INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) | IJNRD.ORG An International Open Access, Peer-reviewed, Refereed Journal

GENERATION OF PRIME NUMBERS

${ }^{1}$ V. Annantha Padmanabhan
${ }^{1}$ Retired Government servant
9 N.G.O Colony, Pollachi-6,Tamilnadu, Coimbatore.

Abstract : Prime Numbers - Generation a new method to generate all primes suggested.
IndexTerms - Prime Number-Generation-New Method

Introduction: Prime Numbers are Building Blocks to number system. So, the existing problems related to prime numbers attracts good interest among mathematician of all branches- not only number Theorists.

It was Pythagoras who bifurcated the natural numbers in to prime and composites some 2500 years ago. Till now many problem are remaind un solved regarding prime numbers.
Again it was Eratosthenes who firstly invented a very famous shieve to locate or identify primes and composites separately. There are a lot of improvements available is shieves.
Now in this paper we are suggesting a new methodology to generate primes very quickly using computers or even super computers. If this methodology is used to generate prime numbers without any limit quickly all prime numbers gets generated.

Para 1:

α Series
Firstly we have to considered a new series by name α series in this series the first natural number 1 is get omitted because it is neither a prime nor a composite and unique. Then No 2, and all its multiplies such as $2 \mathrm{X} 2,2 \mathrm{X} 3,2 \mathrm{X} 4,2 \mathrm{X} 5 \ldots$. up to infinity is get omitted. Since except to there exist no other even prime numbers. Thirdly and similarly the number 3 , and al its multiplies such as $3 \mathrm{X} 2,3 \mathrm{X} 3,3 \mathrm{X} 4 \ldots .$. Up to infinity its get omitted.
Off the remaining numbers which are not even, and not divisible by 3 , We set two first numbers for two sequences by name α_{1} sequence and α_{2} sequence namely 5 and 7 .
Now considered α_{1} set. The first number is $5.5+1=6,5+3=8,5+5=10 \ldots$ all are even. $5+2=7$, $5+4=9,5+6=11$ all are odd. In this case 7 is Fn of sequence 2. 6,8,10 are even numbers 9 is
divisible by 3 so naturally the second number in $\quad \alpha_{1}$ sequence is 11 . The different between the first term and second term is 6 . Same manner and with the same argument we can generate an arithmetic progression by name α_{1} series which first number is 5 and common difference is 6 .

The series will be $5,11,17$ \qquad the similar manner we can produced another series by name α_{2} Series which first number 7 and the common different as 6 . The series will be 7,13,19,25,31 \qquad
Now both series will consists of primes and composites.

Para 2:

Preparation of abstent term table
Considered $\alpha 1$ series up to $\mathrm{N}=300$
$\begin{array}{lllllllllllllllllll}5 & 11 & 17 & 23 & 29 & 35 & 41 & 47 & 53 & 59 & 65 & 71 & 77 & 83 & 89 & 95 & 101 & 107 & 113\end{array} 119125131137$ $\begin{array}{llllllllllllllllll}143 & 149 & 155 & 161 & 167 & 173 & 179 & 185 & 191 & 197 & 203 & 209 & 215 & 221 & 227 & 233 & 239 & 245\end{array}$ 251257263269275281287293299

1) 5 th order numbers (Numbers divisible by 5) are all composite
2) $5 \times 7=35$
3) $5 \times 13=65$
4) $5 \times 19=95$
5) $5 \times 25=125$
6) $5 \times 31=155$
7) $5 \times 37=185$
8) $5 \times 43=215$
9) $5 \times 49=245$
10) $5 \times 55=275$
11) 7th Order Numbers
12) $7 \times 11=77$
13) $7 \times 17=119$
14) $7 \times 23=161$
15) $7 \times 29=203$
16) $7 \times 35=245$
17) $7 \times 41=287$
18) 11th Order Numbers
19) $11 \times 13=143$
20) $11 \times 19=209$
21) $11 \times 25=275$
22) 13rd Order Numbers
23) $13 \times 17=221$
24) $13 \times 23=299$

Foot Note: The composites are generated as $5 \times 7,7 \mathrm{x} 11,11 \mathrm{x} 13 \ldots$ considering the natural development of natural numbers and avoiding repetitions of maximum possible.

List down all the remaining numbers in $\alpha 1$ series They are
$5,11,17,23,29,41,47,53,59,71,83,89,101,107,113,131,137,149,167,173,179,191$, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293

All are Primes
Considered $\alpha 2$ series up to $\mathrm{N}=300$
$\begin{array}{llllllllllllllllllllll}7 & 13 & 19 & 25 & 31 & 37 & 43 & 49 & 55 & 51 & 57 & 73 & 79 & 85 & 91 & 97 & 103 & 109 & 115 & 121 & 127 & 133\end{array} 139$
$\begin{array}{llllllllllllllllll}145 & 151 & 157 & 163 & 169 & 175 & 181 & 187 & 193 & 199 & 205 & 211 & 217 & 223 & 229 & 235 & 241 & 247\end{array}$
253259265271277283289295.

The Number which are composites are marked

1) 5th Order Number
2) $5 \times 5=25$
3) $5 \times 11=55$
4) $5 \times 17=85$
5) $5 \times 23=115$
6) $5 \times 29=145$
7) $5 \times 35=175$
8) $5 \times 41=205$
9) $5 \times 47=235$
10) $5 \times 53=265$
11) $5 \times 59=295$
12) 7 th order Number
13) $7 \times 7=49$
14) $7 x 13=91$
15) $7 \times 19=133$
16) $7 \times 25=175$
17) $7 \times 31=217$
18) $7 \times 37=259$
19) 11th Order Number
20) $11 \times 11=121$
21) $11 \times 17=187$
22) $11 \times 23=253$
23) 13th Order Numbers
24) $13 \times 13=169$
25) $13 \times 19=247$
26) 17th Order Numbers
27) $17 \times 17=289$

List down all the remaining numbers which are all by virtue primes
$7,13,19,31,37,43,61,67,73,79,97,103,109,127,139,151,157,163,181,193,199$, 211, 223, 229, 241, 271, 277, 283

Now all these numbers can e expressed by two functions

1) $\mathrm{C} 1+\mathrm{Vr}$
2) $\mathrm{C} 2+\mathrm{Vr}$

Where $\mathrm{C} 1=5 ; \mathrm{C} 2=7$ which are constant Vo, V1, V2 \qquad are multiples of six. So the function $\mathrm{C} 1+\mathrm{Vr}$ Generates the following numbers

1) $\mathrm{C} 1+\mathrm{V} 0=5+0 \times 6=5$
2) $\mathrm{C} 1+\mathrm{V} 1=5+1 \mathrm{x} 6=11$
3) $\mathrm{C} 1+\mathrm{V} 2=5+2 \mathrm{x} 6=17$
4) $\mathrm{C} 1+\mathrm{V} 5=5+5 \times 6=35$ \qquad

Similarly the function $\mathrm{C} 2+\mathrm{Vr}$ Generates the following numbers

1) $\mathrm{C} 2+\mathrm{V} 0=7+0=7$
2) $\mathrm{C} 2+\mathrm{V} 1=7+1 \mathrm{x} 6=13$
3) $\mathrm{C} 2+\mathrm{V} 2=7+2 \times 6=19$
4) $\mathrm{C} 2+\mathrm{V} 3=7+3 \times 6=25$ \qquad
Again, the above said both functions generates both $\alpha 1$ and $\alpha 2$ Terms which includes both primes and composites.

Further considered the
5 th, 7 th, 11 th, 13 th order.... terms in $\alpha 1$ and $\alpha 2$ Numbers they form the absent term tables of $\alpha 1$ and $\alpha 2$.
$\alpha 1$ Absent Term Table

1) 5 th order 1 No. $=35$

This may be expressed as 5+V5 / 35-5 30. 30/6=5
Similarly $65-5=60.60 / 6=10$
So the first row of Absent Term Table is
$5,10,15,20,25 \ldots .$.
Likewise the 7th order term 1st Number is $77 / 77-5=72.72 / 6=12$
So the second row will be
$12,19,26,33 \ldots \ldots .$.
Likewise other rows can be formed
Absent Term Table-1

1) $510152025 \ldots .$.
2) $1219263340 \ldots \ldots$
3) $23 \quad 34455667 \ldots \ldots$
4) $3649627588 \ldots .$. and so on

Note: I we considered the difference between the first numbers of each row is
7,11,13......
Similarly the horizontal wise different is also
$5,7,11,13 \ldots . .$.
The difference of different will be
$2,4,2,4$ alternatively which is property of α sequences.

Hence it will be easier to construct Absent Term Table to any extent.
Likewise the first term in $\alpha 2$ composite order is 25 , So $25-7=18,18 / 6=3$
So we can frame another function C2+V2 (Already Noted)

Where C2=7
$\mathrm{V} 0, \mathrm{~V} 1, \mathrm{~V} 2 \ldots$.... are multiples of six so
$25-7=18 \quad 18 / 6=3$
$55-7=48 \quad 48 / 6=8$

The first row of absent term table is
381318 23......

Similarly The Second Row will be
$7 \quad 14212835$ \qquad

3rd Row will be
19304151 \qquad

13th Row will be
$2740516273 \ldots .$.

So the Absent Term Table will be
$\begin{array}{llll}3 & 81318123\end{array}$
$\begin{array}{llll}7 & 14 & 21 & 28 \\ 35\end{array}$
1930415263
$274051 \quad 62 \quad 73$
$47 \quad 6481 \quad 98$
597897116
87110133156
$\begin{array}{lll}103 & 128 & 153170\end{array}$
139160197226

Note: If we considered differences of 1 st Number of each row will be
$4,8,12 \ldots \ldots$. That is multiples of 4 in to
1,2,3.....

The horizontal differences will be
$5,7,11,13$ which is an α sequence property
Proof to the differences of first number of each row is given separately in the last paragraph of this paper

Para 3:

Methodology to generate the $\alpha 1$ Primes and $\alpha 2$ Primes by using the above said Absent Term
Table
Generation of $\alpha 1$ Terms
Function 1: C1+Vr

1) $5+0.6=5$
2) $5+1.6=11$
3) $5+2.6=17$
4) $5+3.6=23$
5) $5+4.6=29$
6) $5+5.6=35$
7). \qquad

Number 5 finds a face in $\alpha 1$ Absent Term Table so it is a composite.
Similarly all $\alpha 1$ Primes can get generated upto the limit to the need of a searcher omitting the values of Vr which finds a place in $\alpha 1$ Absent Term 1 Table.

Generation of $\alpha 2$ Terms

Function 2: C2+Vr

1) $7+0.6=7$
2) $7+1.6=13$
3) $7+2.6=19$
4) $7+3.6=25$ \qquad

No 3 Finds a face in the $\alpha 2$ Absent Term Table 2, So it produces a composite.
Likewise all the $\alpha 2$ Primes can get generated. Omitting the values of Vr Which finds a phase in $\alpha 2$ Absent Term Table 2.

Para 4:

Arranging in Ascending order

1) 2,3 are primes which finds no phase in $\alpha 1$ sequence.
2) $\alpha 1$ Primes are $5,11,17, \ldots \ldots$.
3) $\alpha 2$ Primes are $7,13,19, \ldots \ldots$.

So the ascending order of Primes will be
$2,3,5,7,11,13,17,19$, \qquad
α Series Properties
If we amalgamate $\alpha 1$ Series and $\alpha 2$ Series we will get a series of α like $5,7,11,13,17,19,23,25, \ldots \ldots .$.

The difference will be
2, 4, 2, 4, \qquad

Proof to the first numbers of $\alpha 2$ Absent Term Table of Each Row

1) The first terms of each row of the table is
$\begin{array}{llllllll}3 & 7 & 19 & 27 & 47 & 59 & 87 & 103 \\ 139\end{array}$ \qquad
d $4 \quad 12 \quad 8 \quad 20 \quad 12 \quad 28 \quad 1636$
1st Order
481216
d24 4 4 4 Again 4/2=2
2nd Order
$12 \quad 202836$
d2 $888 \quad 8 / 2=4$
Thus the α sequence order is maintained at the level of $d 2$

Part-2

Generation of Twin Primes
Twin Primes are a special prime of primes whos difference to the first and second primes is always true. Such pair of twin primes exists upto infinity. Nobody knows what is the last pair o twin primes.

In this para is suggest a new methodology to generate twin primes up to infinity.

Methodology

Considered the $\alpha 1$ and $\alpha 2$ series separately ,
a1-5 11172329354147 53.....
$\alpha 2-713192531374349$ 5.....
Again we can generate $\alpha 1$ composites and $\alpha 1$ composites as soon here under:
$\alpha 1$ composites:
Table 1:

1) $5 x 7,11 . . \quad 356595125155185215245275305 \ldots$.
d30
2)7x11=> 77119161203245287329
3)11x13=> 143209275341
2) $13 \times 17=>221299373$
3) $17 \mathrm{x} 19=>323$

Table 2:
$\alpha 2$ composites

1) $5 x 5=>255585115145175205235265295$ 325....
2) $7 x 7=>4991133175217301$
3) $11 \times 11=>121 \quad 187 \quad 253319$
4) $13 \times 13=>169241355$
5) $17 \times 17=>289397$
6) $19 x 19=>361$

Logic:

1) Firstly the twin tree may be generated up to the given number. The general notation is $\alpha 1$ $\alpha 2$ difference between these to is always 2

In practice,
a1
$\alpha 2$

1) $5 \quad 7$
2) $11 \quad 13$
3) $17 \quad 19$
4) 23 25
5) 29 31
6) 35 37
7) 41 43
8) 47 49
9) 53 55
10) 59 61
11) 65 67
12) 71 73
13) 83 85
14) 89 91
15) 95 97
16) 101 103
17) 107 109
18) Remove all composites number in $\alpha 1$ column and $\alpha 2$ column
19) Sometimes either of the number in a pair may be prime even then they do not represent twin prime they may be removed
20) By virtue the remaining number are twin primes. We can generate such pair twin prime up to the limit that we require.

CONCLUSION

Just a new methodology is suggested to generate all Primes quickly both manually are using system.

There is no test numbers one number after another this is may be considered as an advanced shive model from Earstosthenis shive.

Again the twin primes also get generated in the methodology described above.

References:

1) Elementary Number Theory by David M Burton PP56
2) Ibid PP 59
