
 © 2023 IJNRD | Volume 8, Issue 9 September 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2309121 International Journal of Novel Research and Development (www.ijnrd.org)

b186

Software Defect Prediction Stratagem

Ritik Tailor

Poornima Institute of Engineering and Technology

Jaipur, India

Abstract— Software Defect Proneness and its Prediction is a

very important process in the software development life cycle

which allows the developers and necessary stakeholders to

identify the gap between the user and the use case. We can easily

detect and rectify the errors and problems based on operation,

function and credibility of the software, from modules to classes.

Parts of the software which are prone to defect can be made

more effective and resource allocation can be done very

effectively to upgrade the overall efficiency of the software.

There might exist cases when the product is not in an object

oriented metric and the stakeholders might face serious ethical

or technical issues with the software, hence making it

neutralized and de-escalated. The main anchor of the review is

to find the well known and efficient methods of software fault

prediction and the advantages and disadvantages associated

with them. A taxonomical classification of all the studied

methods is provided. The paper is concluded with observations,

learnings, challenges and directions for the future.

Keywords—Software Fault Prediction, software metrics, defect

analysis, software defect prediction.

I. INTRODUCTION

Software fault prediction helps program quality assurance
teams to optimize their assets in-between software reliability
checks. Recently, several threshold-based approaches have
been proposed in literature. With an ever increasing
complexity of software services and products, software fault
prediction has become a very determining process in software
quality assurance or software fault detection. In the early
stages of software development, the developers and the
stakeholders made very simple means to check for any
ambiguity in the software products or services. Methods like
LOC or Lines of Codes and cyclomatic complexity were used
exhaustively to enumerate the defects of a software.

Since times we have been developing models and different
methods to study the defect and its prediction. Modern
software architecture has become very complex and it is not
possible for us to run the analysis on the whole of the
software, as it is a very time taking and a budget breaking
process. Testing like this has always been carried out in a time
constraint and most of the time, and with a very limited
number of resources. A lot of software metrics are now being

considered in various models. A software metric is a finite
and countable characteristic of a software which can be
considered for analyzing software performance. There are
two types - Process metrics and Product metrics. Product
metrics are the characteristics of the product itself and the
latter are the characteristics of the processes that are essential
from the development to the deployment itself. Some
examples of metrics could be - LOC, class level metrics and
function metrics.

There are two main aspects to consider for any method - the
number of faults in the software and the impact of theirs on
the software. The aim is always to reduce both these aspects
but practically, on ground level, it is practically impossible to
reduce both of them in an easy manner. We have to work in
accordance and with relativity to the authority of the impact
or the number of faults.

Even after these technological advancements, researchers are
not being able to provide a generalized and a common subset
of characteristics which can act as an ‘always non faulty’
module. There are no standard reporting measures to capture
the impact of any inconsistency.

II. BACKGROUND

A. Approach

In the Early times, the main focus was on within-project
Defect Prediction models which comprised working the data
set and characteristics of the software itself. The empirical
data, data set and its evaluation, accuracy analysis and
efficiency analysis were done on that particular software
only. Later, as the models were being developed, a new
approach called cross project defect prediction was
introduced and slowly came into practice.

In the early 1990’s, the main approach that was used to find
faults was classification and logistics regression. Python
came out in 1991, as a successor of ABC programming
language, so only the basic features of python could be used.
AS with the developments, in the 2000’s, Support Vector
machines, Tree based machine learning models and change
classification came into the spotlight as they were much faster
and consumed less human effort and we could now automate
them too.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 9 September 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2309120 International Journal of Novel Research and Development (www.ijnrd.org)

b187

After 2010 and till now, we have evolved from using Neural
Networks, Naive Bayes, Decision Trees to the present day
Just In Time models. These just in time models can predict if
there is a defect present in the software at every commit.

B. Role of machine learning in determination of fault

There are dozens of algorithms and their combinations which
are used in determination and optimization of fault. A table
of machine learning method and one its specific example is
highlighted here:

 Basis Technique

1 Tree based technique ID3, CART

2 Perception Based ANN

3 Statistical Method Regression

4 Evolutionary Based Genetic

Algorithms

5 Kernel Based Support Vector

Machine

6 Bayesian Based Naive Bayes

7 Ensemble Based Random Forest

8 Instance Based k-means

Most of the models based on machine learning work only on
labeled datasets only. For any unlabeled dataset, Rakesh
Kumar, Amrita Chaturvedi and Lakshamanan Kailashan
introduced the TCLP approach. TCLP (Threshold clustering
labeling plus) where it can easily identify the unlabeled
datasets by self learning.

III. STRATAGEM

For any prediction model, there is a procedure to be followed
for prediction.

A. Threshold Derivation

Thresholds are heuristic qualities that are utilized to fix
scopes of desirable and undesirable metric qualities for
considering the estimated software, apart from that, is used to
recognise abnormalities that might become a genuine issue.
Threshold values make sense in the event that a metric is in
the normal range.

Threshold computation is the midmost of analyzed heuristic.
Threshold derivation plays a supreme function for clustering
and labeling the data points in our approach. Hence, the first
stage is to decide the threshold of the software criteria . It's a
well- known fact that software metrics are used to describe
the internal quality of software code. This internal dimension
of software quality assists both the programme developer and
the tester in improving those quality characteristics for which
the measure values are insufficient. As a result, software
metrics may be used as a software quality evaluation
procurator. Furthermore, high-complexity software
legislation is undesirable since it is thought to be more fault-
prone.

There are many methodologies accessible to figure out
threshold values.

(1) It should be benchmark data

(2) Its analysis should be statistical

(3) It can be repeated.

B. Cluster Labeling

Hierarchical clustering segments a document assortment into
few clusters, and each cluster is further divided into sub
clusters in a recursive way. Hierarchical clusters can be
developed by agglomerative styles that beginning with each
document in its own cluster and furthermore continually
bunch similar to clusters into more extensive clusters; or by
troublesome styles that beginning with all documents in a
single cluster and furthermore continually partition each
cluster into more point by point subclusters. In labeling
hierarchical clusters, bone expects the reality of a size of
document clusters. The errand is to relegate a decent
descriptor to each cluster tie in the scale. A list of terms is
habitually less valuable than a single request marker, since it
requires the stoner to deduce the origination induced by the
terms. In any case, a rundown of terms is the most well-
known decision for labeling clusters consequently on the
grounds that it flops effortlessly; an individual can Much of
the time derive the overall depiction for sure when a
significant number of the named terms are unfortunate
decisions.

C. Metric Selection

Software metrics acquired are typically linked to problems
evaluated during pre-discharge and post-discharge. These
software measurements and deficiency information are used
to build software fault forecast algorithms. In this approach,
the nature of currently in-process programme portions is
analyzed, e.g., fault vulnerable or fault non-vulnerable. These
strategies help to reduce software flaws and deliver highly
strong products. Software defect forecasting systems have
been a focus of research in the software design community.
Defect forecasts are typically used by software quality check
stakeholders to guide them towards limited projects sensibly
resources towards programme parts that are likely to have

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 9 September 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2309120 International Journal of Novel Research and Development (www.ijnrd.org)

b188

low reliability additionally, dependability. A real-world test
that stakeholders consider is the sorting and selection of the
suitable software metrics influenced structure and defect
indication. Choosing the best static code metrics before
building a defect prediction model offers several advantages,
such as avoiding obnoxious features, reducing the
arrangement of software metrics to use, or, in any case,
further enhancing defect expectation execution. In many
circumstances, feature (a metric of software products)
selection techniques are efficiently utilized to set into a
fraction of the set consisting of the most important attributes
along with and characteristics.

D. Learning and Prediction

This is the last but not the least step of software defect
prediction. The developed model is finally tested here with
the results that it lays. Any efficiency or optimisation of the
model and the software itself is carried out here only.

RELATED WORKS

Researchers and practitioners have been looking for new
ways and combining already existing models with the new
ones. A lot of research is being carried out on machine
learning models. Machine learning models have been
successful in less compromise and more efficiency of the
results.

However, one literary work, that is based on the CLAMI
technique, lays emphasis on an improvised technique. Most
of the models work on labeled datasets only, but the
improvisation works on TCLP. Threshold Clustering
Labeling Plus works on random forest algorithms. Once the
model is up and running, it can self learn and classify the
artifacts into binary classes as - faulty and non faulty

Other literary works include genetic machine learning models
which can help determine fault and defect at very initial
stages of development. It uses object oriented metrics as data
and then develops a learning classifier system LCS which has
an IF and THEN state to learn and classify the metrics.

Another considerable literature is based on the k-means
mechanism which works upon the PROMISE repository. K-
means faces local optimum solution, and it requires multiple
cluster center initialisations.

CONCLUSION

To forecast defects before real testing and reduce mistakes

for the cost of expense and time of software products, the

need for improved and more developed prediction

methodologies will always be a constant source of interest.

One’s goal will always be to investigate the ease of access

and to efficiently make use of genetic-based ML techniques

for determining fault capacity in softwares using metrics,

which are object oriented. We see areas of strength for any

of laid out metrics with size measures, similar to lines of code

complexity metrics and thus size measures appear to have a

specific measure of predictive capacities. (Object-oriented)

metrics perform better compared to intricacy and size metrics

when thought about for predicting issues and defects.

However showing a specific correlation to measure they

include a few extra properties too. Static code metrics,

similarly as complexity, size and object oriented metrics, are

appropriate for noticing a specific version of a software,

however with a dropping accuracy with each software cycle.

Subsequently, they are not appropriate for profoundly

iterative, post-release software, where the primary driver of

faults is a result of the improvement cycle and not really due

to the properties of size and design.

REFERENCES

[1] Amod Kumar, Ashwani Bansal “Software Fault Proneness

prediction using genetic based machine learning” ,978-1-7281-1253-4/19 ©

2019 IEEE

[2] Salim Moudache, Mourad BADRI “Software Fault Prediction

BAsed on Fault Probability and Impact” , 2019 18th IEEE International

Conference on Machine Learning and Applications (ICMLA)
[3] Liu Xi, Li Haifeng, Xie Xuyang “Intelligent Radar Software

Defect Prediction Approach and Its Applications”,2020 IEEE 20th

International Conference on Software Quality, Reliability and Security

Companion (QRS-C)and Applications (ICMLA)
[4] Rakesh Kumar, Amrita Chaturvedi and Lakshmanan Kailasam

“An Unsupervised Software Fault Prediction Approach Using Threshold

Derivation”, IEEE TRANSACTIONS ON RELIABILITY, VOL 71,NO. 2,

JUNE 2022

[5] R. Jothi “A comparative study of unsupervised learning

algorithms for software fault prediction” Proceedings of the Second

International Conference on Intelligent Computing and Control Systems

(ICICCS 2018) CFP18K74-ART ISBN:978-1-5386-2842-3

[6] Mahesh Kumar Thota, Francis H Shajin, P. Rajesh “Survey on

software defect prediction techniques” IJASE.202012_17(4).331

[7] Tina Beranic and Marjan Hericko “ Approaches for Software

Metrics Threshold Derivation: A Preliminary Review” SQAMIA 2017, 6th

Workshop of Software Quality, Analysis, Monitoring, Improvement and

Applications 11-13.9.2017

[8] Safa Omri and Carsten Sinz “ Deep Learning for Software Defect

Prediction: A Survey” ICSEW 20 42nd Conference on Software Engineering

Workshop

[9] Wei Zheng, Tianren Shen, Xiang Chen and Peiran Deng

“Interpretability application of the Just-in-Time software defect prediction

model” Journal of Systems and Software, 2022

[10] Ishani Arora, Vivek Tetarwal and Anju Saha “Open Issues in

Software Defect Prediction” ICICT 2014, Procedia Computer Science 46

(2015) 906-912

[11] N.C Shrikanth, Suvodeep Majumdar and Tim Menzies “Early

Life Cycle Software Defect Prediction. Why? How?” arXiv:2011.13071v3

[cs.SE] 9 Feb 2021

[12] Anil Kumar Pandey and Manjari Gupta “Software Metrics

Selection for Fault Prediction: A Review” International Journal of

Management, TEchnology and Engineering ISSN NO: 2249-7455

[13] Jayanthi.R, Lilly Florence and Arti Arya “A review on Software

Defect Prediction Techniques using Product Metrics” International Journal

of Databases theory and application Vol.10 no.1 2017, pp. 163-174

[14] Huanjing Wang, Taghi M. Khoshgoftaar and Amri Naploitano

“Choosing the Best Classification Performance Metric for Wrapper-based

Software Metric Selection for Defect Prediction”

http://www.ijrti.org/

