
 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4861

Knowledge Based Visualization Tool for Object

Oriented Concepts with UML

Kamna Singh Computer Science & Engineering

Ajay Kumar Garg Engineering College, Ghaziabad, India

Abstract

In the previous research in visualization of object-oriented concepts determined and emphasis on both adaptive and non-

adaptive approach for programs. Visualization tool helps to learner to understand concepts easily and effectively. This

paper discusses the technical issues and how the visualization tool can be used in teaching and learning of programming.

Our approach is to explore/adopt innovative ways of teaching and assessing which engage students in effective learning

and acquisition of programming skills. Proposed approach describes that if user enters the source code into the

visualization tool that it will be converted into the class diagram and sequence diagram as per user requirement. We also

describe algorithm to generate appropriate class diagram and sequence diagram to the object-oriented language source

code which is entered by the user. We propose several algorithms to convert object-oriented source code into their

equivalent UML diagrams (sequence and class diagram) and then achieve a reverse engineering goal that is source code

is converted into the design documents.

Keywords: Class diagram Generator(CDG), Sequence Diagram Generator(SDG), T2IG(Text to image generator,

Sequence Diagram Instrumenter (SDI)

1. INTRODUCTION

At present policy to generate class diagram and sequence diagram when the user enters the source code in object oriented

programming language(c++) as input [1], In our approach to generate the class diagrams and sequence diagram, static

analysis to record the classes and their relationships between classes are implemented in C++ through colon (with class

name is recorded. Currently there are several modelling tools that include code generation options. In addition, a variety

of programming languages such as Java, C#, C++, Ruby, Delphi, Perl, Python, Objective-C, Ada and PHP can be chosen as

a transformation target platform.[6]. In this paper, we examine the transformation of source code into a class diagram and

sequence diagram.

2. LITERATURE REVIEW

As a result of increasing technological diversity, more attention is being focused on model driven architecture (MDA),

and its standard – Unified Modelling Language (UML). UML class diagrams require correct diagram notation mapping

to target programming language syntax under the framework of MDA. [6]. UML is a modelling language that most

developers employed during design phase. UML provides various types of diagrams used for specifying both the

structure and the behavior of systems. During the development process, models specified by these diagrams are

eventually transformed into corresponding code.[8]. Reverse Engineering. Reverse engineering is a method that

transforms source code into a model. ForUML builds upon and expands some existing reverse engineering work.[9]

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4862

The reverse engineering allows addition of further plans, realizing patterns, and possibly 4862nnotatr intertwining

rules to enable a plan recognizer to detect the actual realization that can be found in the code. Thus, the reverse

engineer not only has to provide the plan pattern for the actual realization of a plan but also the transformations and

the justifications for applying them. As an alternative approach, the same effect can be achieved by using small

transformations backwards and abstract the code step by step. So that the ends result of which is an abstract plan

corresponding to the given code. In essence, the transformations applied backwards “jitter” the code into a form in

which canonical plans are more easily found. Such an abstract plan may already exist in the system or may be new

domain knowledge developed during the reverse engineering process. Doing so then avoids the need for repeatedly

reverse engineering the system over its lifetime, caused by the continuous modification of its code.[7]

The need of automated tools to generate source code from visual models has been increasing over time and a lot of

work has been done on the automatic transformation of UML models to source code (Thongmak & Muenchaisri,

2002). Taking this into account,[10]

3. PROPOSED MODEL:

In proposed algorithm there is a reverse engineering tool which extracts design documents from the object oriented

language based source code. Here we took design documents as a class diagram and sequence diagram. This

visualization tool gives a pictorial representation from the given source code.

Figure 1: Visualization tool Components

Basically, this visualization tool is designed to reverse engineer the UML 2.0 representative viz class diagram and

sequence diagram automatically from the object oriented language(c++) source code.it mainly consists of two main

components:

a) Class diagram Generator (CDG)

b) Sequence Diagram Generator (SDG)

Features of Visualization Tool:

1. Visualization tool provide a diagrammatical approach to get design documents.

2. It improves teaching methodology.

3. It transforms source code which is written in any of the object-oriented language to UML diagrams.

4. It analyses program code and give ease of understanding.

5. It can implements blooms taxonomy of teaching methods with analyse, apply, understand and remember

attributes.

3.1 Generation of Class Diagram

The class diagram is the main building block of object-oriented modeling. It is used for general conceptual modeling

of the structure of the application, and for detailed modeling translating the models

Sequence Diagram

Generator (SDG)

Class Diagram

Generator (CDG)

Proposed model (Visualization Tool) to

generate UML diagrams from source code

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4863

into programming code. Class diagrams can also be used for data modeling. We proposed an algorithm to direct

generation of class diagram from the given source code.

Steps to generate class diagram is given below:

Step 1: Extract the classes and their data members. The different classes and their data members from the input object-

oriented language (c++) source code files are recorded.

Step 2: Eliminates those data members which are not classes. We keep only those data members which are indeed a class.

This removes false pairs from the recorded classes.

Step 3:

Convert the representation into UMLGraph5.1.

The remaining pairs give the relationships of the classes existing in the given input c++ files. This file is converted into

the representation of UMLGraph 5.1

Step 4: Pictorial representation of the class

diagram.The written file in UMLGraph5.1 syntax when executed gives a pictorial representation of the class diagram.

3.1.1 Class Diagram Generator

Class Diagram Generator (CDG) component of the tool contains the following subcomponents.

The subcomponents process , the input files into intermediate representations and finally generate the class diagram

representations.

Pseudo code for CDG is as follows:

Step 1. Get the source code written in object-oriented language.

Step 2. Extracts the tokens from the source code With the help of parsing technique.

Step 3. Derived the relationship between base class and derived class by Class Tree Generator (CTG). Step 4. Class box

pruner (CBP) prunes all the lines which are not belongs to class such as comments etc.

Step 5. Class structure generator (CSG) generates the class with data members and member function.

Step 6. T2IG(text to image converter) combines CBP and CSG(i.e. step 4 and step 5)

Step 7. Class diagram generated by UMLgraph 1.5 With the T2IG.

The CDG is viewed as a collection of subcomponents as listed below(figure 2).

Figure 2.1: Class Diagram Generator

CBP

CDG

Class Diagram

UML Graph 1.5

T2IG

CSG

CTG Parser

Source File

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4864

3.1.1 Working Details of CDG Components

Each component takes a c++ program file or an intermediate representation file and process further to finally

generate the class diagram. The description of the subcomponents in the CDG as follows: Parser: we are using

C++ source files. It generates a parse tree for the given c++ source code.

Parsing. The object-oriented code is parsed by the

parser including grammars and libraries for performing translation actions.it generates parse language

specifications like syntax, a notation for formally describing programming language syntax, and generate the

library to parse the specified language. It distinguishes three compilation phases: lexical analysis, parsing, and

tree walking.[9]

The parser query is used to parse c++ source programs into an internal tree structure. The following example

explains how the parse tree matches the grammer.

The following is the grammer rule for “if Statement” ifStatement():

{

“If’”(Expression()”)”Statement()[“else” Statement()]

}

This rule says that an if Statement is either an “if” keyword followed by a statement and expression,and/or it’s

followed by a “else” keyword followed by a statement.the parse tree will look like the following figure 2.2

Figure 2.2: Example of parse tree structure

It denotes that parser generates tokens after analysing source file. Tokens can be statements, identifier,

keywords, functions etc.

3.1.2 Working Details of CBG Components

The working of the CBG component is to extract the classes from the generated parse tree.the input is the parse

tree generated by the parser.the output generated is intermediate class Box which is two tuple<class x><class

y>. Where class X and Class Y are the given classes in the input C++ source files. The relation between the two

classes is that, class X is the base class and class y is the derived class is the implementing colon followed by

class name.

3.1.3 Class Structure Generator(CSG)

It gathers the structural information of the different classes present in the parse tree. The output is three tuples i.e.

class name ,data member, member functions.it stores the individual class structure information.

The CBG(Class Box Generator) traverses the parse tree and registers the class name and its data members in

the class box. The class box depicts the associations between the different classes. The box

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4865

contains two fields , the entries comes from multiple parse tree generated by the parser after reading the source files.

The structure of the CBG is

<Class X><Class Y>,

The algorithm for filling the entries as follows. For each class X do

For each data member M of X do Insert an Entry<X,M> in CB

For each class X do

If class x followed by colon and another class with modifier

Insert an entry<X,M> in CB

3.1.4 Class Box Pruner(CBP)

The intermediate class table generated from CBG has some entries of data members that are not classes. Such entries have

to removed. The output is the Class Box.

The Entries of <Class y> field in the class box are cross verified with the entries of <class X> field in the Class box.

Those entries of <Class Y> which do not have a reference in <class X> are removed as they are not classes but other

program elements. The Algorithm for pruning the Intermediate class Box as follows:

For each value in <Class Y> do isClass:=false

for each value in <Class X> do

If (<ClassX>=<Class Y>)

isClass:=true if(isClass<>true)

delete the entry<classX><ClassY> from the class box

isClass:=false

3.1.5 T2IC(Text to Image Converter)

This component reads the class Box and class structure information and writes code in the syntax of UML Graph5.1.The

output is class diagram. It is the representation of class diagram.UML Graph 5.1: This is a open source software that

generates the pictorial representations which is the class Diagram.

3.2 Sequence Diagram Generator

A sequence diagram shows object interactions arranged in time sequence. It depicts the objects and classes involved in

the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the

scenario.

The sequence diagram is drawn on the timeline. The static analysis is therefore not sufficient to record the message

passing occurring between the objects of different classes. We use here dynamic analysis to record the live message

passing, several runs are required to get a comprehensive set of message passes. It ensures nearly every message call

between the objects has been exploited.

3.2.1 Generation of Sequence Diagram

Our approach to generation of sequence diagram:

Step 1: Instrument the Source code Step 2: Generate the execution tree Step 3: Prune the execution trace

Step 4: Consolidate the pruned execution traces Step 5: Convert the representation into

UMLGraph5.1

Step 6: Pictorial representation of sequence diagram.

 The SDG(Sequence Diagram Generator) is a collection of sub-components as shown below (Figure 3)

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4866

Figure 3: Sequence Diagram Generator

Execution Trace Pruner (ETP)

The description of the sub-components in the SDG(Sequence Diagram generator) is as follows- Parser: We are using

a third party object oriented language package Query for parsing the C++ source code files. It generates a parse tree for

the given source code.

SCI(Source Code Instrumentor): It annotates the nodes a in the parse tree and generates an instrumented code as

output.

ETG(Execution Trace Generator): This component takes the input set for executing the program in a text file and for

each input set generates a corresponding execution trace file.

ETP(Execution trace Pruner): The execution traces generated may contain some control statements that don’t invoke

any class methods. In other words, these control statements don’t guard any method call. The ETP components prunes

such irrelevant statements.

STG(Sequence Trace Generator): The individual traces are combined to form a single trace which is known as the

sequence trace.

ST2GC (Sequence Trace 2 Graph Converter):This component reads the sequence trace and writes a code in the

syntax of UML Graph1

5.1 .The output is a diagram.It is the representation of the sequence diagram.

3.2.2 Working details of SDG components:

3.2.2.1 SCI (Source code Instrumenter)

The instrumentation of the code is done in order to extract the following information: The method name, calle object

and class,caller object and class.The entry and exit of the method calls. The entry and exit of control statementsif, if-

else, while, for The condition part of the control statements The probable operator

(ALT,OPT,LOOP)for the control statements. The control statements and method calls are numbered in order to resolve

their sequence in the final sequence trace. The format of the instrumentation:

For control:

<StatementNo><probableOperator><Condition Type>

<ConditionStatement><StatementNo</Probabl eOperat or></Conditiontype> For method calls:

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4867

<methodname><calleeClass><CallerClass>

</methodname>

Algorithm to instrument the source code: The source code is 4867nnotated using 4867nnotated methos Return type :void

Input Parameters:root of the parse tree or subtree .

Source code Instrumenter Algorithm:

Step1:Get the Type of the node

Step2: Case I: if the node is forstatement call handleif()

Case II:If node is forStatement handlefor()

CaseIII:If node is whilestatement call handleWhile()

CaseIV:if node statementexpression call handleMethod()

3.2.2.2 ETG Execution Trace generator)

This component will read line by line the input file and execute the instrumented program to generate the execution

traces interms of

files.the algorithm to generate the execution traces in terms of files.the algorithm to generate the execution traces

from the instrumented source code file as follows: Read the input file line by line and

do For each input line execute instrumented source code files.For each execution, execution trace files will be generated.

3.2.2.3 ETP (Execution trace Pruning):

The execution traces must be pruned to remove unnecessary statement not relevant to the sequence diagram. For

example, consider the following traces:

<1><ALT<If><(If-condition 1)>

<3><LOOP><WHILE><(while-condition 1)>

<function1()><Class 1> <class2>

</\function1()>

<3><LOOPS><WHILE>

<1></ALT><If>

Figure :4a

<1><ALT<If><(If-condition 1)>

<3><LOOP><WHILE><(while-condition 1)>

<function1()><Class 1> <class2>

</\function1()>

<3><LOOPS><WHILE>

<4></ALT><(If-Condition 1)>

<4></ALT></If>

<3></Loop><While>

<1></ALT></If>

Figure :4b

in the figure 4a all the control statements are guarding some or the other method calls .i.e. they influence the calling of the

methods. These statements are relevant to the sequence diagram. In the Fig 4(b) , the trace number<4> does not influence

any method. In other words, it does not guard any method calls. Such statements are removed or pruned.

3.2.2.4 Sequence Trace Generator (STG)

The individual traces obtained present a scenario. We need to consolidate them for the complete software

 system. During the consolidation the probable operator mentioned in the trace can

change mainly for ifelse statements. For example ,consider the following sample code and its corresponding traces.

If(cond1){

Function1(); } else{ a=b; }

Figure 5(a)

<1><ALT><If><(Cond 1)>

<function 1()><Class 1><Class 2>

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4868

</Function 1()>

<1></ALT><If>

Figure 5(b)

<1><ALT><ELSE><(!Cond 1)>

<1></ALT><ELSE>

Figure 5 c

The trace in fig 5 does not guard any method. so it has to be removed. Once it is removed, during the consolidation we

find that the if statement does not have else part any longer. So, the probable operator for the if Statement is modified to

OPT.

4. CONCLUSION

Here we discuss several proposed pseudocode and algorithm to generate sequence and class diagram from the given

source code to produce an experimental model.

So far, we have addressed reverse engineering of UML representations. We have implemented these representations

and analyse them. The analysis mainly concerns with the integrity of the representations will are able to generate. The

main goal of this paper is to achieve reverse engineering concepts that is source code written in any of the object-oriented

language is converted into the design documents. Here we are mainly concern in sequence and class diagram as a design

document. In this paper we verify and validate for the reverse engineering tool as a knowledge base visualization tool

with the help of jsp and tomcat server. The proposed model reduces amount of time that maintainers need to spend

understanding the programs that are being maintained.

5. FUTURE SCOPE

The future scope is the area is to take design patterns as well, as they deliver some more information regarding the

software system which will helpful in testing the entire system thoroughly looking into its various views. We can also

explore to implement the other uml diagrams such as activity diagram, state chart diagram, Use Case, component and

deployment diagrams.so that we can transform object-oriented language source code into abovesaid uml diagrams.

REFERENCES

[1] Jin-Sung Kim,Chun-Sik Yoo,Mi-Kyung Lee,and Yong-Sung Kim,”Object Modeling of RDF Schema

for converting UML class Diagram” proceedings ICCS Conferences 2005,LNC 348,p31-41 2005 Springer-Verlag

Berlin Heidelberg 2005

[2] Maximo Lopez S ,Armando Alfonzo G,Joaquin Perez O,Juan Gabriel Gonzaalez S,Azucena Monster R”A

meta model to carry out reverse engineering of c++ code into UML sequence diarams”, Proceedings IEEE Mechanics

Conference on Electronics Robotics and Automative Mechanic Conference(CERMA ’06) 0-7695- 2569-5/06 IEEE

2006.

[3] David j Pearce ,james Noble,” Relationship Aspects”Proceedings AOSD 2006, Mar 20-24 Conference in

Bonn,Germany,2006

[4] Niko Myller ,Roman Bednarik and Andres Moreno “Integrating Dynamic Program Visualization into BlueJ:

the Jeliot 3 extension”, Proceedings seventh IEEE International Conference on Advanced Learning

Technologies(ICALT 2007),0-76952916-X/07 2007

[5] G.P. Nikishkov,” object Oriented Design of a finite element code in java” Computer Modelling in Engineering

and Sciences, 2006,p-11,81-90.

[6] Janis Sejans, Oksana Nikiforova, “Problems and Perspectives of Code Generation from UML Class Diagram”,

Scientific Journal of Riga Technical University, vol 47

[7] Ramandeep Singh ,”A Review of Reverse Engineering Theories and Tools”, International Journal of

Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 2 Issue

1, January. 2013 p-35-38.

[8] Mathupayas Thongmak, Pornsiri Muenchaisri,” Design of Rules for Transforming UML “Sequence Diagrams

into Java code”, Conference Paper · February 2002

DOI: 10.1109/APSEC.2002.1183052 · Source: IEEE Xplore
[9] Maryam . Mukhtar, Bashir S. Galadanci,“Automatic Code Generation From Uml Diagrams: The State-Of-

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 7 July 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2307328 International Journal of Novel Research and Development (www.ijnrd.org)

d4869

The-Art”,Science World Journal Vol 13(No4) 2018 ISSN

[11] Ra’Fat AL-msie’deen ,”Visualizing Object-oriented Software for Understanding and Documentation”, (IJCSIS)

International Journal of Computer Science and Information Security, Vol. 13, No. 5, 2015

[12] Ahid Yaseen , Hamed Fawareh , “Visualization and Synchronization of Object-oriented Programs using Re-

engineering Approach”, International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 12,

Number 8 (2019), pp. 1239-1246

http://www.ijrti.org/

