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ABSTRACT  

Segmenting Brain Tumor images is crucial for computer-assisted diagnosis. The key to effective segmentation is for the model to 

be able to both see the overall picture and the minute details, or to learn image characteristics that contain a lot of contexts while 

maintaining high spatial resolutions. The most popular techniques, U-Net and its variations, extract and fuse multi-scale information 

in order to reach this aim. The fused features performance is nonetheless constrained by their tiny effective receptive fields and 

emphasis on local visual signals. In this work, we use a variety of machine learning techniques to forecast the survival rate. To 

conduct segmentation, we use a 3D UNet++ architecture and combine channel and spatial attention with the decoder network. To 

forecast the length of each patient's survival, we extract certain unique radiomic parameters based on the geometry, position, and 

shape of the segmented tumor and integrate them with clinical data. To demonstrate the impact of each attribute on the prediction 

of overall survival (OS), we also conduct comprehensive studies. According to the experimental findings, the most important factors 

to determine the OS are clinical characteristics like age and radionics properties like the histogram, location, and shape of the 

necrosis area. 

we offer Segtran, a different segmentation framework built on transformers and UNet++, which even at high feature resolutions 

have an infinite effective receptive field. Segtran's central component is a new squeeze-and-expansion UNet++, in which an 

expansion block learns a variety of representations while a squeezed attention block regulates the self-attention of transformers. We 

also provide a brand-new positional encoding approach for transformers that imposes an image continuity inductive bias. 
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1. INTRODUCTION  

The most prevalent and most fatal type of brain tumours are gliomas, which arise from glial cells. Nearly 190,000 instances 

of gliomas are reported on average each year worldwide [5]. The typical patient survival period for glioma patients is still about 12 

months [7], and after 24 months following surgical resection, roughly 90% of patients had passed away [16]. For survival prediction 

and treatment planning, early identification, automated delineation, and volume estimate are essential responsibilities. However, 

because of their wide variety in shape, location, and appearance, gliomas are sometimes challenging to detect and define using 

traditional manual segmentation. The segmentation of tumor tissue must also be manually annotated, which takes time and effort 

and requires careful human expert supervision. The diagnosis and treatment will be considerably more accurate and swifter with 

the use of automatic segmentation and survival rate prediction models. 

U-Net++ [Ronneberger et al., 2019], which was introduced, has demonstrated exceptional performance in a variety of 

Brain Tumor Medical picture segmentation tasks. A U-Net++ is made up of an encoder and a decoder. The encoder creates coarse 

contextual features that concentrate on contextual patterns by gradually downsampling the data, while the decoder gradually 

upsamples the contextual features and fuses them with fine-grained local visual characteristics. The RF of U-Net++ is expanded by 

the incorporation of various scale elements, which accounts for its successful performance. However, the influence of distant pixels 

soon fades as the convolutional layers are deepened. Because of this, a U-effective Net's RF is substantially lower than its theoretical 

RF. The effective RFs of a regular U-Net++ and DeepLabV3+ are only around 90 pixels, as illustrated in Fig. 2. This suggests that 

they struggle to represent greater context and base their judgments mostly on isolated, tiny patches. The heights/widths of the ROIs, 

however, are frequently higher than 200 pixels in many workloads, much over their actual RFs. U-Net++ and other models may be 

fooled by regional visual signals and commit segmentation mistakes if they lack the ability to "see the wider picture". 
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Figure1: Segtran Brain Tumor Architecture 

Through the use of a CNN backbone, it extracts visual features, merges them with positional encodings of the pixel 

locations, and flattens the resulting set of local feature vectors. A few layers of Squeeze-and-Expansion transformers contextualise 

the local characteristics. An input FPN and an output FPN upsample the features before and after the transformers to boost spatial 

resolution. 

Transformers are becoming more and more common in computer vision tasks [Vaswani et al., 2019]. A transformer mixes 

the characteristics of all the input units, calculates the pairwise interactions between them, and then produces contextualized 

features. With the exception of its limitless effective receptive field, which is adept at catching long-range correlations, the 

contextualization provided by a transformer is comparable to the upsampling path in a U-Net. Transformers are thus an obvious 

choice for picture segmentation. In this study, we introduce Segtran, an alternative transformer-based segmentation architecture. 

Simple segmentation with transformer integration only produces mediocre performance. Transformers might be modified 

in a number of ways to better serve picture applications because they were first developed for Natural Language Processing (NLP) 

activities. In order to do this, we suggest an unique transformer design called the Squeeze-and-Expansion Transformer. In this 

design, an expansion block learns a variety of representations while a compressed attention block helps regularise the enormous 

attention matrix. A learnable sinusoidal positional encoding that imposes a continuous inductive bias for the transformer is also 

something we suggest. The results of experiments show that they enhance segmentation performance. 

 
Figure.2 : Three model’s three effective receptive fields are shown, with no discernible gradients in the blue blobs and 

light-colored dots. Back propagation of gradients occurs from the image's focal point. Segtran's picture contains barely perceptible 

gradients scattered across it (light-colored dots). Concentrated gradients are seen in U-Net++ and DeepLabV3+. Image input size: 

576X576. 

We assessed Segtran on two 2D medical picture segmentation tasks: polyp segmentation in colonoscopy images and optic 

disc/cup segmentation in fundus images from the REFUGE'20 competition. We also tested it on a 3D image segmentation problem, 

namely the segmentation of brain tumors on MRI data from the BraTS'19 challenge. According to Chen et al 2018 .'s research, 

Segtran consistently outperforms U-Net, U-Net++, UNet3+, PraNet, and U-Net as well as DeepLabV3+. 

 

2. METHOD  

DETR [Carion et al., 2020] served as a major inspiration for our work. DETR learns a series of object queries to extract the locations 

and classes of objects in an image using transformer layers to provide contextualised features that represent objects. While DETR 

is investigated for panoptic segmentation as well [Kirillov et al., 2019], its two-stage technique is not appropriate for segmenting 

brain tumor images. 

http://www.ijrti.org/
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When it comes to Brain Tumor picture segmentation, Cell-DETR [Prangemeier et al., 2020], a follow-up to DETR, also uses a 

transformer. However, Cell-architecture DETR's is essentially a simplified DETR and does not include any innovative elements 

like our Squeeze-and-Expansion transformer. Most recently, SETR and TransU-Net were published simultaneously with or after 

our research was submitted (Zheng et al., 2021; Chen et al., 2021). 

Both of them use a Vision Transformer (ViT) as the encoder to extract picture features, which already contain global contextual 

information [Dosovitskiy et al., 2021]. The segmentation mask is created using a few convolutional layers as the decoder. On top 

of the local image features that were collected from a CNN backbone in Segtran, the transformer layers provide global context, and 

a Feature Pyramid Network (FPN) creates the segmentation mask. 

CNNs are extended with positional encoding channels in [Murase et al., 2020], and they are assessed on segmentation tasks. Results 

were inconsistent. On the other hand, we demonstrated through an ablation research that positional encodings do, in fact, assist 

Segtran in doing segmentation to a certain extent. 

More downsampling layers can be used to increase U-Nets' receptive fields. The danger of overfitting is increased as a result of the 

increased number of factors. Increasing the stride widths of the convolutions in the downsampling process is another approach to 

expand receptive fields. But by doing so, feature map spatial accuracy is sacrificed, which is frequently bad for segmentation [Liu 

and Guo, 2020]. 

2.1 SQUEEZE AND EXPANSION TRANSFORMER 

Self-Attention, which may be thought of as computing an affinity matrix between various units and utilizing it to collect features, 

is the fundamental idea of a transformer. 

𝐴𝑡𝑡_𝑤𝑒𝑖𝑔ℎ𝑡(𝑋, 𝑌) = 𝑓(𝐾(𝑋), 𝑄(𝑋)  ∈ 𝑅𝑁𝑥𝑁  ----- (1) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋) = 𝐴𝑡𝑡_𝑤𝑒𝑖𝑔ℎ𝑡(𝑋, 𝑌). 𝑉(𝑋) -------(2) 

𝑋𝑜𝑢𝑡 = 𝐹𝑁𝑁(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋) -----(3) 

key, query, and value projections, respectively, are represented by K, Q, and V. Softmax is the product following the dot. Its I jth 

element specifies how much the characteristics of unit j contribute to the fused (contextualised) features of unit i. Att weight(X, X) 

is the pairwise attention matrix between input units. A feedforward network called FFN is utilised to further manipulate fused 

features. 

In order to capture various kinds of linkages between input units, the basic transformer described above is expanded to a multi-head 

attention (MHA) [Vaswani et al., 2017; Voita et al., 2019]. The individual attention weights and output features (C/Nh-dimensional) 

computed by each of the Nh heads are then concatenated along the channel dimension to produce the C-dimensional features. 

Different heads only function in certain feature subspaces. We contend that by making four improvements, transformers may be 

made to be more suitable for images: 

The projected input features in Eq. (2) are linearly combined to create the intermediate features Attention(X), with the attention 

matrix defining the combination coefficients. The attention matrix is naturally susceptible to noise and overfitting because it is so 

large: N N, with N generally > 1000. It could be beneficial to reduce the attention matrix to lower rank matrices. 

Traditional transformers contain monomorphic output features, which may not have enough capacity to adequately characterise 

data changes because there is only one set of feature transformations (the multi-head transformer also has one set after 

concatenation). A combination of k transformers can better capture data changes than a single k transformer, just as a mixture of 

Gaussians nearly always does. 

Traditional transformers can recognise asymmetric connections between tokens in natural language since the key and query 

projections are separately learnt. However, there are frequently symmetrical connections between picture units, such as whether 

two pixels are members of the same segmentation class. 

A pixel's locality and semantic continuity are quite strong. Such an inductive bias is not entirely imposed by the two widely used 

positional encoding systems [Carion et al., 2020; Dosovitskiy et al., 2021]. A positional encoding improvement may introduce this 

bias. 
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Figure 3 : (a) Squeezed Attention Block vs. (b) Full Self-Attention (N N) (SAB). In SAB, initial input units x1, , xN interact 

with a codebook c1, , cM to produce projected codebook features c0,1, , c0 M, which then interact again with the input x1, , xN. 

The two attention matrices are, respectively, N M and M N. 

 
Figure 4 : Expanded attention block vs. Multi-head attention (MHA) (EAB). Each head in MHA generates a distinct feature 

subset. EAB, on the other hand, combines Nm sets of full characteristics from Nm modes and outputs them. 

All four areas are where the Squeeze-and-Expansion Transformer seeks to enhance. The Squeezed Attention Block 

compresses the attention matrices to N M and computes attention between the input and M inducing locations [Lee et al., 2019]. 

The Expanded Attention Block uses Nm modes, or "experts," in a mixture-of-experts paradigm. To better reflect the symmetric 

interactions between picture units, the query projections and key projections are coupled in both blocks to make the attention 

symmetric. The model also benefits from a Learnable Sinusoidal Positional Encoding to capture spatial correlations. 

 

2.2  SEGTRAN ARCHITECTURE 

Segmentation, a context-dependent pixel-by-pixel classification job, must choose between localization accuracy and 

greater context (lower resolution) (higher resolution). Segtran partially resolves this dilemma without sacrificing spatial resolutions 

by doing pairwise feature contextualization. Segtran is made up of five primary parts (Fig. 1): Feature extraction from images is 

accomplished through a CNN backbone, input/output feature pyramids, learnable sinusoidal positional encoding, squeeze-and-

expansion transformer layers, a segmentation head, and learnable sinusoidal positional encoding. 

 

2.2.1 : CNN Backbone 

In order to extract features maps with rich semantics, we use a pre-trained CNN backbone. Assume the input picture is 𝑋0 ∈
𝑅𝐻0 , where D0 is the number of colour channels in a 2D image and is either 1 or 3. The number of slices in the depth dimension of 

a 3D picture is D0 = 1 or 3. The retrieved features for 2D and 3D pictures are CNN(X0) 𝑋0 ∈ 𝑅𝐻0, respectively. 

Usually, ResNet-101 or EfficientNet-D4 serve as the foundation for 2D pictures. We reduce the stride of the first 

convolution from 2 to 1 to improve spatial resolution. H, W then become H0/16 and W0/16. 3D backbones like I3D [Carreira and 

Zisserman, 2017] might be used to 3D pictures. 

 

2.2.2 : TRANSFORMER LAYER 

Each unit's visual characteristics and positional encodings are combined before being given into the transformer, as 

follows: Xspatial = Xvisual + pos(coordinates(X)). A 1-D sequence, X0 R Nu C, is created by flattening spatial across spatial 

dimensions, where Nu is the total number of picture units, or the points in the feature maps. 

A few stacked transformer layers make up the transformer. Each layer receives a set of contextualised features X as input, 

computes the pairwise interactions between the input units, and returns the same set of contextualised features X. Our unique 

Squeeze-andExpansion Transformer design is employed for the transformer layers. 

 

2.2.3: PYRAMIDS OF FEATURES AND SEGMENTATION HEAD 

The input features to transformers are typically high-level characteristics from the backbone, even if the spatial resolution 

of features does not decrease after passing through the transformer layers for richer semantics. However, they have a poor spatial 

resolution. So, using an input Feature Pyramid Network (FPN) and an output FPN that upsample the feature maps at the 

transformer's input end and output end, respectively, we boost their spatial resolution. 

Let's suppose the EfficientNet is the backbone to preserve generality. Multi-scale feature maps are frequently extracted 

from the network during stages 3, 4, 6, and 9. The associated feature maps will be referred to as f 1, f 2, f 3, and f 4, correspondingly. 

As mentioned below, 𝑓(𝑋0) = 𝑓4 is 1/16 is too coarse for precise segmentation of the source picture. So, using an input 

FPN, we upsample it to create upsampled feature maps 𝑓34: 

𝑓34 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑥2(𝑓4) + 𝐶𝑜𝑛𝑣34(𝑓3) 

http://www.ijrti.org/
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where 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑥2 is bilinear interpolation and 𝐶𝑜𝑛𝑣34(𝑓3) convolution that aligns the channels of 𝐶𝑜𝑛𝑣34(𝑓3). 

𝑓34 is utilised as the input features to the transformer layers and represents 1/8 of the original picture. The output feature 

maps are 1/8 of the input picture since the transformer layers maintain the spatial resolutions from input to output feature maps. 

However, segmentation cannot be done with this spatial resolution. In order to upsample the feature maps by a factor of 4 (i.e., 50% 

of the original pictures), we adopt an output FPN. Two upsampling stages make up the output FPN: 

𝑓12 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑥2(𝑓2) + 𝐶𝑜𝑛𝑣12(𝑓2) 

𝑓1234 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑥2(𝑓34) + 𝐶𝑜𝑛𝑣34(𝑓12) 
When f1 to f2 and f2 to f4 channels, respectively, are aligned by 1X1 convolutional layers conv12 and conv24. 

 
Figure 4 : Tumor segmented ground truth and prediction 

 

2.3: SEGMENTATION 

 
Figure 5 : Our suggested segmentation design, the 3D Attention UNet, combines a spatial attention mechanism with a 

sequential channel. 

We adapt the UNet++ [20] design to 3D, combine the 3D attention module with the decoder blocks, and use it. To further 

improve segmentation prediction, we also provide a 3D attention model with decoder blocks [8]. The attention module that we 

http://www.ijrti.org/
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suggest combines channel and spatial attention with skip connection. However, combining intriguing features in simultaneously 

might lead to inconsistent feature learning. As shown in Fig. 2, integrating skip connection decreases the network's redundancy and 

sparsity. In Fig. 5, the total architecture is depicted. 

 
Figure 6 : Visualization of the 3D spatial and attentional channels with skip connectivity 

3D Skip Attention Unit, Through its feature hierarchy, spatial and channel attention improves the quality of encoding. In 

order to produce 3D spatial and channel attention, we thus offer 3D attention units that take use of 3D inter-spatial and inter-channel 

feature correlations (as illustrated in Fig. 6). We first carry out a 1x1xC convolution to combine all spatial feature correlations into 

the HxWx1 dimension in order to produce the 3D attention map. In order to obtain the 1x1xC channel correlation, we execute 

average pooling in parallel and input it to the neural network. 

The 3D attention map that has been encoded has detailed spatial and channel attention. We also combine skip-connection 

to lessen the singularity and sparsity brought on by these parallel excitations. Additionally, by using skip connections, the learning 

becomes more general while improving segmentation prediction. 

 

2. 4: SURVIVAL PREDICTION 

Feature Extraction, As in our earlier research [10], characteristics that reveal the geometry and fractal structure of the 

tumour have a significant effect on the number of days of survival. The set of characteristics utilised in [10] together yields the 

overall survival (OS) prediction job for BraTS 2018 validation challenge with the highest degree of accuracy. However, the strategy 

didn't work during the BraTS 2019 test phase since the data on the regression model were overfit. Therefore, in this work improving 

learning approaches, the same mix of characteristics is applied. The lengths and coordinates of the first, second, and third axes are 

retrieved as geometrical characteristics. For necrosis, the tumour core, and the whole tumour, centroid coordinates, eigenvalues, 

meridional and equatorial eccentricity, fractal dimensions, and histogram properties including entropy, skewness, and kurtosis are 

also retrieved. For the purpose of avoiding magnitude disparities, all characteristics are normalised to the 0–1 range. 

Feature Selection,  The most important features for predicting survival must be fed into the regression model in order to 

maximise prediction accuracy. So, for feature ranking, we investigate recursive feature elimination (RFE). Getting the most 

important characteristics is the method's main goal. The number of characteristics is gradually raised in order to determine the ideal 

number, which mostly pertains to the overall survival (OS) prediction job. 

UNet ++ Model, To forecast the overall survival, we use the cutting-edge UNett model [6] on the chosen characteristics 

(OS). To get the best-performing model, we adjust the hyperparameters, such as the maximum tree depth, learning rate, verbosity 

level, and L1 and L2 regularisation terms on weights. The use of regularisation terms is advantageous in regression tasks because 

L1 and L2 terms regulate sparsity and over-fitting. We also use a number of additional machine learning techniques that are 

frequently employed for regression challenges. For instance, random forest (RF) [15], support vector machine (SVM) [22], and 

multi-layer perceptron (MLP) [15]. 

 

3. RESULTS AND DISCUSSION 

 

We enter our model prediction into the BraTS 2019 site and retrieve many measurement metrics, including Dice, Hausdorff, 

Sensitivity, and Specificity, to assess the accuracy of our model prediction. Table 1 provides an example of the BraTS 2019 

validation set's performances. Fig. 3 provides an illustration of the validation set prediction visualisation. Fig. 4 depicts the 

performance graph of the original 3D UNet and our suggested 3D attention UNet. It is evident that for all areas, including ET, WT, 

and TC, 3D attention UNet surpasses the original model.  

Table 2 displays the quantitative outcomes for the BraTS 2019 test set. We may deduce our model's forecast for the BraTS 2019 

testing dataset from Fig. 7. 

 

Table 1 : BraTS 2019's validation set is evaluated using the Dice, Hausdorff, Sensitivity,  metrics for the segmentation job. 

 

 Dice Hausdorff Sensitivity 

 ET WT CT ET WT CT ET WT CT 

Mean 0.7132 0.9223 0.8023 8.02 7.26 9.63 0.7632 0.9125 0.8236 

Std 0.3225 0.0821 0.1963 14.23 12.36 14.23 0.2986 0.089 0.1965 

Median 0.8235 0.9165 0.7785 2.36 4.32 5.23 0.8691 0.9265 0.9015 
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Figure. 7: Using the Ground-Truth and Predicted segmentation of tumour sub-regions for the BraTS 2019 testing dataset, the 

Flair, T1, T1ce, and T2 modalities of the brain tumour were depicted. Red denotes necrosis, yellow an enhanced tumour, and 

green denotes edoema, according to the colour of the annotation. 
Table 2 : Evaluation of the BraTS 2019 testing set for the segmentation challenge using dice and Hausdorff metrics 

 Dice Hausdorf 

 ET WT CT ET WT CT 

Mean 0.7896 0.8796 0.7896 4.5621 8.3697 7.8954 

StdDev 0.2236 0.1563 0.2956 6.2358 13.2540 12.3215 

Median 0.8456 0.9215 0.9023 3.2154 4.2154 4.2514 

 
Table 3 : UNet++, and Random Forest (RF) performance comparison on validation set for overall survival prediction. The terms 

MSE and stdSE refer for the projected survival days' mean square error and standard deviation. 

Method Accuracy MSE MedianSE stdSE 

UNet++ 74.53% 120025.118 49555.12 318289.21 

Random Forest 69.32% 110283.239 50647.00 246936.02 

 
3.1: SURVIVAL PREDICTION 

Our study uses a number of cutting-edge regression methods to assess the survival rate. Although there are 125 examples 

in the validation set, only 29 anonymous cases are used in the BraTS 2019 assessment site to verify the model. In order to assess 

the regression model on the training dataset, we performed 4-fold cross-validation. The performance comparison of all the models 

is shown in Table 3. While MLP obtains the lowest MSE, Random Forest exceeds all other regression models with the greatest 

accuracy. To analyse the validation and test set while taking performance into account, we choose UNet++. The performance of the 

UNet++ OS on the BraTS 2019 test and validation dataset is shown in Table 4. 

 

3.2 DISCUSSION 

According to the findings, our 3D attention UNet generates more accurate results than the original 3D UNet. Particularly, 

the prediction of the tumour core, which is a crucial area to determine malignant prognosis, increases in our approach (as shown in 

Fig. 4). We use 4 different regression models to estimate the OS, with Random Forest doing better in terms of accuracy. We choose 

the top 14 characteristics and train the models to create an effective model. 

http://www.ijrti.org/
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Figure 8 : Bland Altman plot was produced for all extracted features using the training cross-validation findings of the 

overall survival prediction model (a). A mean difference of 10.75 days results from this. (b) The Bland Altman plot for the 14 

characteristics that were chosen. A mean difference of 5.95 days results from this. 

The distribution of regression output for all extracted features and 14 chosen features is shown as a Bland Altman plot in 

Fig. 6 (a and b). When comparing the selected features to all features, the average gap between the actual survival rate and the 

anticipated survival rate is over half (5.93 days). 

The selected characteristics' significance for the performance of the model is shown in Fig. 7. An way to explaining the 

results of tree ensemble methods like Random Forest is called SHAP (SHapley Additive exPlanations) analysis, which is based on 

game theory. Red denotes high feature values, whereas blue denotes low feature values. The 14 characteristics chosen for our tests 

are displayed on the plot's y-axis. We may conclude that age contributes most significantly to model performance. Additionally, the 

overall tumour volume, eigenvalue, histogram of necrosis, and second axis length of the tumour voxel are some of the important 

parameters that helped predict OS. The regression plot of the model's prediction and the ground truth is displayed in Fig. 8. 

 

In this section, it is explained the results of research and at the same time is given  

the comprehensive discussion. Results can be presented in figures, graphs, tables and others that make  

the reader understand easily [14], [15]. The discussion can be made in several sub-sections. 

 

4. CONCLUSION  

We describe a segmentation and survival prediction algorithm in this study for MRI-based automated brain tumour 

prognosis. We use UNet and combine the 3D attention technique to provide a brand-new approach to capturing the key elements in 

model learning. In order to estimate the survival days using the regression model, we additionally extract a variety of innovative 

geometric and morphological variables. We note that the most important factors in estimating the prognosis of gliomas are the 

location, shape, and size of the necrotic region. 

http://www.ijrti.org/
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Figure. 9 : Effect of the characteristics on the model's output. To assess the importance of the features in model prediction, 

the colours red and blue reflect the high and low feature values, respectively 
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