting a comprehensive review of existing women's health monitoring systems specifically designed for pregnancy.

[4] O. Oti, I. Azimi, A. Anzanpour, A. M. Rahmani, A. Axelin and P. Liljeberg described how Experiencing excessive stress during pregnancy can have detrimental effects on both the mother and the unborn baby, disrupting the normal adaptation process. While traditional clinical techniques offer some support, there is a need for an automated healthcare system that provides continuous stress management. Internet of Things (IoT) systems offer promising solutions for real-time stress monitoring. In conventional IoT-based stress monitoring, data related to stress is collected, and stress levels are determined using pre-defined models. However, to accurately estimate stress levels, an adaptive monitoring system is required, taking into account maternal adaptations such as heart rate elevation during pregnancy. This adaptive approach ensures a more comprehensive and personalized stress management system for pregnant women.

III. RESEARCH METHODOLOGY

3.1 Population and Sample

In the context of a pregnancy assistant system or study, the population refers to the entire group or category of interest, which in this case would be pregnant women or expectant mothers. The population consists of all pregnant women, regardless of their characteristics or location. A sample, on the other hand, is a subset of the population that is selected for study or analysis. It is often not feasible or practical to collect data from the entire population, so researchers typically work with a representative sample to draw conclusions about the larger population.

When developing a pregnancy assistant system or conducting a study related to pregnancy assistance, researchers may select a sample of pregnant women to participate. The sample should ideally be representative of the larger population of pregnant women in terms of factors such as demographics, medical history, geographic location, and other relevant characteristics. The size and composition of the sample would depend on the specific research goals, resources available, and the level of precision required for the study. Researchers may employ various sampling techniques to ensure the sample is representative and unbiased, such as random sampling, stratified sampling, or convenience sampling.

By studying a sample of pregnant women, researchers can gain insights into the needs, preferences, and challenges faced by expectant mothers, which can inform the development of effective pregnancy assistant systems or interventions. It's important to note that the sample should be carefully selected to ensure the findings can be generalized to the larger population of pregnant women with a reasonable degree of confidence.

3.2 Data and Sources of Data

To develop a chat bot for pregnancy assistance, text datasets consisting of intents are utilized. These intents contain keywords and patterns that represent various ways questions can be asked, along with their corresponding solutions. The collection of intents involves thorough research across different websites. Specifically, the data is gathered from gynecologists who provide valuable insights and expertise in the field of pregnancy. By leveraging this data, the chat bot can effectively understand and respond to a wide range of user inquiries related to pregnancy. This approach ensures that the chat bot is equipped with accurate and reliable information to support expectant mothers throughout their pregnancy journey.

3.3 Theoretical framework

The theoretical framework for a pregnancy assistant system based on Machine Learning (ML) and Internet of Things (IoT) involves integrating concepts and methodologies from both domains to create an effective and intelligent solution. Here is an outline of the theoretical framework:

- **Machine Learning (ML):** Supervised Learning: ML algorithms can be trained using labelled data to recognize patterns and make predictions. For example, data related to maternal health parameters and fetal movements can be used to train models for anomaly detection or risk prediction.
- **Natural Language Processing (NLP):** NLP techniques enable the chat bot to understand and respond to user inquiries or provide personalized recommendations based on textual inputs.
- **Decision Trees or Rule-based Systems:** These algorithms can be utilized to provide guidelines or recommendations based on predefined rules derived from expert knowledge or guidelines from healthcare professionals.
- **Time-series Analysis:** ML models can be employed to analyse time-dependent data, such as monitoring changes in vital signs over the course of pregnancy.
- **Sensor Integration:** IoT devices, such as wearable sensors or home monitoring systems, can be deployed to collect real-time data on various maternal health parameters and fetal development.
- **Data Communication:** IoT enables seamless data transmission from sensors to the central system or cloud-based platform, ensuring continuous monitoring and analysis.
- **Cloud Computing:** Cloud infrastructure can be utilized to store and process large volumes of sensor data, facilitating ML model training and real-time analysis.
- **Data Security and Privacy:** Ensuring data privacy and security is crucial when dealing with sensitive health information. Appropriate measures should be implemented to protect the data transmitted and stored within the IoT ecosystem.
- **Integration of ML and IoT:** ML algorithms can be deployed within the IoT ecosystem to analyse data collected from sensors, providing insights, early warnings, or personalized recommendations to pregnant women.
- **Decision Support System:** The pregnancy assistant system can provide decision support to healthcare professionals by analysing collected data, generating risk assessments, or offering treatment recommendations.

- **User Interface Design:** The system's interface should be user-friendly and intuitive, facilitating easy interaction and understanding for pregnant women.

- **Personalization:** ML algorithms can be leveraged to personalize the system's recommendations and notifications based on individual characteristics, preferences, and gestational age.

- **Communication and Engagement:** The system can incorporate features like chat bot interactions, notifications, reminders, and educational content to engage and empower pregnant women throughout their journey. By integrating ML and IoT, the pregnancy assistant system can provide personalized and proactive support, improve risk assessment, and enhance the overall pregnancy experience for expectant mothers.

The Figure 2.1 displays the work plan of the system. It describes the different options in the chat bot and its functionalities. The system consists of a sign in page that allows new user to register to chat bot. If the user already exists he/she can directly login. There is a chat button located in the bottom right corner. When you click on it, a chat section will open up. Within this chat section, there is a text box provided for users to enter their questions or messages. The chat bot offers assistance by providing a food chart and recommending appropriate medicines based on the problem or issue that the user enters. In addition to providing helpful information, the chat bot also has the capability to entertain users by playing stories and telling jokes, aiming to uplift their mood and bring a sense of enjoyment to the conversation. By clicking on the Nearby Hospital Button, a new web page opens up, displaying information about nearby hospitals in the current locality. This feature helps users find hospitals in close proximity to their location. Upon clicking on the name of a hospital, the website redirects the user to Google Maps, where they can view the location of the hospital. By clicking on the Nearby Pharmacies Button, a new web page opens up, displaying information about nearby pharmacies in the current locality. This feature helps users find pharmacies located close to their present location, providing convenient access to essential medications and healthcare products.

3.4 Statistical tools and econometric models

Mama Bot can utilize various models to provide intelligent and personalized support to expectant mothers. Here are some different models that can be integrated into the Mama Bot system:

3.4.1 Question-Answering Model:

A question-answering model, such as a rule-based system or a machine learning-based model trained on pregnancy-related FAQs or medical literature, can help Mama Bot understand user queries and provide accurate and relevant responses. This model can handle common questions about prenatal care, nutrition, exercise, and common discomforts during pregnancy.

3.4.2 Natural Language Processing (NLP) Model:

NLP models enable Mama Bot to understand and process natural language inputs from users. Techniques like text classification, named entity recognition, and sentiment analysis can be employed to extract valuable information and sentiments from user interactions, allowing for more personalized and context-aware responses.

3.4.3 Risk Assessment Model:

A risk assessment model can be developed using machine learning algorithms to evaluate individual risk factors and predict potential complications during pregnancy. By considering factors such as maternal age, medical history, lifestyle choices, and biomarker data, the model can provide personalized risk assessments and recommendations to expectant mothers.

3.4.4 Symptom Analysis Model:
Mama Bot can incorporate a symptom analysis model that uses machine learning techniques to analyze reported symptoms and provide insights into potential causes or appropriate actions. By considering symptoms such as nausea, fatigue, or unusual pain, the model can offer guidance on self-care measures, when to consult a healthcare professional, or possible warning signs.

3.4.5 Personalized Recommendation Model:
A personalized recommendation model can be built using collaborative filtering or content-based filtering techniques. By analyzing a user's preferences, medical history, and demographic information, Mama Bot can provide tailored recommendations for prenatal vitamins, exercise routines, relaxation techniques, or relevant educational resources.

3.4.6 Health Monitoring Model:
Mama Bot can integrate with IoT devices and sensor data to develop a health monitoring model. Machine learning algorithms can analyze real-time data on maternal vital signs, fetal movement, or uterine contractions to identify patterns, detect anomalies, and generate alerts for potential health concerns.

3.4.7 Emotional Support Model:
Pregnancy can be an emotionally challenging time for some women. Mama Bot can incorporate an emotional support model that uses sentiment analysis or emotion recognition techniques to identify and respond to the emotional state of the user. It can provide empathetic responses, offer coping strategies, or connect users with mental health resources if needed.

3.5 Comparison of the Models
Our implemented system encompasses all the aforementioned models, ensuring comprehensive functionality for Mama Bot. The system effectively responds to user queries and employs symptom analysis to predict potential problems based on user-provided symptoms. It further suggests suitable medications, leveraging training from relevant datasets. NLP capabilities facilitate grammar correction and foster seamless user interaction. To enhance user safety, we have incorporated a panic button feature. In case of emergencies, users can tap the panic button, triggering the automatic transmission of their name and location to designated emergency contacts. Additionally, our system integrates an IoT wearable device to monitor user temperature and heart rate. If these vital signs exceed predetermined thresholds, the user is promptly alerted. The system also offers a convenient button to display nearby hospitals and pharmacies. This feature assists users in locating nearby medical facilities and purchasing medications when needed. Through the integration of these features, our system provides a comprehensive pregnancy assistance experience, addressing user inquiries, predicting problems, ensuring user safety, and facilitating access to necessary medical resources.

IV. RESULTS AND DISCUSSION
The chat bot aims to provide expectant mothers with personalized information, support, and guidance throughout their pregnancy journey. The system utilizes IoT devices such as wearable sensors and home monitoring devices to collect real-time data and enhance the chat bot's functionality. This study evaluates the effectiveness of the chat bot in providing pregnancy assistance and discusses its potential benefits and limitations. The analysis of the collected data revealed several positive outcomes and benefits of the pregnancy assistance chat bot using IoT. The chat bot effectively provided personalized information and recommendations based on the user's health condition, fetal development stage, and environmental factors. It helped users track their health parameters and provided reminders for appointments, medication, and prenatal tests. The integration of IoT devices enabled real-time monitoring of the mother's health and early detection of potential issues, enhancing the overall pregnancy care experience. This paper presented the results and discussion of a pregnancy assistance chat bot utilizing IoT technology. The findings demonstrate the potential benefits of integrating IoT devices into chat bot systems to provide personalized assistance and support for expectant mothers. The study contributes to the growing body of knowledge in the field of IoT-enabled healthcare applications and emphasizes the importance of leveraging technology to improve pregnancy care and outcomes.

Figure 4.1: First page of MAMA BOT

Figure 4.1 represents the initial introduction of the mama bot. It provides a visual depiction of the introductory interface or screen that users encounter when first interacting with the mama bot. This image showcases the welcome message, branding elements, or
any other relevant information that serves as the initial point of engagement with the chat bot. The figure captures the initial impression and introduction of the mama bot to users.

When the user clicks on the "about" button, Figure 4.2 visually represents the information that is displayed on the chat bot. This figure demonstrates the content and details provided to the user when they access the "about" section. The image highlights the relevant information about the chat bot, such as its purpose, features, and possibly other important details to help users understand its functionality and capabilities.

Figure 4.3 illustrates the sign-up page that is presented to new users of mama bot. This image showcases the interface where new users can create their accounts by providing the required information and completing the registration process. The sign-up page ensures a smooth and user-friendly experience for individuals who are new to mama bot, enabling them to join the platform and access its features.

After registering, existing users of mama bot are presented with the login page, as shown in Figure 4.4. This figure showcases the interface where users can enter their login credentials to access their personalized accounts. The login page provides a secure and authenticated entry point for returning users to access the features and services offered by mama bot.
In Figure 4.5, the interaction between the user and the chat bot is depicted, showcasing how users can engage with the chat bot and ask their queries. The figure highlights the user interface where questions can be posed to the chat bot for assistance and information. The image visually represents the seamless communication between the user and the chat bot for query resolution.

Figure 4.6 presents the information displayed by the chat bot when a user asks for queries related to medicines, diet plans, and prevention. This image showcases the user interface where the chatbot provides relevant information and recommendations regarding medications, dietary guidelines, and preventive measures. The figure visually represents how the chat bot offers valuable guidance and support to users seeking information in these specific areas.
Figure 4.7 illustrates the output or response generated when the user clicks the panic button. This image showcases the interface or screen that appears in response to the panic button activation. It may display relevant information such as a distress message, the user's name and location, and possibly initiate an alert or emergency notification to registered contacts or authorities. The figure visually represents the actions and information provided by the system in response to the user's panic button activation.

Figure 4.9 demonstrates the functionality of the system in displaying nearby hospitals based on the user's location obtained through GPS. This figure visually represents the integration of GPS technology, where the system utilizes the user's location data to identify and display the hospitals in close proximity to the user. This feature enhances accessibility and provides valuable information for users seeking medical assistance or healthcare services.

Figure 4.9 showcases the functionality of the system in displaying nearby pharmacies based on the user's location obtained through GPS. The image visually represents the integration of GPS technology, where the system utilizes the user's location data to identify and display the pharmacies in close proximity to the user. This feature enhances accessibility and provides valuable information for users seeking nearby pharmacies to fulfill their medication needs.

Figure 4.10 presents a device that monitors the user's heartbeat and temperature, with the readings displayed on the chatbot's screen. This image showcases the interface where the chatbot integrates with a monitoring device to provide real-time updates on
the user's vital signs. Additionally, if the temperature exceeds a predefined threshold, the device triggers an alert, such as a buzzing sensation, to notify and alert the user. The figure visually represents the seamless integration of health monitoring capabilities within the chatbot system, ensuring timely awareness and responsiveness to critical health indicators.

![Raspberry Pi connected with GPS](image)

Fig.4.11. Raspberry pi connected with GPS

Figure 4.11 showcases the integration of a Raspberry Pi device with GPS functionality. This integration enables users to utilize the device's GPS capabilities to locate nearby hospitals and pharmacies on a Google Map. The figure visually represents the system's ability to provide convenient and real-time information about the nearest healthcare facilities and pharmacies, enhancing accessibility and convenience for users.

REFERENCES

