INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) | IJNRD.ORG An International Ipen Access, Peer-reviewed, Refereed Journal

ON $\delta \hat{g}$ CONTINUOUS FUNCTIONS IN GRILL DELTA TOPOLOGICAL SPACES

${ }^{1}$ B. Sujatha, ${ }^{2}$ K. Anitha
${ }^{1}$ Assistant Professor, ${ }^{2}$ Assistant Professor,
${ }^{1,2}$ Department of Science and Humanities,
${ }^{1,2}$ Hindusthan College of Engineering and Technology, Coimbatore, India.

Abstract: The aim of this paper is to introduce and study the concepts of new class of functions called $\zeta \delta \hat{g}$ - continuous functions, contra $\zeta \delta \hat{g}$-continuous functions and $\zeta \delta \hat{g}$ - irresolute functions using $\zeta \delta \hat{g}$-closed sets.
IndexTerms - $\zeta \delta \hat{g}$ - continuous and $\zeta \delta \hat{g}$ - irresolute functions.

1.INTRODUCTION

Norman Levine [9] initiated the idea of continuous function in 1970. T. Noiri [11] introduced δ - continuous in 1980. The generalised continuous (briefly g - continuous) was studied by K. Balachandran [2] in 1991. Further many others contributed their research towards continuity. R. Sudha. et.al [12], defined and analysed $\delta \mathrm{g}$ - continuous, $\delta \mathrm{g} *-$ continuous respectively. In this paper a new class of functions called $\zeta \delta \hat{g}$ - continuous functions, contra $\zeta \delta \hat{g}$ - continuous functions, and $\zeta \delta \hat{g}$ - irresolute functions using $\zeta \delta \hat{g}$ - closed sets are defined and their basic properties and relationship with other existing continuous functions are investigated.

2.PRELIMINARIES

Definition 2.1

A set is δ open if it is the union of regular open sets. The complement of δ open is called δ closed. Alternatively, a set $A \subseteq(X, \tau)$ is called δ closed if $\mathrm{A}=c l_{\delta}(\mathrm{A})$ where $c l_{\delta}(\mathrm{A})=\{\mathrm{x} \in \mathrm{X} / \operatorname{int}(\mathrm{cl}(\mathrm{U})) \cap \mathrm{A} \neq \phi, \mathrm{U} \in \tau$ and $\mathrm{x} \in \mathrm{U}\}$

Definition 2.2

A subset A of (X, τ) is called
(i) $\quad \omega$ closed set [14] if $c l(A) \subseteq U$ U whenever $A \subseteq U$ and U is semi open in (X, τ)
(ii) δg closed [6] if $\delta \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)
(iii) δg^{*} closed [13] if $\delta c l(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ)
(iv) $\quad \zeta \omega$ closed set [4] if $\varphi(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X .

Definition : 2.3
Let (X, τ) be a topological space and ζ be a grill on X . Then a subset A of X is said to be a $\zeta \delta \hat{g}-\operatorname{closed}[5]$ if $\varphi_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\zeta \omega$ open in (X, τ, ζ).
Definition : 2.4
A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be
(i) δ-continuous [12] if $f^{-1}(V)$ is δ closed of (X, τ) for every closed set V of (Y, σ).
(ii) r - continuous [1] if $f^{-1}(V)$ is r closed of (X, τ) for every closed set V of (Y, σ).
(iii) ω-continuous [14] if $f^{-1}(V)$ is ω closed of (X, τ) for every closed set V of (Y, σ).
(iv) $\zeta \omega$-continuous [4] if $f^{-1}(V)$ is $\zeta \omega$ closed of (X, τ) for every closed set V of (Y, σ).

Definition : 2.5

A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be
(i) contra-continuous [7] if $f^{-1}(V)$ is closed in (X, τ) for every open set V in (Y, σ).
(ii) contra sg-continuous [8] if $f^{-1}(V)$ is $s g$-closed in (X, τ) for every open set V in (Y, σ).
(iii) contra $\delta g b$-continuous [3] if $f^{-1}(V)$ is $\delta g b$-closed in (X, τ) for every open set V in (Y, σ).
(iv) contra $\delta \hat{g}$ - continuous [9] if $f^{-1}(V)$ is $\delta \hat{g}$ - closed in (X, τ) for every open set V in (Y, σ).

Definition 2.6

A function $f:(X, \tau, \zeta) \rightarrow(Y, \sigma, \lambda)$ is called $\zeta \omega$ - irresolute [4] if $f^{-1}(V)$ is $\zeta \omega$ - open set in (X, τ, ζ) for every $\zeta \omega$ - open set V in (Y, σ, λ).
3. $\zeta \delta \hat{g}$ - CONTINUOUS FUNCTIONS

Definition 3.1

A function $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ is said to be $\zeta \delta \hat{g}$ - continuous if $f^{-1}(V)$ is $\zeta \delta \hat{g}$ - closed in $\left(X, \tau^{\delta}, \zeta\right)$ for every closed set V in (Y, σ).

Theorem 3.2.

If a map $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ is δ-continuous then it is $\zeta \delta \hat{g}$ - continuous but not conversely.
Proof: Let $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ be δ - continuous. Let V be any closed set in Y. Then inverse image $f^{-1}(V)$ is δ-closed in X. Since every δ - closed set is $\zeta \delta \hat{g}$ - closed, $f^{-1}(V)$ is $\zeta \delta \hat{g}$-closed in X. Therefore f is $\zeta \delta \hat{g}$-continuous.

Example 3.3

Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{\phi,\{a\},\{b, c\}, X\}$ and $\sigma=\{\phi,\{a, c\}, Y\}$ and grill $\zeta=\{\{a\},\{c\},\{a, b\},\{b, c\},\{a, c\}, X\}$. Then the $\zeta \delta \hat{g}$ - closed sets are $\{\phi,\{a\},\{b\},\{a, b\},\{b, c\}, X\}$. Let $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ be the identity map. Then the inverse image of every closed set in Y is $\zeta \delta \hat{g}$ - closed in X. Hence f is $\zeta \delta \hat{g}$ - continuous but not δ-continuous.

Theorem 3.4

If a map $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ is regular - continuous then it is $\zeta \delta \hat{g}$ - continuous but not conversely.
Proof: Let $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ be regular - continuous. Let V be any closed set in Y. Then inverse image $f^{-1}(V)$ is regular closed in X. Since every regular - closed set is $\zeta \delta \hat{g}$ - closed, $f^{-1}(V)$ is $\zeta \delta \hat{g}$ - closed in X. Therefore f is $\zeta \delta \hat{g}$ - continuous.

Example 3.5

The converse is false as shown in example 3.3.

Theorem 3.6

If $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ is $\zeta \delta \hat{g}$-continuous then it is ζg - continuous but not conversely.
Proof: Let V be any closed set in Y. Since V is $\zeta \delta \hat{g}$ - continuous then $f^{-1}(V)$ is $\zeta \delta \hat{g}$ - closed in X. Since every $\zeta \delta \hat{g}$-closed set is ζg - closed, then $f^{-1}(V)$ is $\zeta \delta \hat{g}$-closed in X. Hence f is ζg-continuous.

Example 3.7

Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{\phi,\{a\},\{b\},\{a, b\},\{b, c\}, X\}, \sigma=\{\phi,\{a\},\{b, c\}, Y\}$ and grill $\zeta=\{X,\{a\},\{c\}$, $\{a, b\},\{b, c\},\{a, c\}\}, \zeta \delta g$-closed set are $\{\phi,\{a\},\{b\},\{a, b\},\{b, c\}, X\}, \zeta g$ - closed sets are $\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}, X\}$. Let $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ is defined by $f(a)=c, f(b)=b, f(c)=a$ then f is ζg - continuous but not $\zeta \delta \hat{g}$ - continuous as the inverse image of a closed set $\{a\}$ in Y is $\{c\}$ is not $\zeta \delta \hat{g}$ - closed in X.

Remark 3.8

The concept of continuous, ω - continuous, $\zeta \omega$ - continuous, δg^{*} - continuous, δg - continuous are independent of $\zeta \delta \hat{g}$ continuous as it follows from example 3.3.

Remark 3.9

From the above discussions and the known result we have the following implications

Figure 3.10

Theorem 3.11

For any function $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ the following statements are equivalent.
(i) f is $\zeta \delta \hat{g}$-continuous.
(ii) The inverse image of each open set in Y is $\zeta \delta \hat{g}$ - open in X.

Proof: Assume that $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ be $\zeta \delta \hat{g}$ - continuous. Let P be open in Y. Then P^{c} is closed in Y. Since f is $\zeta \delta \hat{g}$ - continuous, $f^{-1}\left(P^{c}\right)$ is $\zeta \delta \hat{g}$ - closed in X. But $f^{-1}\left(P^{c}\right)=X-f^{-1}(P)$. Thus $X-f^{-1}(P)$ is $\zeta \delta \hat{g}$ - closed in X and so $f^{-1}(P)$ is $\zeta \delta \hat{g}$ - open in X. Therefore $(i) \Rightarrow(i i)$.

Conversely assume that the inverse image of each open set in Y is $\zeta \delta \hat{g}$ - open in X. Let Q be any closed set in Y. Then Q^{c} is open in Y. By assumption, $f^{-1}\left(Q^{c}\right)$ is $\zeta \delta \hat{g}$ - open in X. But $f^{-1}\left(Q^{c}\right)=X-f^{-1}(Q)$. Thus $X-f^{-1}(Q)$ is $\zeta \delta \hat{g}-$ open in X and so $f^{-1}(Q)$ is $\zeta \delta \hat{g}$ - closed in X. Therefore f is $\zeta \delta \hat{g}$-continuous. Hence $(i i) \Rightarrow(i)$. Thus (i) and (ii) are equivalent.

4. CONTRA $\zeta \delta \hat{g}$ - CONTINUOUS FUNCTIONS

In this section, the concept of contra $\zeta \delta \widehat{g}$-continuous functions in grill delta topological spaces have been characterized.

Definition 4.1

A function $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ is called contra $\zeta \delta \hat{g}$ - continuous if $f^{-1}(V)$ is $\zeta \delta \hat{g}$-closed in $\left(X, \tau^{\delta}, \zeta\right)$ for every open set V in (Y, σ).

Remark 4.2

The concept of $\zeta \delta \hat{g}$ - continuity and contra $\zeta \delta \hat{g}$ - continuity are independent as shown in the following example.

Example $4 . .3$

Let $X=Y=\{a, b, c\} \quad$ with topologies $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\} \quad, \quad \sigma=\{\phi,\{a\},\{a, b\}, Y\}$ and $\zeta=\{\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$. Let $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ be the identity function. Clearly f is contra $\zeta \delta \hat{g}$ - continuous but not $\zeta \delta \hat{g}$ - continuous. Since $f^{-1}\{c\}=\{c\}$ is not $\zeta \delta \hat{g}$ - closed in $\left(X, \tau^{\delta}, \zeta\right)$. Therefore f is not $\zeta \delta \hat{g}$-continuous.

Example 4.4

Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \sigma=\{\phi,\{b\},\{b, c\}, Y\}$ and grill $\zeta=\{\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$. Let $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ be the identity function. Clearly f is $\zeta \delta \hat{g}$ - continuous but not contra $\zeta \delta \hat{g}$ - continuous because $f^{-1}\{b\}=\{b\}$ is not $\zeta \delta \hat{g}$-closed in $\left(X, \tau^{\delta}, \zeta\right)$ where $\{b\}$ is open in Y.

Remark 4.5

The concept of contra - continuous and contra $\zeta \delta \hat{g}$ - continuous are independent as shown in the following example.

Example 4.6

Let $X=Y=\{a, b, c\} \quad$ with topologies $\tau=\{\phi,\{c\},\{a, c\},\{b, c\}, X\}, \sigma=\{\phi,\{a\},\{b\},\{a, b\}, Y\}$ and $\zeta=\{\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$. Let $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ be the identity function. Clearly f is contra - continuous but not contra $\zeta \delta \hat{g}$ - continuous. Since $f^{-1}\{a\}=\{a\}$ is not $\zeta \delta \hat{g}$ - closed in $\left(X, \tau^{\delta}, \zeta\right)$ where $\{a\}$ is open in (Y, σ).

Example 4.7

Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{\phi,\{c\},\{b, c\}, X\}, \sigma=\{\phi,\{a, c\}, Y\}$ with grill $\zeta=\{\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$. Let $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow(Y, \sigma)$ be the identity function. Clearly f is contra $\zeta \delta \hat{g}$ - continuous but not contra - continuous because for the open set $\{a, c\}$ in $(Y, \sigma), \quad f^{-1}\{a, c\}=\{a, c\}$ is not closed in $\left(X, \tau^{\delta}, \zeta\right)$.

Remark 4.8

The composition of two contra $\zeta \delta \hat{g}$ - continuous functions need not be contra $\zeta \delta \hat{g}$-continuous as shown in the following example.

Example 4.9

Let $X=Y=Z=\{a, b, c\}$ with topologies $\tau=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \sigma=\{\phi,\{b\},\{c\},\{b, c\}, Y\}$
$\eta=\{\phi,\{a\},\{b\},\{a, b\},\{a, c\}, Z\} \quad$ with $\quad \zeta=\{\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\} \quad . \quad$ Let $\quad f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow\left(Y, \sigma^{\delta}, \lambda\right)$ and $\mathrm{g}:\left(\mathrm{Y}, \sigma^{\delta}, \lambda\right) \rightarrow\left(\mathrm{Z}, \eta^{\delta}, \mu\right)$ be two identity functions. Then both f and g are contra $\zeta \delta \hat{g}$ - continuous but $g \circ f:\left(\mathrm{X}, \tau^{\delta}, \zeta\right) \rightarrow\left(\mathrm{Z}, \eta^{\delta}, \mu\right)$ is not contra $\zeta \delta \hat{g}$-continuous. Since $(g \circ f)^{-1}\{a\}=\{a\}$ is not $\zeta \delta \hat{g}-$ closed in $\left(X, \tau^{\delta}, \zeta\right)$ where $\{a\}$ is open in (Z, $\left.\eta^{\delta}, \mu\right)$.

Theorem 4.10

If $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow\left(Y, \sigma^{\delta}, \lambda\right)$ is $\zeta \delta \hat{g}$ - irresolute and $\mathrm{g}:\left(\mathrm{Y}, \sigma^{\delta}, \lambda\right) \rightarrow\left(\mathrm{Z}, \eta^{\delta}, \mu\right)$ is contra $\zeta \delta \hat{g}$ - continuous functions. Then $g \circ f:\left(\mathrm{X}, \tau^{\delta}, \zeta\right) \rightarrow\left(\mathrm{Z}, \eta^{\delta}, \mu\right)$ is contra $\zeta \delta \hat{g}$ - continuous.
Proof: Let V be open in $\left(Z, \eta^{\delta}, \mu\right)$. Since g is contra $\zeta \delta \hat{g}$ - continuous, $g^{-1}(V)$ is $\zeta \delta \hat{g}$-closed in $\left(Y, \sigma^{\delta}, \lambda\right)$. Since f is $\zeta \delta \hat{g}$ - irresolute, $f^{-1}\left(g^{-1}(V)\right)$ is $\zeta \delta \hat{g}$ - closed in $\left(X, \tau^{\delta}, \zeta\right)$. That is $(g \circ f)^{-1}(V)$ is $\zeta \delta \hat{g}$ - closed in $\left(X, \tau^{\delta}, \zeta\right)$. Hence $(g \circ f)$ is contra $\zeta \delta \hat{g}$ - continuous.

5. $\zeta \delta \hat{g}$ - IRRESOLUTE FUNCTIONS

In this section, $\zeta \delta \hat{g}$ - irresolute function in grill delta topological spaces is introduced and some of their properties are investigated.

Definition 5.1

A function $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow\left(Y, \sigma^{\delta}, \lambda\right)$ is said to be $\zeta \delta \hat{g}$ - irresolute if the inverse image of every $\zeta \delta \hat{g}$ - closed set in $\left(Y, \sigma^{\delta}, \lambda\right)$ is $\zeta \delta \hat{g}$ - closed set in $\left(X, \tau^{\delta}, \zeta\right)$.

Theorem 5.2

A map $f:\left(X, \tau^{\delta}, \zeta\right) \rightarrow\left(Y, \sigma^{\delta}, \lambda\right)$ is $\zeta \delta \hat{g}$ - irresolute iff the inverse image of every $\zeta \delta \hat{g}$-open in $\left(Y, \sigma^{\delta}, \lambda\right)$ is $\zeta \delta \hat{g}$-open in $\left(X, \tau^{\delta}, \zeta\right)$.

Proof: Assume f is $\zeta \delta \hat{g}$ - irresolute. Let B be any $\zeta \delta \hat{g}$ - open in $\left(Y, \sigma^{\delta}, \lambda\right)$. Then B^{c} is $\zeta \delta \hat{g}$-closed in $\left(Y, \sigma^{\delta}, \lambda\right)$. Since f is $\zeta \delta \hat{g}$ - irresolute, $f^{-1}(B)$ is $\zeta \delta \hat{g}$ - closed in $\left(X, \tau^{\delta}, \zeta\right)$. But $f^{-1}\left(B^{c}\right)=X-f^{-1}(B)$ and so $f^{-1}(B)$ is $\zeta \delta \hat{g}$ - open set in X. Hence the inverse image of every $\zeta \delta \hat{g}$ - open in $\left(Y, \sigma^{\delta}, \lambda\right)$ is $\zeta \delta \hat{g}$ - open in $\left(X, \tau^{\delta}, \zeta\right)$.

Conversely, assume that the inverse image of every $\zeta \delta \hat{g}$ - open set in $\left(Y, \sigma^{\delta}, \lambda\right)$ is $\zeta \delta \hat{g}$ - open in X. Let B be any closed set in $\left(Y, \sigma^{\delta}, \lambda\right)$. Then B^{c} is $\zeta \delta \hat{g}$ - open in $\left(Y, \sigma^{\delta}, \lambda\right)$. By assumption $f^{-1}\left(B^{c}\right)$ is $\zeta \delta \hat{g}$ - open set in $\left(X, \tau^{\delta}, \zeta\right)$. But $f^{-1}\left(B^{c}\right)=X-f^{-1}(B)$ and so $f^{-1}(B)$ is $\zeta \delta \hat{g}$-closed set in X. Therefore f is $\zeta \delta \hat{g}$-irresolute.

References

[1] Arya, S.P and Gupta, R. 1974. On strongly continuous functions, Kyungpook Mathematical Journal, 14:131-143.
[2] Balachandran, K, Sundaram,P, and Maki,H. 1991. On generalized continuous maps in topological spaces, Memoirs of the Faculty of Science Kochi University series A Mathematics, 12: 5-13.
[3] Benchalli, S.S, Patil, P.G, Toranangatti, J.B and Vigneshi, S.R. 2017. Contra $\delta g b$ - Continuous functions in topological spaces, European Journal of Pure and Applied Mathematics, 10: 312-322.
[4] Chandramathi, N. 2012. A Study on Generalizations of Closed sets and Continuous functions in Ideal, Grill and Supra Topological Spaces, Ph.D Thesis, Bharathiyar University, Coimbatore.
[5] Chandramathi, N and Sujatha, B. 2019. $\delta \hat{g}$ Closed sets in Grill Topological Spaces, Malaya Journal of Matematik, 7(4): 823-825.
[6] Dontchev, J and Ganster, M. 1996. On δ - generalized closed set $T_{\frac{3}{4}}$ - spaces, Former Memoirs of the Faculty of Science Kochi University Series A Mathematics, 17:15-31.
[7] Dontchev, J. 1996. Contra - continuous functions and strongly S - closed spaces, International Journal of Mathematics and Mathematical Sciences, 19:303-310.
[8] Dontchev, J and Noiri, T. 1999. Contra - semi - continuous functions, Mathematica Pannonica, 10: 159-168.
[9] Lellis Thivagar, M and Meera Devi, M. 2012. Note on contra $\delta \hat{g}$ - continuous functions, Boletim da Sociedade Paranaense de Matematica, 30:109-116.
[10] Levine,N. 1961. A decomposition of continuity in topological spaces, American Mathematical Monthly, $68: 44-46$.
[11] Mandal, D and Mukherjee, M.N. 2012. On a type of generalized closed sets, Boletim da Sociedade Paranaense de Matemática, 3: 67-76.
[12] Noiri,T. 1980. On δ - continuous functions, Journal of the Korean Mathematical Society, $16: 161-166$.
[13] Sudha, R and Sivakamasundari, K. 2012. On δg^{*} - closed sets in topological spaces, International Journal of Mathematical Achieve, 3: 1222-1230.
[14] Sundaram, P and Sheik John, M. 1995. Weakly closed sets and weakly continuous maps in topological spaces. Proc. $82^{\text {nd }}$ Session of the Indian Science Congress, Culcutta, P-45.
[15] .Veera Kumar, M.K.R.S. 2003. \hat{g} - closed sets in topological spaces, Bulletin Allahabad Mathematical Society, 18 : 99 112.

