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Abstract—People around the globe have a deep desire to discover lands that were never touched by any human before. People 

would like to come across such vast untouched lands and would like to explore their flora and fauna and would always make a 

comparison with the existing species and make the environmental mapping. ‘Autonomous Drones’ resolve this problem by 

telecasting the untouched worlds and exploring their species. Some dense neural networks are being used for localization, 

mapping the environment, and detecting and recognizing the objects around it. The navigation process is achieved using the 

tangent bug algorithm. The whole process is created in a network, where each one communicates with the other and shares 

information. The information is then sent back to a base station where it is analyzed by botanist, zoologist, etc.  
Keywords—Autonomous Drone, Localization, Mapping, Tangent Bug Algorithm 

I. INTRODUCTION  

Discovering flora and fauna involves exploring the natural environment to observe and identify different plant and animal 

species. This can be done in a variety of ways, including taking a hike through a wilderness area or consulting field guides and 

other resources. Through this exploration, one can learn more about the local ecology and appreciate the beauty and diversity 

of the natural world. The primary problem is discovering new species in environments that are difficult for humans to 

discover in most parts of the world.The current drone in use is a manually controlled drone that is used to explore the 

environment. It is controlled by people and it only captures images or videos of the terrain it visits. This project proposes to 

implement an autonomous drone whose mission is to accurately classify images using deep learning algorithms and computer 

vision techniques to identify objects, features and identify a new species in the environment. The main idea is to usetangent 

bug algorithm for path decisions. The primary goal of this project is to discover new species in the environment and help 

Botanists and Zoologists to make research easier. 

II. EASE OF USE 

The project involves the use of autonomous drone for unearthing new species present on the orb that are yet to be discovered. 

Some plants and animals would havealready been discovered, but due to lack of proper imagery, it became difficult for 

zoologists and botanists to classify the new species. They even found it difficult to know what the new species looked like due 

to the lack of data. These issues are resolved by this autonomous drone. The main purpose of this drone is to maneuver those 

places where humans can’t reach easily and capture the flora and fauna present in that region for analysis. If in case it captures 

a new animal, it’ll search it’s database to check whether this animal exists or not. If not, it’ll start capturing images of the new 

species and immediately sends it to a nearby base station for the corresponding people to look at. 

III. FIELD WORK 

Today's commercial MAVs have limited ability to autonomously avoid obstacles, are mostly teleoperated, and use GPS for 

navigation. Despite this, the study community has made great progress towards incorporating more visual-based processing to 

aid in state estimation and obstacle avoidance. From a single forward-facing camera, Alvarez et al. use a structure-from-motion 

(SfM) algorithm to determine depth and subsequently avoid obstacles. Using an RGBD camera, Bachrach et al. create an image 

that is then used for planning and localization. In order to localise a fixed-wing MAV and enable reliable flying in enclosed 
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spaces, Bry et al. combine an inertial measurement unit (IMU) with a laser range finder. Faessler et al. create a map of the 

surroundings using an IMU and a downward-facing camera and the SVO algorithm.For the purpose of creating maps and 

estimating states, Fraundorfer et al. combine a downward-facing camera with a binaural pair that faces forward. For the purpose 

of avoiding obstacles and creating maps, Scaramuzza et al. also incorporate an IMU and three cameras. According to Scherer 

et al., flying low over obstructions presents some difficulties. Recently, the application of deep reinforcement learning (DRL) 

to MAVs has also received notice. Bhatti et al.'s seminal work describes a method for learning to play first-person video games 

using DRL that combines visual mapping and visual recognition. Like this, Lillicrap et al. use DRL to discover end-to-end 

strategies for a variety of traditional continuous physics issues. Ross et al. use DRL to train an MAV to avoid obstacles while 

flying through a woodland. After only receiving instruction on artificial images, Sadeghi and Levine use DRL to teach an MAV 

how to fly inside buildings. Zhang et al. employ DRL to teach a simulated quadrotor object avoidance strategy.  

 

Our research draws a lot of its inspiration from and is most closely related to the trail DNN work of Giusti et al., who developed 

a convolutional DNN that forecasts view orientation (right/left/straight) by amassing a large dataset using a head-mounted rig 

made up of three cameras. The steering instructions for an MAV to follow a trail were then determined using the trained DNN 

model. Rasmussen et al.'s earlier ground-based robotic research serves as a foundation for this study. 

 

We also took inspiration from NVIDIA's DNN-controlled self-driving car, which gathers training data for three distinct 

directions using three dashboard-mounted cameras. To keep the vehicle straight and in the lane while training, the system 

calculates the proper steering effort for each virtual view (produced by interpolating video between the actual cameras). The 

DNN gains the ability to link visual data to the appropriate steering command in this way. The car is then driven using a single 

camera and the trained DNN in a range of environments and terrains. We modified this method by adding our own video, which 

was taken using a three-camera wide-baseline rig to capture side views, to the IDSIA woodland trail dataset. Thus, both lateral 

offset and view orientation inside the trail may be estimated by our system. 

 

IV. PROPOSED SYSTEM 

The concept entails the use of an autonomous drone to discover previously unknown species on the orb. Several plants and 
animals might have already been discovered, but due to a lack of good imaging, zoologists and botanists struggled to classify the 
new species. Due to a lack of evidence, they were unable to determine the appearance of the new species. This autonomous drone 
resolves these concerns. The major objective of this drone is to move into areas where humans cannot easily reach and capture 
the flora and wildlife there for analysis. If it captures a new animal, it will examine its database to see if the animal already exists. 
If not, it will begin capturing photographs of the new species and sending them to a nearby base station for the corresponding 
people to view. 

This paper presents an autonomous navigation system using only Zed 2i stereo depth camera and a GPS receiver. The proposed 
method consists of visual odometry, post estimation, obstacle detection, local path planning and a way point follower.  

 

The VO (Visual Odometry) computes relative pose between two pairs of stereo images. However, the VO suffers from noise 
accumulation over time. The GPS provides absolute locations that can be used to correct VO noise. The Zed2i stereo depth 
camera consists of IMU’s (Inertial Measurement Unit) such as 
accelerometer, gyroscope, magnetometer. Initially, the VO data 
and IMU data are fused to get Visual Inertial Odometry. The VIO 
and GPS are fused to achieve more accurate localization both 
locally and globally using an Extended Kalman Filter (EKF). To 
detect obstacles, a depth sense map is constructed by stereo 
disparity estimation and transformed into a 2D occupancy grid 
map.  

Local path planning computes temporary way points to avoid 
obstacles and a way point follower navigates the drone towards 
the goal point. This proposed method is evaluated in a simulation 
done in Gazebo using ROS (Robotic Operating System).  

 

 

       Drone Simulation                           Environment          

 

A. Visual Odometry 
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The first step is to obtain the cameras' intrinsic and extrinsic parameters. To accurately estimate the intrinsic camera 

characteristics, many photos of the calibration pattern at different poses must be captured. Second, when photos from both the 

left and right cameras are received, we must remove the lens-induced image distortion. Wide angle lenses typically have 

significant distortion at the image edges. The lens distortion parameters are included in the camera calibration output. To remove 

image distortion, we simply reverse the distortion process using these distortion settings.Third, since stereo VO involves feature 

matching between left and right pictures, it is important to rectify left and right image after un-distortion to make the same 

feature point lie on the same horizontal line. The feature searching space is decreased from 2D to 1D as a result, greatly 

enhancing algorithm performance.  

 

Image rectification is the process of projecting both the left and right images onto the same image plane. This new picture plane 

must be parallel to the line connecting the left and right camera centers, ensuring that scene point projections are on the same 

horizontal line on both left and right rectified images. It also ensures that the inherent camera settings of the rectified left and 

right images are the same. Once the new picture plane is specified, we can simply use homography warping to rectify both 

images. 

 

We estimate the drone movement between times s-1 and s using two stereo pairs. We begin by establishing feature 

correspondences between these four photos. Feature matches between the left and right photos are utilized to reconstruct the 

3D positions of the scene's features. We can find the 3D positions of the same set of feature points at both time s-1 and time s. 

The transformation of those 3D locations is essentially the inverse of the robottransformation under the premise of rigid 

bodytransformation. 

 

So, in the least squares sense, we estimate the rigid transformation (rotation R and translation t) of those 3D points by minimizing 

the following term: 

 
 

Once the left and right images are corrected, we can simply retrieve the 3D position of feature points by defining the coordinate 

system in the center of the left camera: 

 

 
 

To estimate the drone's present attitude, we must aggregate frame-to-frame alterations from a known start point. If we suppose 

that the pose of the first frame is [0, 0, 0], then the stance of the robot at time s can be calculated using the following equation: 

 

 

 

 

B. EKF Pose Estimation 

 

Although VO computes a relative position between two pairs of stereo pictures accurately, noise accumulation occurs over 

time. A GPS device gives precise positions that can be used to correct VO drift. Using an EKF, we fuse data from VIO and 

GPS to provide more precise localization both locally and internationally. 

 

Prediction and correction are the two processes in EKF pose estimation. The robot posture and covariance at time s can be 

predicted in the prediction step by: 

 

 

 

 

As new data from VIO or GPS becomes available, the prediction and correction stages are repeated. If new data from both VIO 

and GPS is available at time s, EKF estimates the robot pose by executing the prediction and correction steps consecutively. If 

new data from only VIO is available at time s, EKF updates the robot position by merely conducting the prediction step. 

 

C. YOLO v4 

 

YOLOv4 is a real-time Object Detection model that is SOTA (state-of-the-art). The YOLO detector is a one-stage detector. The 

One-stage approach is one of the two main cutting-edge methods used for Object Detection, and it prioritizes inference speeds. 

The classes and bounding boxes for the entire image are predicted in one-stage detector models since the ROI (Region of 

Interest) is not selected. As a result, they are faster than two-stage detectors. 
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YOLO's first version was written in the Dark Net Framework (which is a high performance open source framework for 

implementing neural networks written in C and CUDA). DarkNet is commonly used as a backbone network. 

It divides the object-detection task into two parts: regression and classification. Regression predicts classes and bounding boxes 

for the entire image in a single run and aids in object positioning. The class of an object is determined via classification. 

                   Species being recognized by YOLOv4 

 

D. Obstacle Detection 

 

This section describes the obstacle detection method based on 

dense stereo matching. Then, the cameras are pre-calibrated and 

installed on the platform with predefined pitch angle and ground 

plane height. Second, the cameras have a smooth trajectory, which 

allows them to avoid expensive computation for rotation and scale 

invariant feature descriptors. We can project between the world 

coordinate system, the camera coordinate system, and the image 

plane. 

 

The algorithm's first step is dense stereo matching. For stereo 

matching in this system, we used the Library for Efficient Large-scale Stereo Matching. The library is fast enough to produce 

real-time matching results. The disparity map can be used to create 3D coordinates with the camera matrix from calibration. 

 

The 3D coordinates of a matched point in camera coordinate system can be determined using the following equations given 

focal length f, principal point [Xc, Yc], and baseline B: 

 

 

 

 

 

 

 

 

With the extrinsic camera matrix and [Xc, Yc, Zc] coordinates in camera coordinate system, the point can be projected to world 

coordinate system as follows: 

 

 

 

 

 

 

 

RANSAC is used to fit only one plane under this assumption. The RANSAC algorithm from the Point Cloud Library (PCL) 

was used to estimate planes in this algorithm. While it is powerful, the large number of points in a point cloud necessitates a 

lengthy computation time. So, in order to run online, the plane estimation process was designed to run periodically rather than 

every frame.To make plane estimation more computation efficient, some optimizations are made to the algorithm. The primary 

reason of the costly computation time is the large number of points as input to the RANSAC algorithm. Previously, we used all 

the points generated by the disparity map. Because the random sampling procedure, it requires all the points be included in error 

measurements. The big number of outliers also significantly increases the number of rounds. The aim here is to keep the input 

size as little as possible. 

 

Because the algorithm's purpose is to estimate the ground plane, we can restrict the input points to a certain location in 3D 

space. Because the ground is still the dominant plane in the subsample of the point clouds, using the points in this region can 

still estimate the ground plane accurately. The sub sample point cloud also has less outliers, such as sky, trees, therefore the 

algorithm may converge in fewer iterations. It can shorten the computation time of RANSAC algorithm and attain real-time 

speed. 

 

After estimating the ground plane, the inliers of this plane are removed. The leftover points are then project the points into an 

occupancy grid. Occupancy grid is a 2D grid map with each grid cell representing a block in the 3D space. Based on their 

location, points are projected to the ground plane and into different cells on the grid map. A cell is considered as an obstacle 

once the number of points in the cell hits a pre-defined threshold. 

E. Simultaneous Localization and Mapping (SLAM) 
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The Simultaneous Localization and Mapping is performed using the Zed 2i stereo depth camera where it constructs 3D R-TAB 

Map which is constructed using point cloud mapping method. Using computer vision techniques, the key points are extracted 

from the map. These key points represent the obstacles in the real world. Then the extracted key points are used to construct 

occupancy grid map. The tangent bug algorithm is used to navigate the drone autonomously and to  

avoid the obstacles. 

 

 

F. Local Path Planning 

 

We use local path planning to steer clear of impediments and rejuvenate the way. Local path planning employs EKF posture 

estimate and Obstacle Detection (OD) discussed in the preceding sections. EKF pose estimation provides the drone pose for 

local path planning to localize the drone in the world coordinate. OD provides an occupancy grid map which is utilized for local 

path planning to avoid obstacles. We implement a Tangent Bug (TB) algorithm for local path planning. 

 

1) Algorithm 1 

 

We developed a DroneKitPython function to slowly increase the output of RC channel 3, the throttle channel, while 

continuously monitoring the quadcopter's altitude, until the target altitude is reached, at which point the function terminates. 

The function accepts the target altitude in centimeters as an argument. 

This function is provided in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

This function may seem quite simple, which it is, and using RC overrides can produce some weird results from time to time. 

This is since you cannot predict what the RC channel will be when the method is called and that, there is no way to preset an 

RC channel to a specific value; instead, the override depends on the value of the current channel. Although this method lifts the 

quadcopter, it does so slowly as the propellers gradually rotate. 

 

2) Algorithm 2 

 

After the quadcopter has achieved a specified height, we want it to retain this altitude while all other activity is being done, 

until we trigger a landing mechanism. The easiest way to do this would be to put the APM firmware on ALT HOLD mode and 

allow the flight controller handle the labor-intensive tasks. However, because of RCoverrides this is not possible because it is 

not sure as to what the throttle channel value is, also even if the value is within a desired range, as stated earlier ALT HOLD 

mode will still allow the quadcopter to drift in altitude. This drift is normally minor but indoors it might pose complications. 

As a result, we added another function to DroneKit-Python that continuously monitors the quadcopter's altitude and makes 

minor adjustments to the throttle as needed. This function is called after reaching a target altitude and is executed in a separate 

thread to ensure that the target altitude is always maintained. This function is provided in Algorithm 2. 

 

3) Algorithm 3 

 

This function accepts 3 arguments, the first parameter is a 1 or -1 corresponding to direction. The second parameter is the period 

the movement should occur. The third parameter is the channel to override. The function is provided in Algorithm 3.  
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The function, which moves the quadcopter slowly and steadily, 

overrides the corresponding channel by 5 units in the direction that 

was passed as an argument, as can be seen from Algorithm 3. It 

then waits for the duration of time that was passed as an argument 

before resetting the corresponding channel to its initial value.In 

order to be clear, direction 1 on channel 2 stands for forward pitch 

direction, direction -1 on channel 2 for backward pitch direction, 

direction 1 on channel 1 for right roll direction, direction -1 on 

channel 1 for left roll direction, direction 1 on channel 4 for clockwise 

rotation of yaw, and direction -1 on channel 4 for anticlockwise rotation of yaw. 

 

4) Algotirhm 4 

 

To land the quadcopter, we would simply switch the flight controller into LAND mode using the corresponding DroneKit-

Python command and let the flight controller do the rest. 
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