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Abstract:  Workloads involving higher computational operations require impressive computational units. Computational operations 
may involve very complex operations of very high precision levels. These complex operations may involve artificial neural 

networks and require a very fast execution speed. Based on this particular requirement of high computational need for an efficient 

and fast execution operation, computational operations need to be performed in the memory system itself. The memory system with 

computational capabilities is called a Processor-In-Memory (PIM) or Computational Memory. In this paper, different PIM 

memories and their challenges have been reviewed, and their solutions have been proposed. The proposed solution tends to provide 

energy-efficient and dynamic configurable PIM units. 

 

Index Terms - Processor-In-Memory, PIM, computational memory, Near memory computing, near-data processing, 

computation-in-memory, high-performance computing 
________________________________________________________________________________________________________ 

 

I. INTRODUCTION 

 

Artificial intelligence is permeating every aspect of life and all electronic devices. It employs various advanced operations such as 
image recognition, audio recognition, and pattern recognition, all of which rely on artificial neural networks with multiple layers 

and complex arithmetic operations. To execute these advanced arithmetic operations, an advanced memory system is required. 

Memory technologies encompass HBM, HMC, DDR5, GDDR6, and LPDDR5 memory technologies. The HBM and HMC 

memory systems stack multiple DRAMs together to create a stack. These memories can significantly enhance machine learning 

performance by utilizing their high bandwidth and computational capabilities. 

 

The paper will provide an overview of the Processor-In-Memory (PIM) system with various memory technologies manufactured 

by different manufacturers. We will examine and explore different PIM techniques and discuss the challenges encountered in 

existing PIM systems. Lastly, we will address new research directions that have the potential to enhance the computational 

capability of Processor-In-Memory systems by addressing these challenges. This new direction will serve as a valuable 

reference for researchers investigating various PIM techniques. 

 
This PIM system can be utilized for implementing various machine learning and artificial intelligence algorithms, including Deep 

Neural Networks (DNNs) and Convolutional Neural Networks (CNNs), by leveraging multiple artificial neural networks. The PIM 

system integrates a Neural Network Accelerator (NNA) within a memory system to expedite diverse computational operations. The 

Neural Network Accelerator executes computational tasks within memory cells independently of a host system or an external 

processing unit. The computed result is subsequently stored in memory cells.  
 

The PIM system offers various computational capabilities that have captured researchers' attention for conducting diverse 

computational operations. One of the most critical aspects of PIM is its reduction in data movement. PIM facilitates minimized data 

movement operations, given that the computational processes occur within the memory cell itself. 

 

Various manufacturers employ distinct memory technologies to implement the PIM system. The memory technologies utilized in 

a PIM system may include: 
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 DRAM 

 HBM 

 GDDR6 

 LPDDR5X 

 HMC 

 

2.1 DRAM  

 JEDEC JESD79-4D and JEDEC JESD79-5B standards describe DDR5 DRAM and DDR4 DRAM memory systems, 

which are types of dynamic random-access memory, and are extensively employed in various computational operations. DRAM 

stores data in cells, each consisting of one transistor and one capacitor. Binary data, represented as 0 or 1, is stored in memory cells 

by using fully charged and discharged capacitors. 

 

Table 1 — DDR4 - 2 Gb/ 4Gb/ 8Gb/ 16 Gb Addressing Table 

Configuration 512 Mb/ 1GB/ 2GB/ 4GB x4 256 Mb/ 512 Mb/ 1GB/ 2 GB 
x8 

128 Mb/ 256 Mb/ 512 Mb/ 
1GB x16 

 
Bank Address 

# of Bank Groups 4 4 2 

BG Address BG0~BG1 BG0~BG1 BG0 

Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1 

Row Address A0~A14 A0~A13 A0~A13 

Column Address A0~A9 A0~A9 A0~A9 

Page size 512B 1KB 2KB 

 

Table 2 — DDR5 - 8 Gb/ 16 Gb/24 Gb/ 32Gb/ 64 Gb Addressing Table 

Configuration 2 Gb/ 4Gb/ 6 Gb/ 8Gb/ 

16Gb x4 

1 Gb/ 2 Gb/ 3 Gb/ 4 

Gb/ 8 Gb x8 

512 Mb/ 1 Gb/ 1.5 Gb/ 2 

Gb/ 4 Gb x16 

Bank 

Address 

BG Address BG0~BG2 BG0~BG2 BG0~BG1 

Bank Address in a BG BA0 BA0 BA0 

# BG / # Banks per BG / # Banks 8 / 2 / 16 8 / 2 / 16 4 / 2 / 8 

Row Address R0~R15 R0~R15 R0~R15 

Column Address C0~C10 C0~C9 C0~C9 

Page size 1KB 1KB 2KB 

Chip IDs / Maximum Stack Height CID0~3 / 16H CID0~3 / 16H CID0~3 / 16H 

 

 

 

2.2 HBM 
 JEDEC JESD238A Standard describes the HBM3 memory system, which stacks multiple DRAM memory systems 

together to perform various memory and computational operations. Multiple memory dies are stacked and connected by TSV 

material, responsible for transmitting data and command signals. 

 

Table 3 — HBM3 Channel Addressing 
Density per Channel 2 Gb 4 Gb 6 Gb 8 Gb   

Density per PC 1 Gb 2 Gb 3 Gb 4 Gb   

Page Size per PC 1 KB 1 KB 1 KB 1 KB   

Refresh Period 3.9 µs 3.9 µs 3.9 µs 3.9 µs   

Configuration4 8 Gb 

8High 

8 Gb 

12High 

8 Gb 

16High 

16 Gb 

8High 

16 Gb 

12High 

16 Gb 

16High 

Density per Channel 4 Gb 6 Gb 8 Gb 8 Gb 12 Gb 16 Gb 

Density per PC 2 Gb 3 Gb 4 Gb 4 Gb 6 Gb 8 Gb 

Page Size per PC 1 KB 1 KB 1 KB 1 KB 1 KB 1 KB 

Refresh Period 3.9 µs 3.9 µs 3.9 µs 3.9 µs 3.9 µs 3.9 µs 

Configuration4 24 Gb 

8High 

24 Gb 

12High 

24 Gb 

16High 

32 Gb 

8High 

32 Gb 

12High 

32 Gb 

16High 

Density per Channel 12 Gb 18 Gb 24 Gb 16 Gb 24 Gb 32 Gb 

Density per PC 6 Gb 9 Gb 12 Gb 8 Gb 12 Gb 16 Gb 

Page Size per PC 1 KB 1 KB 1 KB 1 KB 1 KB 1 KB 

Refresh Period 3.9 µs 3.9 µs 3.9 µs 3.9 µs 3.9 µs 3.9 µs 
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2.3 GDDR6 

 JEDEC JESD250D describes the GDDR6 memory system, known as GRAPHICS DOUBLE DATA RATE. It offers 

high-speed dynamic random-access memory for use during high computational operations. Additionally, the GDDR6 memory 

implements two independent 16-bit channels. 
 

Table 4 — GDDR6 Channel Addressing 

 

Memory Density 
8 Gb 12 Gb 16 Gb 24 Gb 32 Gb 

Device 

Organization 

x16 
mode 

x8 
mode 

x16 
mode 

x8 
mode 

x16 
mode 

x8 
mode 

x16 
mode 

x8 
mode 

x16 
mode 

x8 
mode 

Number channels 2 2 2 2 2 

Channel Memory 
Density 

4 Gb 6 Gb 8Gb 12 Gb 16 Gb 

Channel Density 4,294,967,296 6,442,450,944 8,589,934,592 12,884,901,888 17,179,869,184 

Array Pre-Fetch 
(bits, per channel) 

256 128 256 128 256 128 256 128 256 128 

Page Size 
(per channel) 

2K 2K 4K 2K 4K 2K 4K 2K 4K 2K 

Refresh 16K/32 ms 16K/32 ms 16K/32 ms 16K/32 ms 16K/32 ms 

  

 

2.4 LPDDR5X  

 JEDEC JESD209-5C describes the LPDDR5 memory system, known as Low Power Double Data Rate. This memory 

provides high-speed dynamic random-access memory that can be used during high computational operations. 

 

Table 5 — LPDDR5X SDRAM x16 Mode Addressing for BG Mode (4Banks/4Bank Groups) 

Memory 

Density 
2 Gb 3 Gb 4 Gb 6 Gb 8 Gb 12 Gb 16 Gb 24 Gb 32 Gb 

 

Configuration 

8 Mb 

x 

16DQ x 

4 BG 

x 4 banks 

12 Mb 

x 16DQ 

x 4 BG 

x 4 banks 

16 Mb 

x 16DQ 

x 4 BG 

x 4 banks 

24 Mb x 

16DQ x 4 

BG 

x 4 banks 

32 

Mb x 

16DQ 

x 4 

BG 

x 4 banks 

48 Mb 

x 16DQ 

x 4 BG 

x 4 banks 

64 Mb 

x 16DQ 

x 4 BG 

x 4 banks 

96 Mb 

x 16DQ 

x 4 BG 

x 4 banks 

128 Mb 

x 16DQ 

x 4 BG 

x 4 banks 

Number of 

Banks in BG 
4 4 4 4 4 4 4 4 4 

Number of 

Bank Groups 
4 4 4 4 4 4 4 4 4 

Array 

Pre-Fetch 
256 256 256 256 256 256 256 256 256 

Number of 

Rows 
8,192 12,288 16,384 24,576 32,768 49,152 65,536 98,304 131,072 

Number of 

Columns 

(fetch 

boundaries) 

 

64 
 

64 
 

64 
 

64 
 

64 
 

64 
 

64 
 

64 
 

64 

Page Size 

(Bytes) 
2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 

 

2.5 HMC  

             Hybrid Memory Cube Specification 2.1 describes the HMC memory system, which stacks various DRAM dies and one 

logic die. Furthermore, these dies are connected via Through-Silicon Via (TSV) technology. The memory system includes a built-

in memory controller for controlled memory operations. 
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Table 6 — HMC Configurations 

 Configurations 

Number of links in package 2, 4 

Link lane speed (Gb/s) 12.5, 15, 25, 28, 30 

Link width1
 Full, half, quarter 

Memory density 4GB, 8GB 

Number of vaults 32 

Memory banks 4GB: 256 banks 
8GB: 512 banks 

Maximum aggregate link bandwidth2
 480 GB/s (3.84 Tb/s) 

Maximum DRAM data bandwidth 320 GB/s (2.56 Tb/s) 

Maximum vault data bandwidth 10 GB/s (80 Gb/s) 

 

 

Various memory technologies can be employed to implement Processor-In-Memory systems. These memory systems offer 

varying memory access latencies and computational capabilities. 

 

III.  DIFFERENT PIM SYSTEM 

 

Several existing Processing-In-Memory solutions in the market include UPMEM PIM, Samsung HBM-PIM, Samsung LPDDR5-

PIM, SK Hynix GDDDR6-AIM, and others. 

 

3.1 SK Hynix GDDR6-AIM 

 SK Hynix GDDR6-AIM is extensively used in various machine learning and artificial intelligence operations. It can 

accelerate different machine learning algorithms, such as RNN, LSTM, and MLP, by offloading specific mathematical operations 

from external processing units. 

 

 

Figure 1. AiM architecture of SK Hynix GDDR6-AIM 

 

The processing units (PU) are located within the memory system, right next to the memory bank, to perform various arithmetic and 

logical operations in the AiM. 
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Table 7: Dedicated DL CMD Set implemented in SK Hynix AIM architecture 

 

 

 

Table 7 describes various CMD sets for DL operations. These operations are executed by the PUs located at each memory bank. 

 

3.2 Samsung HBM-PIM and LPDDR5-PIM 

 The Samsung Aquabolt-XL memory system implements the HBM-PIM system for executing various computational 
operations. 

 

 
 

 

Figure 2. HBM-PIM architecture of Samsung 

 

Each memory bank includes its corresponding PIM units for executing various computational operations. Each DRAM array 

comprises a bit-line sense amplifier (BLSA) and a word-line driver. 

 

 

 

 

Bank Activation 

ACT4, ACT16 Activate four/sixteen banks in parallel 

ACTAF4, ACTAF16 Activate rows storing Activation Functions LUTs in four/sixteen banks in 

parallel 

Compute Commands 

MACSB, MAC4B, MACAB Perform MAC in one/four/sixteen banks in parallel 

AF Compute Activation Function in all banks 

EWMUL Perform element-wise multiplication 

Data Commands 

RDCP Copy data from a bank to the Global Buffer 

WRCP Copy data from the Global Buffer to a bank 

WRGB Write to Global Buffer (often Activation vector data) 

RDMAC Read from MAC result register 

RDAF Read from Activation Function result register 

WRMAC Write to MAC result register (or WRBIAS as often BIAS data is written) 

WRBK Write to all activated banks in parallel 
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Table 8: Dedicated DL CMD Set implemented in Samsung HBM-PIM architecture 

 
 

Table 8 describes various CMDs for executing computational operations by the PIM unit within a memory system. 

 

3.3 UPMEM PIM 

 UPMEM PIM comprises multiple DPUs for executing various computational operations. Each DPU implements a specific 

Instruction Set Architecture (ISA) to carry out multiple operations. 

 

Figure 3. PIM architecture of UPMEM 

 

Various commands in the ISA are implemented to execute diverse machine learning operations.  

 

Table 8: Dedicated DL CMD Set implemented in Samsung HBM-PIM architecture 

 

Domain Benchmark Short name 

Dense linear algebra Vector Addition VA 

Matrix-Vector Multiply GEMV 

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV 

Databases Select SEL 

Unique UNI 

Data analytics Binary Search BS 

Time Series Analysis TS 

Graph processing Breadth-First Search BFS 

Neural networks Multilayer Perceptron MLP 

Bioinformatic Needleman-Wunsch NW 

Image processing Image histogram (short) HST-S 

Image histogram (long) HST-L 

Parallel primitives Reduction RED 

Prefix sum (scan-scan-add) SCAN-SSA 

Prefix sum (reduce-scan-scan) SCAN-RSS 
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Table 8 describes various deep learning operations that can be computed by the PIM chip inside the UPMEM chip. 

 

IV. CHALLENGES OF A PIM MEMORY SYSTEM 

 

Multiple PIM systems have been discussed so far, but these PIM systems face certain challenges that require solutions to overcome 
them. Some of the challenges faced by these memory systems are: 

 PIM systems have been limited to a very specific set of instruction sets for performing a particular set of computational 

operations. 

 Fixed precision level processing units in the PIM system are constrained to perform computational operations at a fixed 

precision level. 

The main challenges encountered by the PIM system have been identified, and our solution proposes remedies for these challenges. 

 

V. OUR PROPOSED SOLUTION 

 

Our proposed solution involves: 

 Implementing a dynamically configurable processing unit inside the PIM system. 

 Utilizing an adaptable precision-sized hardware unit for computational operations. 

 

The dynamically reconfigurable processing unit can be adjusted based on the detected or initiated "recong_PU" condition during 

PIM system's computational operations. A dynamically configurable processing unit, achieved using configurable devices, can 

replace a processing unit with a fixed instruction set. Generating configuration values for configuring the processing unit can be 

accomplished using the dynamic microcode of the processing unit. 

 

The reconfiguration of the processing unit can be performed by writing corresponding configuration values to a "RECon_Fn" flag 

within configuration registers located near the processing unit of the memory bank 

 

Furthermore, the PIM system can be equipped with adaptable hardware resources with flexible precision levels, resulting in 

reduced energy consumption during memory operations. Lower precision operations can be carried out using hardware 
resources with low precision capabilities, contributing to energy conservation. On the other hand, machine learning operations 

requiring higher precision can be performed using hardware resources with enhanced precision capabilities. 

 

VI. CONCLUSION 

 

In the proposed system, the challenges of a limited instruction set architecture and fixed precision basis have been resolved by 

employing dynamically reconfigurable processing units and variable precision-based hardware units. As a result, these two proposed 

solutions can effectively address the primary challenges encountered by the PIM system. This paper offers a comprehensive review 

of various PIMs, their challenges, and the solutions, which can serve as a roadmap for future research aimed at enhancing the PIM 

system. 
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