

ON δg CONTINUOUS FUNCTIONS IN GRILL DELTA TOPOLOGICAL SPACES

¹B. Sujatha, ²K. Anitha

¹Assistant Professor, ²Assistant Professor, ^{1,2} Department of Science and Humanities, ^{1,2}Hindusthan College of Engineering and Technology, Coimbatore, India.

Abstract: The aim of this paper is to introduce and study the concepts of new class of functions called $\mathcal{G} \ g$ - continuous functions, contra $\mathcal{G} \ g$ - continuous functions and $\mathcal{G} \ g$ - irresolute functions using $\mathcal{G} \ g$ - closed sets. IndexTerms - $\mathcal{G} \ g$ - continuous and $\mathcal{G} \ g$ - irresolute functions.

1.INTRODUCTION

Norman Levine [9] initiated the idea of continuous function in 1970. T. Noiri [11] introduced δ - continuous in 1980. The generalised continuous (briefly g - continuous) was studied by K. Balachandran [2] in 1991. Further many others contributed their research towards continuity. R. Sudha. et.al [12], defined and analysed δg - continuous, δg^* - continuous respectively. In this paper a new class of functions called βg - continuous functions, contra βg - continuous functions, and βg - irresolute functions using βg - closed sets are defined and their basic properties and relationship with other existing continuous functions are investigated.

2.PRELIMINARIES

Definition 2.1

A set is δ open if it is the union of regular open sets. The complement of δ open is called δ closed. Alternatively, a set $A \subseteq (X, \tau)$ is called δ closed if $A = cl_{\delta}(A)$ where $cl_{\delta}(A) = \{x \in X / int(cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$

Definition 2.2

A subset A of (X, τ) is called

- (i) ω closed set [14] if $cl(A) \subseteq U$ U whenever $A \subseteq U$ and U is semi open in (X, τ)
- (ii) $\delta g \operatorname{closed} [6]$ if $\delta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)
- (iii) δg^* closed [13] if $\delta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g- open in (X, τ)
- (iv) $\zeta \omega$ closed set [4] if $\varphi(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition : 2.3

Let (X,τ) be a topological space and ζ be a grill on X. Then a subset A of X is said to be a $\zeta \beta g$ - closed [5] if $\varphi_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\zeta \omega$ open in (X, τ, ζ) .

Definition : 2.4

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be

(i) δ -continuous [12] if $f^{-1}(V)$ is δ closed of (X, τ) for every closed set V of (Y, σ) .

IJNRD2306618

- (ii) r- continuous [1] if $f^{-1}(V)$ is r closed of (X,τ) for every closed set V of (Y,σ) .
- (iii) ω -continuous [14] if $f^{-1}(V)$ is ω closed of (X,τ) for every closed set V of (Y,σ) .
- (iv) $\zeta \omega$ -continuous [4] if $f^{-1}(V)$ is $\zeta \omega$ closed of (X, τ) for every closed set V of (Y, σ) .

Definition : 2.5

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be

- (i) contra continuous [7] if $f^{-1}(V)$ is closed in (X, τ) for every open set V in (Y, σ) .
- (ii) contra sg continuous [8] if $f^{-1}(V)$ is sg closed in (X,τ) for every open set $V in(Y,\sigma)$.
- (iii) contra δgb continuous [3] if $f^{-1}(V)$ is δgb closed in (X,τ) for every open set V in (Y,σ) .
- (iv) contra δg continuous [9] if $f^{-1}(V)$ is δg closed in (X, τ) for every open set V in (Y, σ) .

Definition 2.6

A function $f:(X,\tau,\zeta) \to (Y,\sigma,\lambda)$ is called $\zeta \omega$ - irresolute [4] if $f^{-1}(V)$ is $\zeta \omega$ - open set in (X,τ,ζ) for every $\zeta \omega$ - open set V in (Y,σ,λ) .

3. $\mathcal{G} \stackrel{\circ}{g}$ - CONTINUOUS FUNCTIONS

Definition 3.1

A function $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ is said to be $\zeta \beta g$ - continuous if $f^{-1}(V)$ is $\zeta \beta g$ - closed in (X,τ^{δ},ζ) for every closed set V in (Y,σ) .

Theorem 3.2.

If a map $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ is δ - continuous then it is $\zeta \beta g$ - continuous but not conversely. **Proof:** Let $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ be δ - continuous. Let V be any closed set in Y. Then inverse image $f^{-1}(V)$ is δ - closed in X. Since every δ - closed set is $\zeta \beta g$ - closed, $f^{-1}(V)$ is $\zeta \beta g$ - closed in X. Therefore f is $\zeta \beta g$ - continuous.

Example 3.3

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$ and grill $\zeta = \{\{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Then the $\zeta \beta g$ - closed sets are $\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Let $f : (X, \tau^{\delta}, \zeta) \to (Y, \sigma)$ be the identity map. Then the inverse image of every closed set in Y is $\zeta \beta g$ - closed in X. Hence f is $\zeta \beta g$ - continuous but not δ - continuous.

Theorem 3.4

If a map $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ is regular - continuous then it is $\zeta \circ g$ - continuous but not conversely. **Proof:** Let $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ be regular - continuous. Let V be any closed set in Y. Then inverse image $f^{-1}(V)$ is regular - closed in X. Since every regular - closed set is $\zeta \circ g$ - closed, $f^{-1}(V)$ is $\zeta \circ g$ - closed in X. Therefore f is $\zeta \circ g$ - continuous.

Example 3.5

The converse is false as shown in example 3.3.

Theorem 3.6

If $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ is $\zeta \beta g$ - continuous then it is ζg - continuous but not conversely. **Proof:** Let V be any closed set in Y. Since V is $\zeta \beta g$ - continuous then $f^{-1}(V)$ is $\zeta \beta g$ - closed in X. Since every $\zeta \beta g$ - closed set is ζg - closed, then $f^{-1}(V)$ is $\zeta \beta g$ - closed in X. Hence f is ζg - continuous.

Example 3.7

g151

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$, $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ and grill $\zeta = \{X, \{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}, \zeta\delta$ g - closed set are $\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}, \zeta g$ - closed sets are $\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $f : (X, \tau^{\delta}, \zeta) \to (Y, \sigma)$ is defined by f(a) = c, f(b) = b, f(c) = a then f is ζg - continuous but not $\zeta\delta$ g - continuous as the inverse image of a closed set $\{a\}$ in Y is $\{c\}$ is not $\zeta\delta$ g - closed in X.

Remark 3.8

The concept of continuous, ω - continuous, $\zeta \omega$ - continuous, δg^* - continuous, δg - continuous are independent of $\zeta \delta g$ - continuous as it follows from example 3.3.

Remark 3.9

From the above discussions and the known result we have the following implications

Figure 3.10

Theorem 3.11

For any function $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ the following statements are equivalent.

- (i) f is $\zeta \delta g$ continuous.
- (*ii*) The inverse image of each open set in Y is $\zeta \delta g$ open in X.

Proof: Assume that $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ be $\mathfrak{G} \stackrel{\circ}{g}$ - continuous. Let *P* be open in *Y*. Then P^c is closed in *Y*. Since *f* is $\mathfrak{G} \stackrel{\circ}{g}$ - continuous, $f^{-1}(P^c)$ is $\mathfrak{G} \stackrel{\circ}{g}$ - closed in *X*. But $f^{-1}(P^c) = X - f^{-1}(P)$. Thus $X - f^{-1}(P)$ is $\mathfrak{G} \stackrel{\circ}{g}$ - closed in *X* and so $f^{-1}(P)$ is $\mathfrak{G} \stackrel{\circ}{g}$ - open in *X*. Therefore $(i) \Rightarrow (ii)$.

Conversely assume that the inverse image of each open set in Y is $\mathcal{G} \stackrel{\circ}{g}$ - open in X. Let Q be any closed set in Y. Then Q^c is open in Y. By assumption, $f^{-1}(Q^c)$ is $\mathcal{G} \stackrel{\circ}{g}$ - open in X. But $f^{-1}(Q^c) = X - f^{-1}(Q)$. Thus $X - f^{-1}(Q)$ is $\mathcal{G} \stackrel{\circ}{g}$ - open in X and so $f^{-1}(Q)$ is $\mathcal{G} \stackrel{\circ}{g}$ - open in X and so $f^{-1}(Q)$ is $\mathcal{G} \stackrel{\circ}{g}$ - open in X and so $f^{-1}(Q)$ is $\mathcal{G} \stackrel{\circ}{g}$ - open in X. Therefore f is $\mathcal{G} \stackrel{\circ}{g}$ - continuous. Hence $(ii) \Rightarrow (i)$. Thus (i) and (ii) are equivalent.

4. CONTRA σg - CONTINUOUS FUNCTIONS

In this section, the concept of contra $\zeta \hat{g}$ - continuous functions in grill delta topological spaces have been characterized.

g152

Definition 4.1

A function $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma)$ is called contra $\zeta \delta g$ - continuous if $f^{-1}(V)$ is $\zeta \delta g$ - closed in (X,τ^{δ},ζ) for every open set V in (Y,σ) .

Remark 4.2

The concept of $\zeta \beta g$ - continuity and contra $\zeta \beta g$ - continuity are independent as shown in the following example.

Example 4..3

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$, $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$ and $\zeta = \{\{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $f : (X, \tau^{\delta}, \zeta) \to (Y, \sigma)$ be the identity function. Clearly f is contra $\zeta \beta g$ - continuous but not $\zeta \beta g$ - continuous. Since $f^{-1}\{c\} = \{c\}$ is not $\zeta \beta g$ - closed in $(X, \tau^{\delta}, \zeta)$. Therefore f is not $\zeta \beta g$ - continuous.

Example 4.4

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, \{b\}, \{a, b\}, X\}$, $\sigma = \{\phi, \{b\}, \{b, c\}, Y\}$ and grill $\zeta = \{\{b\}, \{b, c\}, \{a, c\}, X\}$. Let $f: (X, \tau^{\delta}, \zeta) \to (Y, \sigma)$ be the identity function. Clearly f is $\zeta \delta g$ - continuous but not contra $\zeta \delta g$ - continuous because $f^{-1}\{b\} = \{b\}$ is not $\zeta \delta g$ - closed in $(X, \tau^{\delta}, \zeta)$ where $\{b\}$ is open in Y.

Remark 4.5

The concept of contra - continuous and contra $\zeta \delta g$ - continuous are independent as shown in the following example.

Example 4.6

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}, \sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$ and $\zeta = \{\{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $f : (X, \tau^{\delta}, \zeta) \to (Y, \sigma)$ be the identity function. Clearly f is contra - continuous but not contra $\zeta \circ g$ - continuous. Since $f^{-1}\{a\} = \{a\}$ is not $\zeta \circ g$ - closed in $(X, \tau^{\delta}, \zeta)$ where $\{a\}$ is open in (Y, σ) .

Example 4.7

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{\phi, \{c\}, \{b, c\}, X\}$, $\sigma = \{\phi, \{a, c\}, Y\}$ with grill $\zeta = \{\{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$. Let $f: (X, \tau^{\delta}, \zeta) \to (Y, \sigma)$ be the identity function. Clearly f is contra $\zeta \circ g$ - continuous but not contra - continuous because for the open set $\{a, c\}$ in (Y, σ) , $f^{-1}\{a, c\} = \{a, c\}$ is not closed in $(X, \tau^{\delta}, \zeta)$.

Remark 4.8

The composition of two contra $\mathcal{G} \stackrel{\circ}{g}$ - continuous functions need not be contra $\mathcal{G} \stackrel{\circ}{g}$ -continuous as shown in the following example.

Example 4.9

Let $X = Y = Z = \{a, b, c\}$ with topologies $\tau = \{\phi, \{c\}, \{a, b\}, X\}$, $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$ $\eta = \{\phi, \{a\}, \{b\}, \{a, c\}, Z\}$ with $\zeta = \{\{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $f: (X, \tau^{\delta}, \zeta) \to (Y, \sigma^{\delta}, \lambda)$ and $g: (Y, \sigma^{\delta}, \lambda) \to (Z, \eta^{\delta}, \mu)$ be two identity functions. Then both f and g are contra $\zeta \beta g$ - continuous but $g \circ f: (X, \tau^{\delta}, \zeta) \to (Z, \eta^{\delta}, \mu)$ is not contra $\zeta \beta g$ -continuous. Since $(g \circ f)^{-1}\{a\} = \{a\}$ is not $\zeta \beta g$ - closed in $(X, \tau^{\delta}, \zeta)$ where $\{a\}$ is open in (Z, η^{δ}, μ) .

Theorem 4.10

g153

If $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma^{\delta},\lambda)$ is $\zeta \beta g$ - irresolute and $g:(Y,\sigma^{\delta},\lambda) \to (Z,\eta^{\delta},\mu)$ is contra $\zeta \beta g$ - continuous functions. Then $g \circ f:(X,\tau^{\delta},\zeta) \to (Z,\eta^{\delta},\mu)$ is contra $\zeta \beta g$ - continuous.

Proof: Let V be open in (Z, η^{δ}, μ) . Since g is contra $\mathfrak{G} \circ g$ - continuous, $g^{-1}(V)$ is $\mathfrak{G} \circ g$ - closed in $(Y, \sigma^{\delta}, \lambda)$. Since f is $\mathfrak{G} \circ g$ - irresolute, $f^{-1}(g^{-1}(V))$ is $\mathfrak{G} \circ g$ - closed in $(X, \tau^{\delta}, \zeta)$. That is $(g \circ f)^{-1}(V)$ is $\mathfrak{G} \circ g$ - closed in $(X, \tau^{\delta}, \zeta)$. Hence $(g \circ f)$ is contra $\mathfrak{G} \circ g$ - continuous.

5. \not{a}°_{g} - IRRESOLUTE FUNCTIONS

In this section, $\mathcal{G} \stackrel{\circ}{g}$ - irresolute function in grill delta topological spaces is introduced and some of their properties are investigated.

Definition 5.1

A function $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma^{\delta},\lambda)$ is said to be $\zeta \beta g$ - irresolute if the inverse image of every $\zeta \beta g$ - closed set in $(Y,\sigma^{\delta},\lambda)$ is $\zeta \beta g$ - closed set in (X,τ^{δ},ζ) .

Theorem 5.2

A map $f:(X,\tau^{\delta},\zeta) \to (Y,\sigma^{\delta},\lambda)$ is $\zeta \beta g$ - irresolute iff the inverse image of every $\zeta \beta g$ - open in $(Y,\sigma^{\delta},\lambda)$ is $\zeta \beta g$ - open in (X,τ^{δ},ζ) .

Proof: Assume f is $\mathcal{G} \stackrel{\circ}{g}$ - irresolute. Let B be any $\mathcal{G} \stackrel{\circ}{g}$ - open in $(Y, \sigma^{\delta}, \lambda)$. Then B^c is $\mathcal{G} \stackrel{\circ}{g}$ - closed in $(Y, \sigma^{\delta}, \lambda)$. Since f is $\mathcal{G} \stackrel{\circ}{g}$ - irresolute, $f^{-1}(B)$ is $\mathcal{G} \stackrel{\circ}{g}$ - closed in $(X, \tau^{\delta}, \zeta)$. But $f^{-1}(B^c) = X - f^{-1}(B)$ and so $f^{-1}(B)$ is $\mathcal{G} \stackrel{\circ}{g}$ - open set in X. Hence the inverse image of every $\mathcal{G} \stackrel{\circ}{g}$ - open in $(Y, \sigma^{\delta}, \lambda)$ is $\mathcal{G} \stackrel{\circ}{g}$ - open in $(X, \tau^{\delta}, \zeta)$.

Conversely, assume that the inverse image of every $\zeta \beta g -$ open set in $(Y, \sigma^{\delta}, \lambda)$ is $\zeta \beta g -$ open in X. Let *B* be any closed set in $(Y, \sigma^{\delta}, \lambda)$. Then B^c is $\zeta \beta g -$ open in $(Y, \sigma^{\delta}, \lambda)$. By assumption $f^{-1}(B^c)$ is $\zeta \beta g -$ open set in $(X, \tau^{\delta}, \zeta)$. But $f^{-1}(B^c) = X - f^{-1}(B)$ and so $f^{-1}(B)$ is $\zeta \beta g -$ closed set in X. Therefore f is $\zeta \beta g -$ irresolute.

REFERENCES

[1] Arya, S.P and Gupta, R. 1974. On strongly continuous functions, Kyungpook Mathematical Journal, 14:131 - 143.

[2] Balachandran, K, Sundaram, P, and Maki, H. 1991. On generalized continuous maps in topological spaces, Memoirs of the Faculty of Science Kochi University series A Mathematics, 12: 5 - 13.

[3] Benchalli, S.S. Patil, P.G. Toranangatti, J.B and Vigneshi, S.R. 2017. Contra δgb - Continuous functions in topological spaces, European Journal of Pure and Applied Mathematics, 10: 312 - 322.

[4] Chandramathi, N. 2012. A Study on Generalizations of Closed sets and Continuous functions in Ideal, Grill and Supra Topological Spaces, Ph.D Thesis, Bharathiyar University, Coimbatore.

[5] Chandramathi, N and Sujatha, B. 2019. δg Closed sets in Grill Topological Spaces, Malaya Journal of Matematik, 7(4): 823-825.

[6] Dontchev, J and Ganster, M. 1996. On δ - generalized closed set $T_{\frac{3}{4}}$ - spaces, Former Memoirs of the Faculty of Science

Kochi University Series A Mathematics, 17:15-31.

[7] Dontchev, J. 1996. Contra - continuous functions and strongly S - closed spaces, International Journal of Mathematics and Mathematical Sciences, 19:303 - 310.

[8] Dontchev, J and Noiri, T. 1999. Contra - semi - continuous functions, Mathematica Pannonica, 10: 159 - 168.

[9] Lellis Thivagar, M and Meera Devi, M. 2012. Note on contra δg - continuous functions, Boletim da Sociedade Paranaense de Matematica, 30 : 109 - 116.

[10] Levine, N. 1961. A decomposition of continuity in topological spaces, American Mathematical Monthly, 68 : 44 - 46.

[11] Mandal, D and Mukherjee, M.N. 2012. On a type of generalized closed sets, Boletim da Sociedade Paranaense de Matemática, 3 : 67 - 76.

[12] Noiri, T. 1980. On δ - continuous functions, Journal of the Korean Mathematical Society, 16:161 - 166.

[13] Sudha, R and Sivakamasundari, K. 2012. On δg^* - closed sets in topological spaces, International Journal of Mathematical Achieve, 3 : 1222 - 1230.

[14] Sundaram, P and Sheik John, M. 1995. Weakly closed sets and weakly continuous maps in topological spaces. Proc. 82nd Session of the Indian Science Congress, Culcutta, P - 45.

[15] .Veera Kumar, M.K.R.S. 2003. \hat{g} - closed sets in topological spaces, Bulletin Allahabad Mathematical Society, 18:99 - 112.