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1. INTRODUCTION:- The notion of dually flat metric was first introduced by S. I. Amari and H. 

Nagaoka, while studying the information geometry on Riemannian spaces [4]. Later, Z. Shen extended the 

notion of dually flatness to Finsler metrics [13]. Dually flat Finsler metrics form a special important class of 

Finsler metrics in Finsler information geometry, which play a very important role in studying flat Finsler 

information structures ([7], [16], [1], [9], and [6]). In 2009, the authors of [5] classified the locally dual flat 

Randers metrics with almost isotropic flag curvature. Recently, Q. Xia worked on the dual flatness of 

Finsler metrics of isotropic flag curvature as well as scalar flag curvature ([5], [7]). Also, Q. Xia studied and 

gave a characterization of locally dually flat (α, β)-metrics on an n-dimensional manifold M (n ≥ 3) [5]. The 

Cartan torsion, the S-curvature, the E-curvature and the H-curvature are the examples of few non-

Riemannian quantities in Finsler geometry as they vanish for Riemannian metrics. The S-curvature 𝑆 (𝑥; 𝑦) 
was introduced by Shen [6,9]  

and was defined as follows: 

𝑆(𝑥;  𝑦)  =
𝑑

𝑑𝑡
[𝜏(𝛾(𝑡) , 𝛾(𝑡)′)]𝑡=0 ; 

where  𝜏(𝑥, 𝑦) is the distortion of the metric 𝐹 and 𝛾(𝑡)is the geodesic with  𝛾(0)  =  𝑥 and  𝛾(𝑡)′ = y on M.  

In 1988, Akbar-Zadeh introduced H-curvature which is closely related to the S-curvature [1]. The H-

curvature 𝐻𝑦  =  𝐻𝑖𝑗𝑑𝑥𝑖 ⨂ 𝑑𝑥𝑗    is defined by  

𝐻𝑖𝑗 =
1

4
(𝐸𝑖𝑗 + 𝐸𝑗𝑖) 

Also F is said to have almost vanishing H-curvature if  

𝐻𝑖𝑗 =
𝑛 + 1

2
𝜃𝐹𝑦𝑖𝑦𝑗 

Several authors studied the H-curvature of different class of Finsler metrics [10, 12]. In [11], Mo proved that 

all spherically symmetric Finsler metrics of almost vanishing H-curvature are of almost vanishing _-
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curvature and corresponding one forms are exact, generalizing a result previously only known in the case of 

metrics with vanishing H-curvature. In general, it is difficult to find the Riemann curvature tensor for 

general (α, β)-metric. In this paper, we further generalize Mo's result for general (α, β)-metric under the 

assumption (1.2). 

Theorem 1.1. The general (α, β)-metric 𝐹 =  𝛼𝜙(𝑏2;  𝑠) satisfying (1.2) has al-most vanishing H-curvature 

if and only if 

𝛼𝑠 [(𝑛 + 1)
𝜕𝑅1

𝜕𝑥
+ 3(𝑏2 − 𝑎2) + 2(𝑛 + 1)𝑅3] = 3(𝑛 + 1)𝜃(𝜙 − 𝑠𝜙𝑠), 𝜃 = 𝜃𝑗(𝑥)𝑦𝑗          (1.6) 

where 𝑅1, 𝑅2, and 𝑅3 are given in (2.6), (2.9), and (2.8), respectively. As an application of Theorem 1.1, we 

have the following corollary. 

Corollary 1.2. For the general (α, β)-metric 𝐹 =  𝛼𝜙(𝑏2;  𝑠)  satisfying (1.2) the H-curvature almost 

vanishes if and only if the 𝛯 −curvature almost vanishes. In this case, the corresponding 1-form 𝜃 is an exact 

form. 

As a consequence of Corollary 1.2, for  𝜃 = 0, we get the following corollary. 

Corollary 1.3. For the general (α, β)-metric 𝐹 =  𝛼𝜙(𝑏2;  𝑠)  satisfying (1.2) the H-curvature vanishes if 

and only if the 𝛯 −curvature vanishes.  

A Finsler metric is said to be R-quadratic if its Riemann curvature 𝑅𝑦 is quadratic in  𝑦 ∈ 𝑇𝑚𝑋. These R-

quadratic Finsler metrics always have vanishing H-curvature [10]. Together with Corollary 1.3, we have the 

following. 

Corollary 1.4. The 𝛯 −curvature of a R-quadratic general (α, β)-metric always vanishes. 

Let M be an n-dimensional smooth manifold  𝑇𝑥𝑀 denotes the tangent space of M at x. The tangent 

bundle M is the union of tangent spaces  𝑇𝑥𝑀 :=∪𝑥∈𝑀  𝑇𝑥𝑀  . We denote the elements of TM by (x,y) 

where   𝑦 ∈ 𝑇𝑥𝑀  and 𝑇𝑀0 :=𝑇𝑀\{0} . 

In this paper, we study and characterize curvature of special (𝛼, 𝛽) Finsler metric 𝐹 =  𝛼 +  𝛽 +  
𝛽2

𝛼
+

𝛽3

𝛼2  with isotropic S-curvature, which is not Riemannian.  

2. Preliminaries:- 

Let 𝑀 be an n-dimensional smooth manifold. We denote by TM the tangent bundle of M and by (x, y) = 

(𝑥𝑖 , 𝑦𝑗) the local coordinates on the tangent bundle TM. A Finsler manifold (M, F) is a smooth manifold 

equipped with a function F: TM → [0, ∞), which has the following properties: 

● Regularity: 𝐹 is smooth in 𝑇𝑀\{0}; 

● Positive homogeneity: 𝐹(𝑥, 𝜆𝑦) = 𝜆𝐹(𝑥, 𝑦), ∀𝜆 > 0, 

● Strong convexity: the Hessian matrix of 𝐹2,𝑔𝑖𝑗 =
1

2
(

𝜕2𝐹2(𝑥,𝑦)

𝜕𝑥𝑖𝜕𝑦𝑗 ) is positive definite on TM \ {0}. We 

call F and the tensor 𝑔𝑖𝑗 the Finsler metric and the fundamental tensor of M, respectively. 

For a Finsler metric 𝐹 =  𝐹(𝑥, 𝑦), its geodesic curves are characterized by the system of differential 

equations 𝑐̈𝑖+ 2𝐺𝑖 (𝑐̇) = 0, where the local functions 𝐺𝑖= 𝐺𝑖(x, y) are called the spray coefficients and given 

by 
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                            𝐺𝑖 =
𝑔𝑖𝑙

4
{[𝐹2]𝑥𝑘𝑦𝑙𝑦𝑘 − [𝐹2]𝑥𝑙}, ∀ y ∈𝑇𝑥M. 

Definition 2.1:- A Finsler metric 𝐹 =  𝐹(𝑥, 𝑦) on a manifold M is said to be locally dually flat if at any 

point there is a standard coordinate system (𝑥𝑖 , 𝑦𝑖) in TM which satisfies 

(𝐹2
)

𝑥𝑘𝑦𝑙
𝑦𝑙 = 2 (𝐹2

)
𝑥𝑙

 

In this case, the system of coordinates (𝑥𝑖) is called an adapted local coordinate system. It is easy to see that 

every locally Minkowskian metric is locally dually flat. But the converse is not generally true [7]. 

Definition 2.2:- A Finsler metric is said to be locally projectively flat if at any point there is a local 

coordinate system in which the geodesics are straight lines as point sets. It is known that a Finsler metric 

F(x, y) on an open domain U ⊂𝑅𝑛 is locally projectively flat if and only if its geodesic coefficients 𝐺𝑖 are of 

the form 

𝐺𝑖 = 𝑃𝑦𝑖 
where 𝑃: 𝑇𝑈 =  𝑈 × 𝑅𝑛 →  𝑅 is positively homogeneous of degree one, 𝑃(𝑥, 𝑦)  =  𝜆𝑃(𝑥, 𝑦), ∀𝜆 >0 . We 

call P(x, y) the projective factor of F(x, y). 

Lemma 2.1:- ([7]). Let 𝐹 =  𝐹(𝑥, 𝑦) be a Finsler metric on an open subset U ⊂𝑅𝑛. Then F is locally flat 

and projectively flat on U if and only if 𝐹𝑥𝑖 = CF𝐹𝑦𝑙, where C is a constant. The S-curvature is a scalar 

function on TM, which was introduced by Z. Shen to study volume comparison in Riemann-Finsler 

geometry [10]. The S-curvature measures the average rate of change of (𝑇𝑥𝑀𝐹𝑥 = 𝐹|𝑇𝑥𝑀) in the direction y 

∈𝑇𝑥𝑀. It is known that S = 0 for Berwald metrics. 

Definition2.3. A Finsler metric F on an n-dimensional manifold M is said to have isotropic S-curvature if S 

= (n + 1) c(x) F, for some scalar function c on M.  

For a Finsler metric F on an n-dimensional manifold M, the Busemann-Hausdorff volume form 

𝑑𝑉𝐹 = 𝜎𝐹(𝑥)𝑑𝑥𝑖 … … . . 𝑑𝑥𝑛 is defined by  

𝜎𝐹 =
𝑉𝑜𝑙(𝐵𝑚(1))

𝑉𝑜𝑙 {(𝑦𝑖) ∈ 𝑅𝑛 |𝐹(𝑥 , 𝑦𝑖 𝜕

𝜕𝑥𝑖
|

𝑥
< 1}

 

Here Vol denotes the Euclidean volumes and 𝐵𝑛(1) denotes the unit ball in 𝑅𝑛. Then the S-curvature is 

defined by 

𝑆 =
𝜕𝐺𝑖

𝜕𝑦𝑖
(𝑥, 𝑦) − 𝑦𝑖

𝜕(𝐼𝑛 𝜎𝐹)

𝜕𝑥
 

where                                               𝑦 = 𝑦𝑖 𝜕(𝐼𝑛 𝜎𝐹)

𝜕𝑥𝑖 |𝑥 ∈ 𝑇𝑥𝑀 [7].  

For an (α, β)-metric, one can write 𝐹 =  𝛼𝜙(𝑠), where 𝑠 =  𝛽/𝛼 and 𝜙 =  𝜙(𝑠) is a 𝐶∞function on the 

interval (−𝑏0, 𝑏0) with certain regularity properties, 𝛼 = √𝑎𝑖𝑗𝑦𝑖𝑦𝑗     is a Riemannian metric and β = 𝛽 =

𝑏𝑖(𝑥)𝑦𝑖 is a 1-form on 𝑀. 

We further denote 

𝑏𝑖|𝑗𝜃𝑗 = 𝑑𝑏𝑖 − 𝑏𝑗𝜃𝑖
𝑗 , 

where 𝜃𝑖 = 𝑑𝑥𝑖  and 𝜃𝑗
𝑖 = Г𝑖𝑘

𝑗 𝑑𝑥𝑘 denotes the coefficients of the Levi- Civita connection form of 𝛼. Let 

𝑟𝑖𝑗 =
1

2
(𝑏𝑖|𝑗 + 𝑏𝑗|𝑖)  ,    𝑠𝑖𝑗 =

1

2
(𝑏𝑖|𝑗 − 𝑏𝑗|𝑖) 
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Clearly, β is closed if and only if 𝑠𝑖𝑗 = 0 .  An (𝛼, 𝛽) −metric is said to be trivial if 𝑏𝑖𝑗 = 𝑠𝑖𝑗 = 0. we put  

𝑟𝑖0 = 𝑟𝑖𝑗𝑦𝑗 , 𝑟00 = 𝑟𝑖𝑗𝑦𝑖𝑦𝑗    , 𝑟𝑗 = 𝑟𝑖𝑗𝑏𝑖  ,  

      𝑠𝑖0 = 𝑟𝑖𝑗𝑦𝑗 ,        𝑠𝑗 = 𝑠𝑖𝑗𝑏𝑗 , 𝑟0 = 𝑟𝑗𝑦𝑗  , 𝑠0 = 𝑠𝑗𝑦𝑗  .      

By direct computation, we can obtain a formula for the mean Cartan torsion of an (α, β)-metric as follow: 

𝐼𝑖 = −
𝛷(𝜙 − 𝑠𝜙′)

2∆𝜙𝛼2
(𝛼𝑏𝑖 − 𝑠𝑦𝑖) 

Clearly, an (α, β)-metric 𝐹 =  𝛼𝜙(𝑠), 𝑠 =  𝛽/𝛼 is Riemannian if and only if  𝛷 =  0. Hence, we further we 

assume that 𝛷 ≠ 0. 

Theorem 2.2. [98] Let 𝐹 =  𝛼𝜙(𝑠), 𝑠 =  𝛽/𝛼 be a(𝛼, 𝛽) −metric on an n-dimensional manifold 𝑀𝑛(𝑛 ≥

 3), where 𝛼 = √𝑎𝑖𝑗𝑦𝑖𝑦𝑗     is a Riemannian metric and 𝛽 = 𝑏𝑖(𝑥)𝑦𝑖 ≠ 0 is a 1-form on M. Suppose that F is 

not Riemannian and 𝜙′(𝑠)  ≠  0. Then F is locally dually flat on M if and only if 𝛼, 𝛽 and 𝜙 =  𝜙(𝑠) satisfy 

1. 𝑠𝑙0 =
1

3
(𝛽𝜃𝑙 − 𝜃𝑏𝑙), 

2. 𝑟00 =
2

3
𝜃𝛽 + [𝜏 +

2

3
𝑏2𝜏 − 𝜃𝑙𝑏𝑙] 𝛼2 +

1

3
(3𝑘2 − 2 − 3𝑘3𝑏2)𝜏𝛽2, 

3. 𝐺𝛼
𝑙 =

1

3
[2𝜃 + (3𝑘1 − 2)𝜏𝛽]𝑦𝑙 +

1

3
(𝜃𝑙𝜏𝑏𝑙)𝛼2 +

1

2
𝑘3𝜏𝛽2𝑏𝑙 , 

4. 𝜏[𝑠(𝑘2  − 𝑘3𝑠2)(𝜙𝜙′ − 𝑠𝜙′2  − 𝑠𝜙𝜙′′) − (𝜙′2  +  𝜙𝜙′′) +  𝑘1𝜙(𝜙 − 𝑠𝜙′)]  =  0.  

where 𝜏 =  𝜏(𝑥) is a scalar function, 𝜃 =  𝜃𝑖(𝑥)𝑦𝑖 is an 1-form on 𝑀, 𝜃𝑙  =  𝛼𝑙𝑚𝜃𝑚 , 

𝑘1 = 𝛱(0)  ,   𝑘2 =
𝛱′(0) 

𝑄(0)
      , 𝑘3 =

1

6𝑄2(0)
[3𝑄′′(0)𝛱′(0) − 6𝛱(0)2 − 𝑄(0)𝛱′′′(0)] 

and                                    𝑄 =
𝜙′

𝜙−𝑠𝜙′
    ,     𝛱 =  

𝜙′2+𝜙𝜙′′

𝜙(𝜙−𝑠𝜙′)
 . 

In [22], Cheng-Shen studied the class of (𝛼, 𝛽) −metrics of non-Randers type 𝜙 ≠ 𝑡1√1 +  𝑡2𝑠2 +

𝑡3 𝑠  with isotropic S-curvature and obtained the following 

Theorem 2.3:- ([10]). Let 𝐹 =  𝛼𝜙(𝑠), 𝑠 =  𝛽/𝛼 be a non-Riemannian (𝛼, 𝛽) −metric on a manifold and 

𝑏 = ∥ 𝛽𝑥 ∥ 𝛼. suppose that 𝜙 ≠ 𝑡1√1 + 𝑡2𝑠2 + 𝑡3 𝑠  for any constants 𝑡1 >  0, 𝑡2 and 𝑡3. Then F is of 

isotropic S-curvature 𝑆 =  (𝑛 + 1)𝑐𝐹 if and only if one of the following assertions holds 

𝑖) 𝛽  Satisfies 

(5.2.1)                                𝑟𝑖𝑗 =  𝜀{𝑏2𝑎𝑖𝑗 − 𝑏𝑖𝑏𝑗}, 𝑠𝑗 =  0,  

where 𝜀 =  𝜀(𝑥) is a scalar function, and c = c(x) satisfies 

(5.2.2)                                 𝛷 =  −2(𝑛 +  1)𝑘
𝜙∆2

𝑏2−𝑠2 

where k is a real constant. In this case, 𝑆 =  (𝑛 +  1)𝑐𝐹 with 𝑐 =  𝑘𝜀.  

𝑖𝑖) 𝛽 Satisfies 

(5.2.3)        𝑟𝑖𝑗 = 0  , 𝑠𝑖𝑗 = 0 . 

In this case, S = 0, regardless of the choice of a particular ϕ. 
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3. Characterization of locally dually flat first approximate Special metric 

Theorem 3.1. Let 𝐹 =  𝛼 +  𝛽 +  
𝛽2

𝛼
+

𝛽3

𝛼2   be a first approximate Matsumoto metric on a manifold M of 

dimension 𝑛 ≥  3.Then the necessary and sufficiency conditions for 𝐹 to be locally dually flat on 𝑀 are the 

following:  

5. 𝑠𝑙0 =
1

3
(𝛽𝜃𝑙 − 𝜃𝑏𝑙) , 

6. 𝑟00 =
2

3
𝜃𝛽 + [𝜏 +

2

3
(𝑏2𝜏 − 𝜃𝑙𝑏𝑙)] 𝛼2 +

1

3
(25 − 30𝑏2)𝜏𝛽2, 

7. 𝐺𝛼
𝑙 =

1

3
[2𝜃 + 25𝜏𝛽]𝑦𝑙 +

1

3
(𝜃𝑙𝜏𝑏𝑙)𝛼2 +

10

2
𝜏𝛽2𝑏𝑙 , 

where  𝜏 =  𝜏(𝑥) is a scalar function, 𝜃 =  𝜃𝑘𝑦𝑘 is an 1-form on 𝑀 . 

Proof: - For a Finsler metric 𝐹 =  𝛼 +  𝛽 +  
𝛽2

𝛼
+

𝛽3

𝛼2  we obtain   𝑘1  =  3, 𝑘2  =  9, 𝑘3 =  10 , and  

 𝜙 =  1 +  𝑠 + 𝑠2 + 𝑠3,    𝜙′ =  1 +  2𝑠 + 3𝑠2, 𝜙′′ =  2 +  6𝑠  , 𝜙′ =  6 

𝛱 =
3 + 12𝑠 + 18𝑠2 + 20𝑠3 + 13𝑠4

1 + 𝑠 − 2𝑠3 − 3𝑠4 − 3𝑠5 − 2𝑠6
   , П(0) = 3, П′

(0) = 9 , П′′
(0) = 18 , 

П′′′(0) = 102  

𝑄 =
1 + 2𝑠 + 3𝑠2

1 − 𝑠2 − 2𝑠3
  , 𝑄′ =

2 + 8𝑠 + 8𝑠2 + 8𝑠3 + 6𝑠4

(−1 + 𝑠2 + 2𝑠3)2
   ,

𝑄′′
−8(1 + 8𝑠 + 9𝑠2 + 15𝑠3 + 9𝑠4 + 6𝑠5 + 3𝑠6)

(−1 + 𝑠2 + 2𝑠3)3
  ,    

𝑄(0) = 1 , 𝑄′(0) = 2 , 𝑄′′(0) = 8  , 𝑄′′′(0) = 24 
By using the above values in Lemma 2.1, we get  

[𝑠(𝑘2  − 𝑘3𝑠2)(𝜙𝜙′ − 𝑠𝜙′2  − 𝑠𝜙𝜙′′) − (𝜙′2 +  𝜙𝜙′′)  + 𝑘1𝜙(𝜙 − 𝑠𝜙′)]  =  0, 𝑎𝑛𝑑 𝜏 =  0.  
Then, finally, by substituting 𝑘1, 𝑘2 𝑎𝑛𝑑 𝑘3 in Lemma 2.1, we infer the claim  

Now, let 𝜙 =  𝜙(𝑠) be a positive 𝐶∞ function on (−𝑏0, 𝑏0). For a number 𝑏 ∈  [0, 𝑏0], 

Let 

(5.3.1)          𝛷 =  −(𝑄 − 𝑠𝑄′) · (𝑛∆ +  1 +  𝑠𝑄) − (𝑏2−𝑠2)(1 +  𝑠𝑄)𝑄′′,  

where     ∆ =  1 +  𝑠𝑄 + (𝑏2−𝑠2) 𝑄′. This implies that 

∆ =    
𝜙{1 − 3𝑠2 − 8𝑠3 +  2𝑏2(6 + 2𝑠)}

(−1 + 𝑠2 + 2𝑠3)2
 

Then the equation (5.3.1) can be written as follows: 

𝛷 = −(𝑄 − 𝑠𝑄′)(𝑛 +  1)∆ + (𝑏
2
−𝑠2){(𝑄 − 𝑠𝑄′)𝑄′ − (1 +  𝑠𝑄)𝑄′′}. 

By using Theorem 2.3, now we will consider a locally dually flat (𝛼, 𝛽) −metric with isotropic S-curvature. 

Theorem3.2. Let 𝐹 =  𝛼 +  𝛽 +  
𝛽2

𝛼
+ 

𝛽3

𝛼2  be a locally dually flat non-Randers type (𝛼, 𝛽) −metric on a 

manifold M of dimension 𝑛 ≥  3. Suppose that F is of isotropic S-curvature 𝑆 =  (𝑛 +  1)𝑐𝐹, where 𝑐 =

𝑐(𝑥) a scalar function is on M. Then F is a locally projectively flat in adapted coordinate system and 𝐺𝑖 = 0.  

Proof. Let  𝐺𝑖 =  𝐺𝑖(𝑥, 𝑦) and 𝐺𝛼
𝑖 = 𝐺𝛼

𝑖 (𝑥, 𝑦)  denote the coefficients of F and α respectively, in the same 

coordinate system. By definition, we have 

(5.3.2)                                    𝐺𝑖 =  𝐺𝛼
𝑖  +  𝑃𝑦𝑖 +  𝑄𝑖 , 

where 

(5.3.3)                                    𝑃 =  𝛼−1𝛩 − 2𝑄𝛼𝑠0  + 𝑟00 
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(5.3.4)                                  𝑄𝑖 =  𝛼𝑄𝑠0
𝑖  +  𝛹 − 2𝑄𝛼𝑠0  + 𝑟00𝑏𝑖 , 

𝛩 =
𝜙𝜙′ − 𝑠(𝜙𝜙′′ + 𝜙′𝜙′)

2𝜙((𝜙 − 𝑠𝜙′) + (𝑏2−𝑠2)𝜙′′)
     =   

−1 + 𝑠 + 12𝑠2 + 20𝑠3 + 21𝑠4 + 3𝑠5

2𝜙 {−1 + 2𝑠2 + 3𝑠3 − 2𝑏2(1 + 2𝑠)}
 

𝛹 =
1

2

𝜙′′ 

(𝜙 − 𝑠𝜙′)  + (𝑏2−𝑠2) 𝜙′′
 =  

1 + 3𝑠

1 − 3𝑠2 − 8𝑠3 + 𝑏2(2 + 6𝑠)
 

First, we suppose that case (i) of Theorem 2.3 holds. It is remarkable that, for a 

1st approximation Matsumoto metric, we have 

∆ =  
𝜙{1 − 3𝑠2 − 8𝑠3 +  2𝑏2(6 + 2𝑠)}

(−1 + 𝑠2 + 2𝑠3)2
 

It follows that (−1 + 𝑠2 + 2𝑠3)2 ∆  is a polynomial in s of degree 3. On the other hand we have  

(5.3.5)                         𝜙∆2 =  
𝜙2{1 − 3𝑠2 − 8𝑠3 +  2𝑏2(6 + 2𝑠)}2

(−1 + 𝑠2 + 2𝑠3)4
 

 

Hence, if case (ii) of Theorem (5.2.3) holds, then substituting (5.3.5) we obtain that  

(5.3.6)   (𝑏2−𝑠2)(−1 + 𝑠2 + 2𝑠3)4𝛷 =  −2(𝑛 +  1)𝑘𝜙2{1 − 3𝑠2 − 8𝑠3 +  2𝑏2(6 + 2𝑠)}2. 

It follows that (𝑏
2
−𝑠2) (−1 + 𝑠2 + 2𝑠3)

4
𝛷  is not a polynomial in s (if k = 0, then by considering the Cartan 

torsion equation, we get a contradiction). Then, we put 

𝜙∆2 =
∆

(−1 + 𝑠2 + 2𝑠3)
4 

where                                              ∆ = 𝜙2{1 − 3𝑠2 − 8𝑠3 +  2𝑏2(6 + 2𝑠)}2 

By assumption, F is a non-Randers type metric. Thus ∆  is not a polynomial in s, and then (𝑏
2
−𝑠2) (−1 +

𝑠2 + 2𝑠3)
4
𝛷   is not a polynomial in s. Now, let us consider another form of Φ:   

𝛷 =  −(𝑄 − 𝑠𝑄′)(𝑛 +  1)∆ +  (𝑏2−𝑠2){(𝑄 − 𝑠𝑄′)𝑄′ − (1 +  𝑠𝑄)𝑄′′},  
where                                    

𝑄 − 𝑠𝑄′ =   
1 − 6𝑠2 − 12𝑠3 − 15𝑠4 − 12𝑠5

(−1 + 𝑠2 + 2𝑠3)2
 

Then 

(5.3.7) 

𝛷 =
−1

(−1 + 𝑠2 + 2𝑠3)
4

[𝜙 [1 − 15𝑠2 − 38𝑠3 − 81𝑠4 − 108𝑠5 − 33𝑠6 − 6𝑠7

+         𝑛(−1 − 9𝑠2 − 20𝑠3 + 3𝑠4 + 72𝑠5 + 141𝑠6 + 156𝑠7 + 96𝑠8) +   2𝑏
2
{4(1 + 3𝑠 + 9𝑠2

+ 15𝑠3 + 9𝑠4 + 6𝑠5 + 3𝑠6 − 𝑛(−1 − 3𝑠 + 6𝑠2 + 30𝑠3 + 51𝑠4 + 57𝑠5 + 36𝑠6)}] 

From equations (5.3.6) and (5.3.7), the relation (𝑏
2
−𝑠2) (−1 + 𝑠2 + 2𝑠3)

4
𝛷 is a polynomial in s and b of 

degree 8 and 4 respectively. The coefficient of 𝑠8 is not equal to zero. Hence it’s impossible that Φ = 0. 

Therefore, we can conclude that equation (5.2.2) does not hold. So, the case (ii) of Theorem 2.3 holds. In 

this case, we have 

𝑟00  =  0, 𝑠𝑗 =  0. 

In Theorem 3.1(2), by taking 𝑟00  =  0, we obtain 

(5.3.8)             [𝜏 +
2

3
(𝑏2𝑟 − 𝜃𝑙𝑏𝑙)] 𝛼2 =

1

3
𝛽[−2𝜃 − (25 + 30𝑏2) 𝛽𝑟] 

Since 𝛼2 is an irreducible polynomial of 𝑦𝑖, equation (5.3.8) reduces to the following 

(5.3.9)                                       𝜏 +
2

3
(𝑏2𝑟 − 𝑏𝑚𝜃𝑚) = 0 
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(5.3.10)                                  
2

3
𝜃 +

1

3
(25 + 30𝑏2)𝛽𝜏 = 0 

 whence 

(5.3.11)                                      𝜃 =  −
1

2
(25 + 30𝑏2)𝛽𝜏 

Then Theorem 3.1(1) yields 

                                                  𝑠0 =  −
1

3(𝑏2𝑟 − 𝛽𝑏𝑚𝜃𝑚)
 

This implies 

                                                    𝑏2𝑟 − 𝛽𝑏𝑚𝜃𝑚 = 0 
 From (5.3.8), (5.3.9) and (5.3.11), we obtain  

(5.3.12)                                        𝜃 =  −
1

2
(25 + 30𝑏2)𝛽𝜏 

From equations (5.3.9) and (5.3.12), it follows that τ = 0 and substituting τ = 0 in equation (5.3.12), we get θ 

= 0. Thus finally (1), (2) and (3) reduce to the following  

                                                    𝑠𝑖𝑗  =  0, 𝐺𝛼
𝑙  =  0, 𝑟00  =  0.  

Since   𝑠0  =  𝑟00  =  0, then equations (5.3.3) and (5.3.4) reduce to 

                                                     𝑃 =  0 𝑎𝑛𝑑 𝑄𝑖  =  0. 
Then the relation (5.3.2) becomes 𝐺𝛼

𝑙 = 0, which completes the proof.  

Theorem:-3.3. Let 𝐹 =  𝛼 +  𝛽 +  
𝛽2

𝛼
+ 

𝛽3

𝛼2  be a non-Riemannian metric on n-dimensional (𝑛 ≥  3) 

manifold M. Then F is locally dually flat with isotropic S-curvature. Moreover, 𝑆 =  (𝑛 +  1)𝑐𝐹 if and only 

if the structure is locally Minkowskian. Proof. From Theorem 3.2 we have that 𝐹 =  𝛼 +  𝛽 +  
𝛽2

𝛼
+ 

𝛽3

𝛼2  is 

dually flat and projectively flat in any adapted coordinate system. By Lemma 2.1, we infer  

𝐹𝑥𝑘  =  𝐶𝐹𝐹𝑦𝑘.  

Hence the spray coefficients 𝐺𝑖 =  𝑃𝑦𝑖 are given by 𝑃 =  
1

2
𝐶𝐹.    since   𝐺𝑖 =  0, then P = 0, and hence C = 

0. This implies that 𝐹𝑥𝑘 = 0and then F is a locally Minkowskian metric in the adapted coordinate system.  
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