

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF ANTIDIABETIC DRUGS (METFORMIN AND LINAGLIPTIN) IN TABLET DOSAGE FORM BY USING RP- HPLC METHOD

Anjali Chouhan, Neelam Rathore, Anubhav Shrivastava, Mahendra Singh Tomar, Shubham Singh Panwar Assistant Professor Dr. A. p. j. Abdul Kalam University, Indore <u>ABSTRACT</u>

A new, simple, precise, accurate and reproducible RP-HPLC method for Simultaneous estimation of bulk and pharmaceutical formulations. Separation of Metformin and Linagliptin was successfully achieve dona THERMO, C18, 250cmx4.6mm, 5 μ m or equivalent in an isocratic mode utilizing KH₂PO₄: Methanol (65:35) at a flow rate of 1.0mL/min and eluate was monitored at 226nm, with a retention time of 3.132 and 3.728 minutes for Metformin and Linagliptin respectively. The method was validated and found to be linear in the drug concentration range of 50 μ g/ml to150 μ g/ml for Metformin and 50 μ g/ml to150 μ g/ml for Linagliptin. The values of the correlation coefficient were found to be 1.909 and 6.362 respectively. The LOD and LOQ for Linagliptin were found to be 1.909 and 6.362 respectively. The LOD and LOQ for Linagliptin were found to be 100 and 100 respectively indicates that the proposed method is highly accurate. The method was extensively validated according to ICH guidelines for Linearity, Accuracy, Precision, Specificity and Robustness.

KEYWORDS: Metformin, Linagliptin, High performance liquid chromatography.

IJNRD2307416

INTRODUCTION

Compound 1: Metformin is a oral tablet available as generic drugs and brand names are Glucophage, fortametand glumetza. Metformin decreases hepatic glucoseproduction, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization.

Compound 2: Brand name of drug is tradjenta and generic name is linagliptin. It is a DPP-4 inhibitor developed by Boehringer Ingelheim for the treatment of type II diabetes. Two pharmacological characteristics that sets linagliptin apart from other DPP-4 inhibitors is that it has a non-linear pharmacokinetic profile and is notprimarily eliminated by the renal system.

MATERIALS AND METHOD Chemicals and Reagent: PREPARATION OF MOBILE PHASE

Transfer 1000 ml of HPLC water into1000 ml of beakerand add 0.1M KH 2 PO 4.Transfer the above prepared KH 2 PO 4 buffer and Methanol is mixed in the proportion of (65:35). They are mixed and sonicated for 20 min.

PREPARATION OF METFORMIN AND LINAGLIPTIN STANDARD AND SAMPLE SOLUTION

PREPARATION OF STANDARD SOLUTION

Accurately weigh and transfer 500 mg Metformin and 20mg Linagliptin into 100 ml of volumetric flask and add 10 ml of methanol and sonicate 10 min (or) shake 5 min and make with methanol. Transfers the above solution into 1 ml into 10 ml volumetric flask dilute to volume with water.

METHODOLOGY

PREPARATION OF SAMPLE STOCK SOLUTION

Commercially available 20 tablets ware weighed, powdered and the powdered equivalent to the 870 mg of Metformin and Linagliptin of active ingredients were transfer into a 100 ml of volumetric flask and add 10 ml of Methanol and sonicate 20 min (or) shake 10 min and makeup with methanol. transfers above solution 1ml into 10 ml of the volumetric flask dilute the volume with Water. And the solution was filtered through 0.45µmfilter before injecting into HPLC system.

RESULTS AND DISCUSSION

SYSTEM SUITABILITY: System suitability data of Metforminand Linagliptin

parameter	Metform in	Linaglipt in	Acceptance criteria
Retention time	3.132	3.728	+-10
Theoretical plates	4560	7688	>2500
Tailing factor	1.59	1.56	<2.00
% RSD	0.4	0.4	<2.00

Standard Results of Metformin

S. No.	Sample name	RT	Area	USPplate count	USP tailing
1.	Injection 1	3.72 8	463400 8	7668	1.59
2.	Injection 2	3.72 9	460670 3	7787	1.57
3.	Injection 3	3.72 6	463198 1	7762	1.60
4.	Injection 4	$3.72 \\ 3$	462284 8	7646	1.59
5.	Injection 5	3.72 4	465381 2	7713	1.59

Typical Chromatogram of Standard-Typical Chromatogram of Sample-

RESULT

Results of system suitability study are summarized in the above table. Six consecutive injections of the standard solution showed uniform retention time, theoretical plate count, tailing factor and resolution for both the drugs which indicate a good system for analysis.

SPECIFICITY

S.	Sample name	Metforminar	Rt	Linagliptin	Rt
No.		ea		Area	
1	Standard	1892041	1.13	4606966	3.72
			2		8
2	Sample	1904192	3.13	4627816	3.72
	1		1		3
3	Blank			-	
4	Placebo		_	-	-

Results of forced degradation study for Metformin

il Rezearch Journal

Type of stress	Deg <mark>rad</mark> ation products/Dru g	Retenti on time	% Area	Pea k purit y	Result	% Assa y	%Amou nt Degrade d
AcidicHydrolysis (mg/mL in 1N HCl) at 70°C for 2 days	<u> </u>	3.13 0	165338 5	0.999	Passed	86	14
BasicHydrolysis (mg/mL in 1N NaOH) at 70°C for 2 days	vearcl	3.13 0	163409 7	0.999	Passed	85	15
Oxidative Hydrolysis (mg/mL in 3% v/v H ₂ O ₂) at 70 °C for 2 days	_	3.13 3	164388 3	0.999	Passed	86	14
Photo Degradation (to UV light) for 14 days	-	3.13 1	161752 6	0.999	Passed	84	16
Thermal Degradation at 70°C for 14 days	-	3.13 4	160817 5	0.999	Passed	84	16
IJNRD2307416	International Journ	al of Novel Re	search and D	evelopment	(<u>www.ijnro</u>	d.org)	o1/13

Results of forced degradation study for Linagliptin

Type of stress	Degradation products/ Drug (D)	Retenti on time	% Area	Pea k purit	Result	% Assa y	%Amou nt Degrade
				У			d
Acidic Hydrolysis (mg/mL in 1N HCl) at 70°C for 2 days	-	3.72 6	3891067	0.99 9	passed	84	16
Basic Hydrolysis (mg/mL in1N NaOH) at 70°C for 2 days	-	3.72 9	3911416	0.99 9	passed	84	16
Oxidative Hydrolysis (mg/mL in 3% v/v) at 70 °c for 2 days	-	3.73 1	3870137	0.99 9	passed	83	17
Photo Degradation (to UV light) for 14 days		3 <mark>.73</mark> 0	3 <mark>9</mark> 09913	0.99 9	passed	84	16
Thermal Degradation at 70°C for 14 days		3.73 3	<mark>3920769</mark>	0.99 9	passed	84	16

Chromatograms of Acid stress treated Metformin and Chromatograms of Base stress treated Metformin and Linagliptin mixture

RESULT

The forced degradation study showed the method was highly specific, the chromatographic peaks does not excipients have no effect on the analytical method. On the other hand, interfere with any other impurities. This proves that, blank peak did not overlap drug peak. blank peak did not overlap drug peak. So the method is highly selectively.

ACCURACY :- Accuracy data for Metformin

S.NO	Accuracy Level	Injectio n	Sample area	RT			
1	500/	1	953677	$3.12 \\ 2$			
1	50%	2	953428	3.12			
		3	953033	$3.12 \\ 2$			
	100	1	1901769	3.13			
2	2 100	2	1901974	3.13			
		3	1902392	3.13			
2	1.50	1	2868938	3.14			
3	150 %	2	2865114	3.15			
		3	2860981	3.15			
) results of Metformin							

Accuracy (%recovery) results of Metformin

S.NO	Accura cy level	Samp le name	Sample weight	μg/m l adde	μg/ ml foun	% Recovery	% Mea n
			125.00	d	d	0.0	
1	50		435.00	247.50 0	245.91	99	00
1	30 %	2	435.00	$\begin{array}{c} 247.50 \\ 0 \end{array}$	246.08	99	77
		3	435.00	247.50 0	246.06	99	
2	1000/	-1	870.00	495.00 0	494.09	100	100
2	100%	2	870.00	495.00	492.55	100	100
		3	870.00	495.00 0	493.48	100	
	1500/	1	1305.00	742.50	738.64	99	0.0
3	150%	2	1305.00	742.50	737.88	99	99
		3	1305.00	742.50 0	736.69	99	

Accuracy data for Linagliptin

S.NO	Accuracy Level	Injection	Sample area	RT
		1	2325183	3.716
1	50%	2	2317701	3.716
-	0070	3	2317648	3.713
		1	4620300	3.721
2	100%	2	4626991	3.725
_		3	4622070	3.726
		1	6948428	3.732
3	150%	2	6949946	3.744
		3	4940474	3.739

S.NO	Accura cy Level	Samp le name	Samp le weigh t	μg/m l adde d	μg/ ml foun d	% Recover y	% Mea n
		1	435.00	10.000	9.90	99	
1	50	2	435.00	10.000	9.88	99	99
1	%	3	435.00	10.000	9.90	99	
		1	870.00	20.000	19.73	99	
2	100%	2	870.00	20.000	19.74	99	99
2	10070	3	870.00	20.000	19.75	99	,,,
		1	1305.00	30.000	29.66	99	
3	150%						99

Accuracy (%recovery) results of Linagliptin

RESULT

Results of accuracy study are presented in the above table. The measured value was obtained by recovery test. Spiked amount of both the drug were compared against the recovery amount. % Recovery was 100.00% for Metformin and 100.00% for Linagliptin. All the results indicate that the method is highly accurate.

PRECISION

Precision data for Metformin

S. No	RT	Area	%Assay
injection1	3.131	1904192	99
injection2	3.132	19000711	99
injection3	3.137	1907020	99
injection4	3.134	1908231	99
injection5	3.127	1909733	99
injection6	3.131	1906386	99
Mean			99
Std. Dev.			0.17
% RSD			0.17

Innovation

Chromatogram for precision injection

RESULTS

Results of variability were summarized run. Percentage relative standard deviation (%RSD) was found to be in the above table. % RSD of peak areas was calculated for various less than 2% which proves that method is precise.

LINEARITY

Linearity data for Metformin

	relearc		
S. No	Conc (µg/ml)	RT	Area
1.	50	3.125	95364 7
2.	75	3.137	14381 38
3.	100	3.140	19021 94
4.	125	3.145	23801 53
5.	150	3.153	28678 03
Correlation coefficient (r ²)	rough Inn	ovatio	0.999

Linearity plot of Metformin

Chromatogram representing linearity

RESULT

A linear relationship between peak areas versus concentrations was observed for Glecaprevir and Linagliptin in the range of 50% to 150% of nominal concentration. Correlation coefficient was 0.999 for both Metformin and Linagliptin which prove that the method is linear in the range of 50% to 150%.

ROBUSTNESS:

Robustness data for Metformin

Parameter	RT	Theoretical	Asymmet
		plates	ry
Decreased flow	3 <mark>.945</mark>	7450	1.62
rate(0.8ml/min)			
Increased flow	2.621	6131	1.55
rate(1.2ml/min)			
Decreased	3.940	7434	1.61
temperature(20 [°] c)			
Increased temperature $(30^{\circ}c)$	2.621	6131	1.52

Robustness data for Linagliptin

Parameter	RT	Theoretical plates	Asymmet ry
Decreased flow rate (0.8ml/min)	4.678	8484	1.55
Increased flow rate (1.2ml/min)	3.118	7356	1.56
Decreased temperature(20 ⁰ c)	4.676	8409	1.55
Increased temperature $(30^{\circ}c)$	3.121	7304	1.55

Chromatogram for decreased temperature Chromatogram for increased temperature RESULT

The results of Robustness of the present method hadshown that changes made in the Flow and Temperature did not produce significant changes in analytical results which were presented in the above table. As the changes are not significant we can say that the method is Robust.

LIMIT OF DETECTION: Minimum concentration of standard component in which the peak of the standard gets merged with noise called the LODLOD = $3.3* \sigma/S$

Where; σ = standard deviation S = slope LOD for Metformin = 1.909 LOD for Linagliptin =0.0349

LOD data for Metformin and Linagliptin

S. No.	Sample name	RT	Area
1	Metformin	3.127	4887
2	Linagliptin	3.724	12240

Chromatrogram for LOD:

2

LIMIT OFQUANTIFICATION

Minimum concentration of standard component in which the peak of the standard gets detected and quantification $LOQ = 10*\sigma/S$

Where; σ = standard deviation S = slope LOQ forMetformin = 6.362 LOQ for Linagliptin =0.1163

LOQ data for Metformin and Linagliptin

S. No	Sample name	RT	Area
1	Metformin	3.134	3255
2	Linagliptin	3.716	9713

REFERENCES

- 1. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle. Instrumental Methods of Analysis, 7th edition, CBS publishers and Distributors, New Delhi, 1986; P.518-521, 580-610.
- 2. John Adamovies. Chromatographic Analysis of Pharmaceutical, Marcel Dekker Inc. New York, II Ed, P.74, 5-15.
- 3. Gurdeep Chatwal, Sahm K. Anand. Instrumental methods of Chemical Analysis, 5th edition, Himalaya publishing house, New Delhi, 2002; P.1.1-1.8,2.566-2.570.
- 4. D. A. Skoog. J. Holler, T.A. Nieman. Principle of Instrumental Analysis, 5th edition, Saunders College Publishing, 1998; P.778-787.
- 5. Skoog, Holler, Nieman. Principals of Instrumental Analysis, 5th Edition, Harcourt Publishers International Company, 2001; P.543-554.
- 6. William Kemp. Organic Spectroscopy, Palgrave, New York, 2005; P.7-10, 328-330.
- 7. P.D. Sethi. HPLC: Quantitative Analysis Pharmaceutical Formulations, CBS Publishers and distributors, New Delhi (India), 2001; P.3-137.
- 8. Michael E, Schartz IS, Krull. Analytical method development and Validation, 2004; P. 25-46.
- 9. R. Snyder, J. Kirkland, L. Glajch. Practical HPLC method development, II Ed, A Wiley International publication, 1997; P.235, 266-268, 351-353.653-600.686-695.
- 10. Basic Education in Analytical Chemistry. Analytical Science, 2001: 17(1).
- 11. Method validation guidelines International Conference on harmonization; GENEVA, 1996.
- 12. Berry RI, Nash AR. Pharmaceutical Process Validation, Analytical method validation, Marcel Dekker Inc. New work, 1993; 57: 411-28.
- 13. Anthony C Moffat, M David Osselton, Brian Widdop. Clarke's Analysis of Drugs and Poisons, Pharmaceutical Press, London, 2004; PP 1109-1110,1601-1602.
- 14. Klaus Florey, Analysis Profile of Drugs Substances, Academic Press, New York, 2005; P.406-435.
- 15. P.N. Arora, P.K. Malhan. Biostatistics, HimalayaPublishers House, India, P.113, 139-140, 154.
- 16. Doserge, Wilson and Gisvold's text book of organic medicinal and pharmaceutical chemistry, 8th edn, Lippincott Company, 1982; P.183-197.
- 17. British Pharmacopoeia, Government British Pharmacopoeial Commission, volume I and II, 2011, monograph 1188.

Research Through Innovation