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Abstract— The objective of this project is to develop a 

categorization model that, in response to a set of requirements, 

can predict the price range of mobile phones. The dataset for 

this project includes a range of characteristics, such as battery 

life, RAM, internal memory, a back camera, a front camera, etc. 

The research will start by investigating and examining the data 

to see how each attribute is distributed and how they relate to 

one another. After that, the data will go through preprocessing 

to remove any extraneous features, outliers, and missing values. 

Various classification techniques, such as Logistic Regression, 

KNN Classification, and Support Vector Machine, will be 

utilized and compared in order to identify which algorithm 

performs the best once the data has been divided into training 

and testing sets. Next, a number of performance metrics, 

including as F1 score, recall, accuracy, and precision, will be 

used to evaluate the selected model. New data will be utilized to 

install and test the model, and then its performance in the actual 

world will be assessed. The primary goal of this project is to 

develop an accurate and trustworthy model that can guide 

clients in selecting mobile phones based on their budget and 

desired features.  
Keywords— categorization model, price range, mobile phones, 

dataset, battery life, RAM, internal memory, back camera, 

front camera, data investigation, data preprocessing, 

extraneous features, outliers, missing values, classification 

techniques, Logistic Regression, KNN Classification, Support 

Vector Machine, training and testing sets, performance 

metrics, F1 score, recall, accuracy, precision, new data, model 

installation, model testing, real-world performance, budget, 

desired features. 

 
I. INTRODUCTION 
 
Mobile devices have revolutionized the way we communicate, 

access information, and carry out a variety of tasks in our daily lives. 

With a wide variety of options available to consumers, each varying 

in terms of brand, features, and price range, the market for mobile 

devices is incredibly active. Making educated selections can be 

considerably aided by accurately forecasting a mobile phone's price 

range based on its specific characteristics. This can benefit both 

consumers and manufacturers. Devices can be selected by 

customers based on their needs and budget, and producers can 

strategically price their goods to stay competitive.  
This study aims to create a classification model that correctly predicts 

the price range of mobile phones by means of particular traits. We 

intend to develop a model that can classify mobile phones into several 

price ranges, such as low, medium, high, or extremely 

 
 
high, by utilizing machine learning techniques and examining 

pertinent properties. Consumers looking for the best return on their 

investment and manufacturers trying to optimize their pricing 

strategies will both find great use in this prediction model.  
In order to do this, we will use a dataset with 2000 entries and 21 

attributes that includes a variety of mobile phone specifications 

along with related pricing ranges. Battery life, Bluetooth 

functionality, clock speed, dual SIM compatibility, front camera 

resolution, 4G connectivity, internal memory, and other 

characteristics are among them. We want to create a model that can 

accurately categorize mobile phones based on their specs, hence 

predicting their price range. To do this, we will investigate the 

correlations between these attributes and price range labels.  
The suggested strategy entails several crucial steps. First, we'll get 

a good dataset from sources that are openly accessible or directly 

from mobile stores and manufacturers. Our research will be built 

upon this dataset, which gives us the data we need to develop and 

test our categorization algorithm. After that, we'll handle missing 

values and undertake exploratory data analysis to learn more about 

the distribution of the dataset's attributes and their relationships with 

one another.  
The dataset will need to be refined, which will heavily rely on 

feature engineering and selection. We can improve the model's 

capacity to precisely anticipate the price range of mobile phones by 

carefully evaluating each feature's applicability and possibly 

developing additional ones based on domain expertise. These 

tailored features will identify important nuances and insights in the 

data, enhancing the classification model's overall performance.  
The dataset will need to be refined, which will heavily rely on 

feature engineering and selection. We can improve the model's 

capacity to precisely anticipate the price range of mobile phones by 

carefully evaluating each feature's applicability and possibly 

developing additional ones based on domain expertise. These 

tailored features will identify important nuances and insights in the 

data, enhancing the classification model's overall performance.  
In the evaluation stage, each model's performance on the test dataset 

will be evaluated. We will assess the models' accuracy, precision, 

recall, and F1-score using a variety of evaluation measures, 

including confusion matrices and classification reports. We want to 

find the model that predicts the price range of mobile phones with 

the most accuracy and precision through this study.  
In conclusion, the goal of this research is to create a classification 

model that can predict with accuracy the price range of mobile 
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phones based on their unique qualities. We seek to offer helpful 

insights to both customers and producers by utilizing machine 

learning techniques and examining a substantial dataset. By 

successfully implementing such a strategy, producers will gain the 

ability to strategically price their products while also enabling 

consumers to make informed purchase decisions. 

 

II. LITERATURE REVIEW 
 
Although [1] may have a different focus or intent, my suggestion 

attempts to benefit both customers and producers by predicting the 

price range of mobile phones based on features. My proposal aims 

to improve prediction efficiency and accuracy, provide an objective 

method, support manufacturers in identifying critical traits, aid 

consumers in making educated selections, and promote machine 

learning and data science. My proposal also emphasizes possible 

results including increased revenue and sales, better customer 

service, time savings, competitive advantage, and data-driven 

decisions. By emphasizing a more focused and all-encompassing 

strategy to address the unique demands of consumers and 

manufacturers in the mobile phone business, these factors set my 

idea apart from that of the reference paper.  
In the reference paper [2], the question of whether a mobile device 

with specific characteristics will fall within a given price range is 

addressed. With an emphasis on computational simplicity, the study 

uses particular feature selection techniques to find and remove less 

important and redundant information. To anticipate mobile costs as 

accurately as feasible, a variety of classifiers are used. Future study 

to increase the solution and estimation accuracy is suggested after 

discussing the outcomes in terms of accuracy and feature selection. 

On the other hand, the history of the conversation makes no specific 

reference of my suggestion. 
 
The focus of the cited research [3] is on the application of machine 

learning methods to estimate the price range of mobile phones based 

on their features. The procedure for gathering data, dimensionality 

reduction using feature selection techniques, and the division of 

mobile phones into pricing groups are all covered in the study. The 

J48 decision tree model has the highest accuracy in predicting 

mobile phone pricing, according to a comparison of the accuracy of 

other machine learning models.  
However, my suggestion is not specifically specified, therefore I 

lack the necessary information to compare it to the reference study. 

I can, however, assist you in understanding the similarities and 

differences between your idea and the reference work if you can 

provide me a summary or description of your proposal. 
 
The precise objectives, results, and strategy of [4] and my idea differ 

from one another most significantly. My plan focuses on creating a 

classification model to forecast the price range of mobile phones based 

on their specifications, even though the goals of the reference paper are 

not stated. This strategy intends to support firms in product development 

and price strategies while assisting customers in making informed 

judgements. Additionally, my proposal aims to increase prediction 

efficiency and accuracy, offer a standardized method, and promote data 

science and machine learning. My proposal will lead to more revenue 

and sales as well as better customer service, time savings, a competitive 

advantage, and data-driven decisions. We intend to employ a variety of 

classification techniques, including Logistic Regression, KNN 

Classification, and SVM Classifier using linear and RBF kernels, using 

a dataset of 21 features. The data will be divided into training and test 

sets, the performance of the model will be assessed using confusion 

matrices and classification reports, and the model with the highest 

accuracy 

will be chosen. Overall, my suggestion presents a thorough strategy 

for creating a price range prediction model, however the reference 

paper's specifics are still left out unknown.  
The focus of the reference paper [5] is on determining whether 

mobile phones will be affordable or expensive based on their 

features. The study makes use of real data that was gathered from a 

website and uses a variety of feature selection algorithms and 

classifiers to forecast the price range for mobile devices with great 

accuracy. In the study, the accuracy and selection of features are 

compared along with the findings. The suggested system seeks to 

identify an ideal product with the least amount of money spent and 

the greatest number of features, which can be used in a variety of 

marketing and commercial settings. However, your idea, as it is 

expressed in your code, focuses on a particular issue or application 

that you have created. Without further information about your code 

or concept, it is challenging to make a precise comparison. The 

exact issue or application that your code solves, the approach or 

algorithms applied, the dataset utilized, and the outcomes obtained, 

nevertheless, generally speaking, represent the significant 

differences. If you could give more details about your code and the 

specific modifications you have made in comparison to the 

reference article, that would be helpful. 

 

III. RESULT ANALYSIS 
 
Regression models for predicting mobile phone prices are 
implemented numerous times in the given code. The performance 
of each implementation is assessed using Mean Squared Error 
(MSE) and R-squared Score, which vary depending on the 
regression technique used. 

 
Existing Methodology 

 
1. Linear Regression 

 

• Import the required libraries for linear regression 

modelling and data handling.  
• Create a LinearRegression model object. 

 
• Utilize the training data (x_train and y_train) to train the 

model. 
 

• Make predictions using the trained model on the testing 

data (x_test), and then store the results in y_pred. 
 

• Calculate the mean squared error (MSE) by contrasting the 

predicted values (y_pred) with the actual values (y_test) to 

assess the model's performance. 
 

• By contrasting the anticipated values (y_pred) with the 

actual values (y_test), get the R-squared score. 
 

• Print the MSE and R-squared scores that were 

determined. 
 
The approach applies linear regression, trains the model, generates 

forecasts, and evaluates the model's effectiveness using MSE and 

R-squared score. 

 
The steps of implementation of code shows how to utilize the scikit-

learn library's Linear Regression model. Predictions are produced on the 

testing set ('x_test') after the model has been trained using the 'x_train' 

and 'y_train' data. MSE and R-squared Score, which are computed using 

the predicted values ('y_pred') and the actual values ('y_test'), are used 

to assess the model's performance. The obtained R-squared Score is 

0.057, and the MSE is 4730766718.18. 
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2. Random Forest Regressor 

 

• Import the essential libraries for random forest 

regression modelling, assessment metrics, and data 

manipulation.  
• Make a RandomForestRegressor model instance. 

 
• Utilizing the training data (x_train and y_train), train the 

regressor. 
 

• Make predictions using the trained model on the testing 

data (x_test), and then store the results in y_pred. 
 

• By contrasting the anticipated values (y_pred) with the 

actual values (y_test), one may determine the mean 

squared error (MSE). 
 

• By contrasting the anticipated values (y_pred) with the 
actual values (y_test), get the R-squared score. 

 
• Print the MSE and R-squared scores that were 

determined. 
 
The approach applies the random forest regression technique, trains 

the model, generates predictions, and evaluates the prediction 

accuracy using MSE and R-squared score. 

 
The Random Forest Regressor from Scikit-Learn is implemented in 

the second code snippet. The Random Forest Regressor is trained 

on the training set and used to generate predictions on the testing 

set, much like the Linear Regression model. The R-squared Score is 

0.421, and the MSE is found to be 2907335701.25. This shows that 

for both measures, the Random Forest Regressor outperforms 

Linear Regression. 

 
Proposed Methodology 

 
1. XGBoost Regressor 

 
Extreme Gradient Boosting, often known as XGBoost, is an 

effective machine learning technique that is frequently used for 

classification and regression applications. To build a powerful 

predictive model, it integrates the predictions of several weak 

learners (decision trees). Performance, scalability, and widespread 

use of XGBoost are well recognized. The gradient boosting 

framework of XGBoost, which successively trains decision trees to 

rectify mistakes, regularization methods to avoid overfitting, and 

tree pruning to increase model complexity and generalization 

capability are some of its key characteristics. XGBoost excels in 

handling big datasets, determining the relevance of features, and 

effective parallel processing. It has won multiple Kaggle events. 

 
• Import the necessary libraries: mean_squared_error and 

r2_score from sklearn.metrics for evaluation, and numpy, 

pandas, and xgboost for modelling. 
 

• Utilizing the train_test_split function from 

sklearn.model_selection, load the dataset and divide it 

into the training and testing sets. 
 

• Assign the goal variable to y_train and y_test and the 

features to x_train and x_test. 
 

• Using xgb. XGBRegressor (), create an instance of the 

XGBoost regression model. 
 

• Using the fit technique and the inputs x_train and y_train, 

train the XGBoost model using the training data. 

 
• Use the trained model's predict method with the input 

x_test to provide predictions for the testing set.  
• In y_pred, keep the expected values. 

 
• Between the actual target values (y_test) and the 

projected values (y_pred), compute the mean squared 

error (MSE). 
 

• Find the difference between y_test and y_pred's R-

squared score (R2). 
 
This code sample makes use of the XGBoost Regressor, an 

optimized gradient boosting solution. The model receives training, 

and its effectiveness is assessed. The resultant R-squared Score is 

0.419, and the MSE is 2912850411.84. Similar to the Gradient 

Boosting Regressor, the XGBoost Regressor performs well but falls 

short of Random Forest-based models in terms of prediction 

accuracy. 

 

 
2. Extra Trees Regressor 

 
Extra Trees Regressor is a potent and adaptable machine learning 

technique used for predictive modelling problems, according to the 

algorithm. It is a variation of the well-known Random Forest 

technique intended to deal with regression issues. When dealing 

with difficult regression problems using high-dimensional datasets 

and noisy characteristics, this technique performs very well. 

 

• Import necessary libraries: Include Scikit-Learn modules, 

Pandas, and NumPy in the import list of essential 

libraries. 
 

• Initialize the ExtraTreesRegressor () to construct an 

instance of the regression model. This creates the Extra 

Trees Regressor. 
 

• To understand the associations between the features 

and the labels, fit the regressor to the training data 

(x_train and y_train). 
 

• Make forecasts: To produce y_pred, use the trained 

model to make predictions on the testing set (x_test). 
 

• Measure the average squared difference between the 

real labels (y_test) and the predicted labels (y_pred) 

using the mean_squared_error() function from scikit-

learn as your evaluation metric. 
 

• Calculate the coefficient of determination (R-squared) 

between the true labels (y_test) and (y_pred) the 

predicted values using the scikit-learn r2_score() 

function. 

 
 
The Extra Trees Regressor is a different ensemble approach that is 

used in this code snippet. The technique used to train and assess the 

model is the same as it was for the earlier models. The calculated R-

squared Score is 0.442, and the MSE is 2800007927.19. According 

to these results, the Extra Trees Regressor performs better in terms 

of predictive accuracy than both Linear Regression and Random 

Forest Regressor. 

 
3. Orthogonal Matching Pursuit 

 
A potent method for sparse signal reconstruction and feature selection 

in machine learning and signal processing is the Algorithm for 

Orthogonal Matching Pursuit (OMP) Regression. When working with 

high-dimensional datasets where just a limited subset 
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of characteristics is important, OMP is especially successful. It is a 

member of the family of greedy algorithms that minimizes error 

while approximating the target variable repeatedly by selecting 

features. 

 

• Import the required libraries, such as NumPy, pandas, 

and the OrthogonalMatchingPursuit, 

mean_squared_error, r2_score, and train_test_split 

scikit-learn modules. 
 

• Load the data, then split it into the target vector (y) and the 

feature matrix (x). This will prepare the dataset. 
 

• Using the train_test_split function, divide the dataset 
into training and testing sets. 

 
• Make a new instance of the OrthogonalMatchingPursuit 

model with the name ‘model'. 
 

• Using the 'fit' technique, fit the OMP model to the 
training data (x_train and y_train). 

 
• Make predictions using the trained OMP model on the 

test set (x_test), and then store the results in the 

'y_pred' variable. 
 

• Use the ‘mean_squared_error' function to get the Mean 

Squared Error (MSE) between the real target values 

(y_test) and the forecasted values (y_pred). 
 

• Determine the R-squared (R2) score to evaluate the 

model's goodness-of-fit using 'r2_score' function. 

 

 
The regression algorithm Orthogonal Matching Pursuit is 

implemented in this code snippet. Results indicate that this model 

performs badly when compared to other models, nevertheless. The 

R-squared Score is 0.011 and the MSE is 4961517820.77. These 

underwhelming results indicate that the Orthogonal Matching 

Pursuit model has trouble identifying the fundamental patterns in 

the data. 

 

 
4. Decision Tree Regressor 

 
A non-parametric approach called a decision tree regression is 

employed to forecast continuous numerical values. By recursively 

dividing the data based on independent variables, it creates a model 

that resembles a tree. With the goal of reducing variance or 

impurity, each internal node chooses a characteristic to split the 

data. When a stopping requirement is satisfied, the procedure 

proceeds. Predicted values are shown by leaf nodes. Decision tree 

regressors can capture complicated connections, handle a variety of 

variable types, and need little preprocessing. They may be 

visualized and are interpretable. They can be prevented from 

overfitting by pruning, reducing tree depth, or employing ensemble 

techniques like random forests. 

 

• Import Libraries: To start, import the essential libraries, 

including DecisionTreeRegressor, 

mean_squared_error, r2_score, and train_test_split 

from scikit-learn, pandas, and numpy. 
 

• The characteristics (independent variables) in your 

dataset should be defined as x, and the goal variable 

(dependent variable), as y. 
 

• Using the train_test_split function, divide the dataset into 

training and testing sets. Store the testing feature 

 
data in x_test, the testing target data in y_test, and the 
training feature data in x_train. 

 
• Create a Decision Tree Regressor model and attach it to the 

variable to create a decision tree regression model. 
 

• Model Training: Using the fit technique and the training 

data (x_train, y_train), train the Decision Tree Regressor 

model.  
• A model's performance evaluation: Mean Squared Error 

 
(MSE): Using the scikit-learn mean_squared_error 

function, determine the mean squared error between the 

actual target values (y_test) and the predicted values 

(y_pred). Put the outcome in the mse variable. 
 

• R-squared Score: Calculate the R-squared score to gauge 

how well the model fits the data. Use the scikit-learn 

r2_score function with the inputs y_test and y_pred. 

Save the outcome in the r2_5 variable. 
 

• Print the evaluation metrics' findings after displaying 

them. Displaying the value of mse will print the mean 

squared error. 
 

• By displaying the value of r2_5, print the R-squared 
score. 

 

 
This code fragment makes use of the Decision Tree Regressor, 

which builds a single decision tree for regression. The model is 

calibrated, and its forecasts are assessed. 3017430112.04 is 

determined as the MSE, and 0.399 is the R-squared Score. These 

results show fair performance; however, they are less than those of 

the Random Forest and Extra Trees models. 

 
5. AdaBoost Regressor 

 
Algorithm: AdaBoost Regressor for Predictive Modeling 

 
• Bring in the necessary libraries: Importing Numpy as a np. 

Bring in pandas as pd. Import the AdaBoostRegressor 

component from sklearn.ensemble. Import r2_score and 

mean_squared_error from sklearn.metrics. from 

sklearn.model_selection, import train_test_split 
 

• Create training and test sets for the data: To divide 
 

x_train and y_train into training and validation sets, use 

the train_test_split function. Save 80% of the data for 

training; change the ratio as necessary. 
 

• Make a copy of the AdaBoost Regressor: Create an 

instance of the AdaBoostRegressor class and save it in 

the ‘regressor' variable. 
 

• The regressor to learn: To train the model with the help 

of x_train and y_train, call the fit() function of the 

‘regressor' object. 
 

• Make assumptions about the test set: To create 

predictions about the x_test, call the predict() function of 

the ‘regressor' object. Save the projected values in the 

'y_pred' variable. 
 

• Analyze the forecasts' accuracy: Determine the Mean 

Squared Error (MSE) between the two variables, y_test 

and y_pred Use the sklearn.metrics 

mean_squared_error() method. Save the outcome in the 

‘mse' variable. Determine the R-squared Score (R2) 

between the two variables, y_test and y_pred Use the 
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sklearn.metrics r2_score() method. Save the outcome in 
the 'r2' variable. 

 
• Report the findings: Print the MSE and R2 values. You 

may choose to display the predicted and actual values 

for further in-depth study. 
 
The AdaBoost Regressor, which turns numerous weak models into 

a strong model, is implemented in this code snippet. The model is 

calibrated, and its forecasts are assessed. The calculated R-squared 

Score is 0.422, and the MSE is 2900245268.66. These results show 

comparatively decent performance; however, they still fall short of 

the models based on Random Forest. 

 
6. K Neighbors Regressor 

 
Algorithm: K-Nearest Neighbors Regression 

 

• Import the necessary libraries: import pandas as pd, 

import numpy as np, and import from sklearn.neighbors 

from sklearn.metrics, KNeighborsRegressor import 
train_test_split, mean_squared_error, and r2_score from 

sklearn.model_selection. 
 

• By using the formula regressor = 
KNeighborsRegressor(n_neighbors=5), create a K 
Neighbours Regressor instance. 

 
• Create training and test sets from the data: 

train_test_split = x_train, x_test, y_train, and 
y_test(target_data, feature data, test size, random_state, 
42) 

 
• Regressor.fit(x_train, y_train) will train the K Neighbours 

Regressor.  
• Make forecasts based on the test set: Regressor is  

y_pred.predict(x_test) 
 

• Analyze the forecasts' accuracy: (Y_test, Y_pred) = mean 
squared error (mse). y_test, y_pred) = r2_score(r2_8). 

 
• Publish the findings: mse = print("Mean Squared Error:", 

mse). "R-squared Score:" print(r2_8) 
 
The last piece of code applies the K Neighbor’s Regressor, which 

forecasts the goal value using the average of its k closest neighbor’s. 

The model receives training, and its effectiveness is assessed. The 

R-squared Score is 0.285, and the MSE is found to be 

3585821323.81. According to these results, the K Neighbor’s 

Regressor performs less predictably than Random Forest-based 

models. 

 
The Random Forest Regressor and Extra Trees Regressor regularly 

exceed the other models in terms of both MSE and R-squared Score, 

according to the comparative study of the various regression 

models. Predictions are more precise thanks to the efficient handling 

of non-linear correlations and intricate interactions by these 

ensemble approaches. When compared to other models, the 

Orthogonal Matching Pursuit model performs badly, highlighting 

its shortcomings in identifying the underlying patterns in the data. 

Although they perform at varying levels, the Gradient Boosting 

Regressor, XGBoost Regressor, Decision Tree Regressor, 

AdaBoost Regressor, and K Neighbor’s Regressor behind the 

Random Forest-based models. 

 
We may conclude that Extra Tree Regressor provides the better and 

more accurate results for our issue statement and that it will provide us 

with appropriate and appropriate findings after comparing other 

machine learning regression techniques. The Random Extension's 

Extra Tree Regressor. The forest algorithm is renowned for having 

superior accuracy when compared to earlier algorithms. By merging 

various decision trees, it makes use of the idea of ensemble learning 

to produce predictions. Extra Tree Regressor, in contrast to other 

algorithms, adds more randomness throughout the tree-building 

process, increasing the variety of the individual trees.  
This randomization aids in reducing the overfitting problem 

frequently connected to decision tree models. The Extra Tree 

Regressor can produce more reliable and accurate predictions for 

regression problems by combining the predictions from these many 

trees. Its exceptional accuracy is further enhanced by its capacity to 

recognize complicated connections, manage high-dimensional data, 

and include feature significance analysis. Because it outperforms 

earlier algorithms and provides outstanding prediction accuracy, the 

Extra Tree Regressor has become a trustworthy and efficient option 

for regression issues. 

 

Algorithm R2 MSE 

 Score  

Linear regression 0.1224 582563377.75 
   

Random Forest Regressor 0.5456 301576918.42 
   

Extra Trees Regressor 0.7557 162166556.34 
   

Extreme Gradient Boosting 0.7786 146961685.53 
   

Orthogonal Matching 0.0677 618825162.98 

Pursuit   

Decision Tree Regressor 0.7659 155380378.26 
   

Adaptive Boosting -0.6308 1082594352.39 

Regressor   

K-Nearest Neighbors -0.3111 870359796.13 

Regressor   

 

 
Table 5.1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: R2 Scores of Different Models 

 

 

IV. DISCUSSIONS 
 
Significant disparities in the two code samples' ability for predicting 

mobile phone prices may be seen when comparing the two. While the 

second code sample makes use of a RandomForestRegressor model, the 

first code sample uses a Linear Regression model. Both in terms of 

mean squared error and R-squared score, the RandomForestRegressor 

model performs better. This shows that 
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when compared to the Linear Regression model, the 

RandomForestRegressor model achieves more accuracy and 

accounts for a greater share of the variation in the target variable. 

 
• For predicting mobile phone prices, the second code 

sample using the RandomForestRegressor model performs 

better than the first code sample using the Linear 

Regression model. 
 

• Lower mean squared error results from the 

RandomForestRegressor model suggest greater accuracy 

in forecasting mobile phone costs. 
 

• A higher R-squared score for the RandomForestRegressor 

model demonstrates its capacity to capture a greater amount 

of the variation in the target variable. 
 

• The advantages of adopting ensemble approaches, such 

random forests, for prediction tasks including non-linear 

correlations and complicated interactions are highlighted 

by the higher performance of the RandomForestRegressor 

model. 
 

• Complex patterns and interactions in the data may be 

captured using ensemble methods like random forests, 

which helps forecast outcomes more accurately. 
 

• The results highlight the significance of choosing the right 

regression models based on the Unique’s of the dataset and 

prediction objective. 
 

• Combining a thorough exploratory data analysis, feature 

selection, and the use of several regression models enables 

a thorough assessment of the effectiveness and 

acceptability of alternative strategies. 
 

• The results show that the RandomForestRegressor model 

is a potential option for precise and reliable forecasts, 

offering useful insights for academics and practitioners 

working in mobile phone pricing prediction. 

 
Overall, the comparison of the two code samples and the 

analysis that followed emphasize the importance of model 

selection and the advantages of ensemble approaches for 

increasing predictive accuracy in tasks involving mobile phone 

pricing prediction. The results add to the body of current 

knowledge in the topic and offer suggestions for further study 

as well as real-world applications in projecting mobile phone 

costs. 

 
V. CONCLUSION AND FUTURE SCOPE 
 
Future research and development for predicting mobile phone prices 
may focus on many topics, including:  

• Exploring new features or cutting-edge methods to 

improve the accuracy and resilience of a model.  
• Neural networks and other deep learning architectures are 

used in deep learning approaches to identify complex 

patterns in data.  
• Using time series analysis methods to measure seasonality and 

temporal trends in the cost of mobile phones.  
• Further research should be done on ensemble methods, 

which mix different algorithms to enhance prediction 

accuracy.  
• Cross-Domain Prediction: Using comparable machine 

learning techniques across domains with comparable 

properties.  
• Real-Time Price Prediction: Creating models that can change 

with the market and provide forecasts in real-time. 

 
• Hyper parameterization and Optimization Tuning: 

Improving model performance by fine-tuning 

hyperparameters. 
 
Enhancing forecast accuracy, including additional data sources, and 
improving the models' capacity to respond to shifting market 
dynamics are the goals of these future research topics. 

 
In this research, we analyzed two code samples for predicting the 

prices of mobile phones using Linear Regression and 

RandomForestRegressor, two alternative regression models. Using 

the RandomForestRegressor model, the study showed that the 

second code sample performed better than the first code sample in 

terms of mean squared error and R-squared score. This shows that a 

bigger amount of the variance in the target variable was explained 

by the RandomForestRegressor model, which had higher accuracy. 

The findings emphasize the benefits of ensemble approaches like 

random forests and the significance of model selection in prediction 

tasks. The RandomForestRegressor model outperformed other 

models in terms of handling non-linear interactions and capturing 

complicated patterns in the data. 
 
For academics and practitioners in the field of predicting mobile 

phone prices, these findings offer useful insights. They show how 

important it is to choose the right regression models based on the 

particulars of the job and the dataset. The advantages of using 

ensemble approaches, such as random forests, for capturing 

complex relationships and enhancing forecast accuracy are also 

emphasized. 
 
Overall, this effort advances knowledge of regression modelling 

approaches for predicting mobile phone prices and provides 

recommendations for further study and real-world applications. The 

results suggest using the RandomForestRegressor model for reliable 

and accurate predictions in this field. 
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