
 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310039 International Journal of Novel Research and Development (www.ijnrd.org)

a341

Mobile Price Prediction using Machine Learning

Jukanti Varun Sagar, Poshala. Siddharth,
B. Nikhil Sai, Dr U. Sesadri

Student, Student, Student, Associate Professor
Vardhaman College Of Engineering

Abstract— The objective of this project is to develop a

categorization model that, in response to a set of requirements,

can predict the price range of mobile phones. The dataset for

this project includes a range of characteristics, such as battery

life, RAM, internal memory, a back camera, a front camera, etc.

The research will start by investigating and examining the data

to see how each attribute is distributed and how they relate to

one another. After that, the data will go through preprocessing

to remove any extraneous features, outliers, and missing values.

Various classification techniques, such as Logistic Regression,

KNN Classification, and Support Vector Machine, will be

utilized and compared in order to identify which algorithm

performs the best once the data has been divided into training

and testing sets. Next, a number of performance metrics,

including as F1 score, recall, accuracy, and precision, will be

used to evaluate the selected model. New data will be utilized to

install and test the model, and then its performance in the actual

world will be assessed. The primary goal of this project is to

develop an accurate and trustworthy model that can guide

clients in selecting mobile phones based on their budget and

desired features.
Keywords— categorization model, price range, mobile phones,

dataset, battery life, RAM, internal memory, back camera,

front camera, data investigation, data preprocessing,

extraneous features, outliers, missing values, classification

techniques, Logistic Regression, KNN Classification, Support

Vector Machine, training and testing sets, performance

metrics, F1 score, recall, accuracy, precision, new data, model

installation, model testing, real-world performance, budget,

desired features.

I. INTRODUCTION

Mobile devices have revolutionized the way we communicate,

access information, and carry out a variety of tasks in our daily lives.

With a wide variety of options available to consumers, each varying

in terms of brand, features, and price range, the market for mobile

devices is incredibly active. Making educated selections can be

considerably aided by accurately forecasting a mobile phone's price

range based on its specific characteristics. This can benefit both

consumers and manufacturers. Devices can be selected by

customers based on their needs and budget, and producers can

strategically price their goods to stay competitive.
This study aims to create a classification model that correctly predicts

the price range of mobile phones by means of particular traits. We

intend to develop a model that can classify mobile phones into several

price ranges, such as low, medium, high, or extremely

high, by utilizing machine learning techniques and examining

pertinent properties. Consumers looking for the best return on their

investment and manufacturers trying to optimize their pricing

strategies will both find great use in this prediction model.
In order to do this, we will use a dataset with 2000 entries and 21

attributes that includes a variety of mobile phone specifications

along with related pricing ranges. Battery life, Bluetooth

functionality, clock speed, dual SIM compatibility, front camera

resolution, 4G connectivity, internal memory, and other

characteristics are among them. We want to create a model that can

accurately categorize mobile phones based on their specs, hence

predicting their price range. To do this, we will investigate the

correlations between these attributes and price range labels.
The suggested strategy entails several crucial steps. First, we'll get

a good dataset from sources that are openly accessible or directly

from mobile stores and manufacturers. Our research will be built

upon this dataset, which gives us the data we need to develop and

test our categorization algorithm. After that, we'll handle missing

values and undertake exploratory data analysis to learn more about

the distribution of the dataset's attributes and their relationships with

one another.
The dataset will need to be refined, which will heavily rely on

feature engineering and selection. We can improve the model's

capacity to precisely anticipate the price range of mobile phones by

carefully evaluating each feature's applicability and possibly

developing additional ones based on domain expertise. These

tailored features will identify important nuances and insights in the

data, enhancing the classification model's overall performance.
The dataset will need to be refined, which will heavily rely on

feature engineering and selection. We can improve the model's

capacity to precisely anticipate the price range of mobile phones by

carefully evaluating each feature's applicability and possibly

developing additional ones based on domain expertise. These

tailored features will identify important nuances and insights in the

data, enhancing the classification model's overall performance.
In the evaluation stage, each model's performance on the test dataset

will be evaluated. We will assess the models' accuracy, precision,

recall, and F1-score using a variety of evaluation measures,

including confusion matrices and classification reports. We want to

find the model that predicts the price range of mobile phones with

the most accuracy and precision through this study.
In conclusion, the goal of this research is to create a classification

model that can predict with accuracy the price range of mobile

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310039 International Journal of Novel Research and Development (www.ijnrd.org)

a342

phones based on their unique qualities. We seek to offer helpful

insights to both customers and producers by utilizing machine

learning techniques and examining a substantial dataset. By

successfully implementing such a strategy, producers will gain the

ability to strategically price their products while also enabling

consumers to make informed purchase decisions.

II. LITERATURE REVIEW

Although [1] may have a different focus or intent, my suggestion

attempts to benefit both customers and producers by predicting the

price range of mobile phones based on features. My proposal aims

to improve prediction efficiency and accuracy, provide an objective

method, support manufacturers in identifying critical traits, aid

consumers in making educated selections, and promote machine

learning and data science. My proposal also emphasizes possible

results including increased revenue and sales, better customer

service, time savings, competitive advantage, and data-driven

decisions. By emphasizing a more focused and all-encompassing

strategy to address the unique demands of consumers and

manufacturers in the mobile phone business, these factors set my

idea apart from that of the reference paper.
In the reference paper [2], the question of whether a mobile device

with specific characteristics will fall within a given price range is

addressed. With an emphasis on computational simplicity, the study

uses particular feature selection techniques to find and remove less

important and redundant information. To anticipate mobile costs as

accurately as feasible, a variety of classifiers are used. Future study

to increase the solution and estimation accuracy is suggested after

discussing the outcomes in terms of accuracy and feature selection.

On the other hand, the history of the conversation makes no specific

reference of my suggestion.

The focus of the cited research [3] is on the application of machine

learning methods to estimate the price range of mobile phones based

on their features. The procedure for gathering data, dimensionality

reduction using feature selection techniques, and the division of

mobile phones into pricing groups are all covered in the study. The

J48 decision tree model has the highest accuracy in predicting

mobile phone pricing, according to a comparison of the accuracy of

other machine learning models.
However, my suggestion is not specifically specified, therefore I

lack the necessary information to compare it to the reference study.

I can, however, assist you in understanding the similarities and

differences between your idea and the reference work if you can

provide me a summary or description of your proposal.

The precise objectives, results, and strategy of [4] and my idea differ

from one another most significantly. My plan focuses on creating a

classification model to forecast the price range of mobile phones based

on their specifications, even though the goals of the reference paper are

not stated. This strategy intends to support firms in product development

and price strategies while assisting customers in making informed

judgements. Additionally, my proposal aims to increase prediction

efficiency and accuracy, offer a standardized method, and promote data

science and machine learning. My proposal will lead to more revenue

and sales as well as better customer service, time savings, a competitive

advantage, and data-driven decisions. We intend to employ a variety of

classification techniques, including Logistic Regression, KNN

Classification, and SVM Classifier using linear and RBF kernels, using

a dataset of 21 features. The data will be divided into training and test

sets, the performance of the model will be assessed using confusion

matrices and classification reports, and the model with the highest

accuracy

will be chosen. Overall, my suggestion presents a thorough strategy

for creating a price range prediction model, however the reference

paper's specifics are still left out unknown.
The focus of the reference paper [5] is on determining whether

mobile phones will be affordable or expensive based on their

features. The study makes use of real data that was gathered from a

website and uses a variety of feature selection algorithms and

classifiers to forecast the price range for mobile devices with great

accuracy. In the study, the accuracy and selection of features are

compared along with the findings. The suggested system seeks to

identify an ideal product with the least amount of money spent and

the greatest number of features, which can be used in a variety of

marketing and commercial settings. However, your idea, as it is

expressed in your code, focuses on a particular issue or application

that you have created. Without further information about your code

or concept, it is challenging to make a precise comparison. The

exact issue or application that your code solves, the approach or

algorithms applied, the dataset utilized, and the outcomes obtained,

nevertheless, generally speaking, represent the significant

differences. If you could give more details about your code and the

specific modifications you have made in comparison to the

reference article, that would be helpful.

III. RESULT ANALYSIS

Regression models for predicting mobile phone prices are
implemented numerous times in the given code. The performance
of each implementation is assessed using Mean Squared Error
(MSE) and R-squared Score, which vary depending on the
regression technique used.

Existing Methodology

1. Linear Regression

• Import the required libraries for linear regression

modelling and data handling.
• Create a LinearRegression model object.

• Utilize the training data (x_train and y_train) to train the

model.

• Make predictions using the trained model on the testing

data (x_test), and then store the results in y_pred.

• Calculate the mean squared error (MSE) by contrasting the

predicted values (y_pred) with the actual values (y_test) to

assess the model's performance.

• By contrasting the anticipated values (y_pred) with the

actual values (y_test), get the R-squared score.

• Print the MSE and R-squared scores that were

determined.

The approach applies linear regression, trains the model, generates

forecasts, and evaluates the model's effectiveness using MSE and

R-squared score.

The steps of implementation of code shows how to utilize the scikit-

learn library's Linear Regression model. Predictions are produced on the

testing set ('x_test') after the model has been trained using the 'x_train'

and 'y_train' data. MSE and R-squared Score, which are computed using

the predicted values ('y_pred') and the actual values ('y_test'), are used

to assess the model's performance. The obtained R-squared Score is

0.057, and the MSE is 4730766718.18.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310039 International Journal of Novel Research and Development (www.ijnrd.org)

a343

2. Random Forest Regressor

• Import the essential libraries for random forest

regression modelling, assessment metrics, and data

manipulation.
• Make a RandomForestRegressor model instance.

• Utilizing the training data (x_train and y_train), train the

regressor.

• Make predictions using the trained model on the testing

data (x_test), and then store the results in y_pred.

• By contrasting the anticipated values (y_pred) with the

actual values (y_test), one may determine the mean

squared error (MSE).

• By contrasting the anticipated values (y_pred) with the
actual values (y_test), get the R-squared score.

• Print the MSE and R-squared scores that were

determined.

The approach applies the random forest regression technique, trains

the model, generates predictions, and evaluates the prediction

accuracy using MSE and R-squared score.

The Random Forest Regressor from Scikit-Learn is implemented in

the second code snippet. The Random Forest Regressor is trained

on the training set and used to generate predictions on the testing

set, much like the Linear Regression model. The R-squared Score is

0.421, and the MSE is found to be 2907335701.25. This shows that

for both measures, the Random Forest Regressor outperforms

Linear Regression.

Proposed Methodology

1. XGBoost Regressor

Extreme Gradient Boosting, often known as XGBoost, is an

effective machine learning technique that is frequently used for

classification and regression applications. To build a powerful

predictive model, it integrates the predictions of several weak

learners (decision trees). Performance, scalability, and widespread

use of XGBoost are well recognized. The gradient boosting

framework of XGBoost, which successively trains decision trees to

rectify mistakes, regularization methods to avoid overfitting, and

tree pruning to increase model complexity and generalization

capability are some of its key characteristics. XGBoost excels in

handling big datasets, determining the relevance of features, and

effective parallel processing. It has won multiple Kaggle events.

• Import the necessary libraries: mean_squared_error and

r2_score from sklearn.metrics for evaluation, and numpy,

pandas, and xgboost for modelling.

• Utilizing the train_test_split function from

sklearn.model_selection, load the dataset and divide it

into the training and testing sets.

• Assign the goal variable to y_train and y_test and the

features to x_train and x_test.

• Using xgb. XGBRegressor (), create an instance of the

XGBoost regression model.

• Using the fit technique and the inputs x_train and y_train,

train the XGBoost model using the training data.

• Use the trained model's predict method with the input

x_test to provide predictions for the testing set.
• In y_pred, keep the expected values.

• Between the actual target values (y_test) and the

projected values (y_pred), compute the mean squared

error (MSE).

• Find the difference between y_test and y_pred's R-

squared score (R2).

This code sample makes use of the XGBoost Regressor, an

optimized gradient boosting solution. The model receives training,

and its effectiveness is assessed. The resultant R-squared Score is

0.419, and the MSE is 2912850411.84. Similar to the Gradient

Boosting Regressor, the XGBoost Regressor performs well but falls

short of Random Forest-based models in terms of prediction

accuracy.

2. Extra Trees Regressor

Extra Trees Regressor is a potent and adaptable machine learning

technique used for predictive modelling problems, according to the

algorithm. It is a variation of the well-known Random Forest

technique intended to deal with regression issues. When dealing

with difficult regression problems using high-dimensional datasets

and noisy characteristics, this technique performs very well.

• Import necessary libraries: Include Scikit-Learn modules,

Pandas, and NumPy in the import list of essential

libraries.

• Initialize the ExtraTreesRegressor () to construct an

instance of the regression model. This creates the Extra

Trees Regressor.

• To understand the associations between the features

and the labels, fit the regressor to the training data

(x_train and y_train).

• Make forecasts: To produce y_pred, use the trained

model to make predictions on the testing set (x_test).

• Measure the average squared difference between the

real labels (y_test) and the predicted labels (y_pred)

using the mean_squared_error() function from scikit-

learn as your evaluation metric.

• Calculate the coefficient of determination (R-squared)

between the true labels (y_test) and (y_pred) the

predicted values using the scikit-learn r2_score()

function.

The Extra Trees Regressor is a different ensemble approach that is

used in this code snippet. The technique used to train and assess the

model is the same as it was for the earlier models. The calculated R-

squared Score is 0.442, and the MSE is 2800007927.19. According

to these results, the Extra Trees Regressor performs better in terms

of predictive accuracy than both Linear Regression and Random

Forest Regressor.

3. Orthogonal Matching Pursuit

A potent method for sparse signal reconstruction and feature selection

in machine learning and signal processing is the Algorithm for

Orthogonal Matching Pursuit (OMP) Regression. When working with

high-dimensional datasets where just a limited subset

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310039 International Journal of Novel Research and Development (www.ijnrd.org)

a344

of characteristics is important, OMP is especially successful. It is a

member of the family of greedy algorithms that minimizes error

while approximating the target variable repeatedly by selecting

features.

• Import the required libraries, such as NumPy, pandas,

and the OrthogonalMatchingPursuit,

mean_squared_error, r2_score, and train_test_split

scikit-learn modules.

• Load the data, then split it into the target vector (y) and the

feature matrix (x). This will prepare the dataset.

• Using the train_test_split function, divide the dataset
into training and testing sets.

• Make a new instance of the OrthogonalMatchingPursuit

model with the name ‘model'.

• Using the 'fit' technique, fit the OMP model to the
training data (x_train and y_train).

• Make predictions using the trained OMP model on the

test set (x_test), and then store the results in the

'y_pred' variable.

• Use the ‘mean_squared_error' function to get the Mean

Squared Error (MSE) between the real target values

(y_test) and the forecasted values (y_pred).

• Determine the R-squared (R2) score to evaluate the

model's goodness-of-fit using 'r2_score' function.

The regression algorithm Orthogonal Matching Pursuit is

implemented in this code snippet. Results indicate that this model

performs badly when compared to other models, nevertheless. The

R-squared Score is 0.011 and the MSE is 4961517820.77. These

underwhelming results indicate that the Orthogonal Matching

Pursuit model has trouble identifying the fundamental patterns in

the data.

4. Decision Tree Regressor

A non-parametric approach called a decision tree regression is

employed to forecast continuous numerical values. By recursively

dividing the data based on independent variables, it creates a model

that resembles a tree. With the goal of reducing variance or

impurity, each internal node chooses a characteristic to split the

data. When a stopping requirement is satisfied, the procedure

proceeds. Predicted values are shown by leaf nodes. Decision tree

regressors can capture complicated connections, handle a variety of

variable types, and need little preprocessing. They may be

visualized and are interpretable. They can be prevented from

overfitting by pruning, reducing tree depth, or employing ensemble

techniques like random forests.

• Import Libraries: To start, import the essential libraries,

including DecisionTreeRegressor,

mean_squared_error, r2_score, and train_test_split

from scikit-learn, pandas, and numpy.

• The characteristics (independent variables) in your

dataset should be defined as x, and the goal variable

(dependent variable), as y.

• Using the train_test_split function, divide the dataset into

training and testing sets. Store the testing feature

data in x_test, the testing target data in y_test, and the
training feature data in x_train.

• Create a Decision Tree Regressor model and attach it to the

variable to create a decision tree regression model.

• Model Training: Using the fit technique and the training

data (x_train, y_train), train the Decision Tree Regressor

model.
• A model's performance evaluation: Mean Squared Error

(MSE): Using the scikit-learn mean_squared_error

function, determine the mean squared error between the

actual target values (y_test) and the predicted values

(y_pred). Put the outcome in the mse variable.

• R-squared Score: Calculate the R-squared score to gauge

how well the model fits the data. Use the scikit-learn

r2_score function with the inputs y_test and y_pred.

Save the outcome in the r2_5 variable.

• Print the evaluation metrics' findings after displaying

them. Displaying the value of mse will print the mean

squared error.

• By displaying the value of r2_5, print the R-squared
score.

This code fragment makes use of the Decision Tree Regressor,

which builds a single decision tree for regression. The model is

calibrated, and its forecasts are assessed. 3017430112.04 is

determined as the MSE, and 0.399 is the R-squared Score. These

results show fair performance; however, they are less than those of

the Random Forest and Extra Trees models.

5. AdaBoost Regressor

Algorithm: AdaBoost Regressor for Predictive Modeling

• Bring in the necessary libraries: Importing Numpy as a np.

Bring in pandas as pd. Import the AdaBoostRegressor

component from sklearn.ensemble. Import r2_score and

mean_squared_error from sklearn.metrics. from

sklearn.model_selection, import train_test_split

• Create training and test sets for the data: To divide

x_train and y_train into training and validation sets, use

the train_test_split function. Save 80% of the data for

training; change the ratio as necessary.

• Make a copy of the AdaBoost Regressor: Create an

instance of the AdaBoostRegressor class and save it in

the ‘regressor' variable.

• The regressor to learn: To train the model with the help

of x_train and y_train, call the fit() function of the

‘regressor' object.

• Make assumptions about the test set: To create

predictions about the x_test, call the predict() function of

the ‘regressor' object. Save the projected values in the

'y_pred' variable.

• Analyze the forecasts' accuracy: Determine the Mean

Squared Error (MSE) between the two variables, y_test

and y_pred Use the sklearn.metrics

mean_squared_error() method. Save the outcome in the

‘mse' variable. Determine the R-squared Score (R2)

between the two variables, y_test and y_pred Use the

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310039 International Journal of Novel Research and Development (www.ijnrd.org)

a345

sklearn.metrics r2_score() method. Save the outcome in
the 'r2' variable.

• Report the findings: Print the MSE and R2 values. You

may choose to display the predicted and actual values

for further in-depth study.

The AdaBoost Regressor, which turns numerous weak models into

a strong model, is implemented in this code snippet. The model is

calibrated, and its forecasts are assessed. The calculated R-squared

Score is 0.422, and the MSE is 2900245268.66. These results show

comparatively decent performance; however, they still fall short of

the models based on Random Forest.

6. K Neighbors Regressor

Algorithm: K-Nearest Neighbors Regression

• Import the necessary libraries: import pandas as pd,

import numpy as np, and import from sklearn.neighbors

from sklearn.metrics, KNeighborsRegressor import
train_test_split, mean_squared_error, and r2_score from

sklearn.model_selection.

• By using the formula regressor =
KNeighborsRegressor(n_neighbors=5), create a K
Neighbours Regressor instance.

• Create training and test sets from the data:

train_test_split = x_train, x_test, y_train, and
y_test(target_data, feature data, test size, random_state,
42)

• Regressor.fit(x_train, y_train) will train the K Neighbours

Regressor.
• Make forecasts based on the test set: Regressor is

y_pred.predict(x_test)

• Analyze the forecasts' accuracy: (Y_test, Y_pred) = mean
squared error (mse). y_test, y_pred) = r2_score(r2_8).

• Publish the findings: mse = print("Mean Squared Error:",

mse). "R-squared Score:" print(r2_8)

The last piece of code applies the K Neighbor’s Regressor, which

forecasts the goal value using the average of its k closest neighbor’s.

The model receives training, and its effectiveness is assessed. The

R-squared Score is 0.285, and the MSE is found to be

3585821323.81. According to these results, the K Neighbor’s

Regressor performs less predictably than Random Forest-based

models.

The Random Forest Regressor and Extra Trees Regressor regularly

exceed the other models in terms of both MSE and R-squared Score,

according to the comparative study of the various regression

models. Predictions are more precise thanks to the efficient handling

of non-linear correlations and intricate interactions by these

ensemble approaches. When compared to other models, the

Orthogonal Matching Pursuit model performs badly, highlighting

its shortcomings in identifying the underlying patterns in the data.

Although they perform at varying levels, the Gradient Boosting

Regressor, XGBoost Regressor, Decision Tree Regressor,

AdaBoost Regressor, and K Neighbor’s Regressor behind the

Random Forest-based models.

We may conclude that Extra Tree Regressor provides the better and

more accurate results for our issue statement and that it will provide us

with appropriate and appropriate findings after comparing other

machine learning regression techniques. The Random Extension's

Extra Tree Regressor. The forest algorithm is renowned for having

superior accuracy when compared to earlier algorithms. By merging

various decision trees, it makes use of the idea of ensemble learning

to produce predictions. Extra Tree Regressor, in contrast to other

algorithms, adds more randomness throughout the tree-building

process, increasing the variety of the individual trees.
This randomization aids in reducing the overfitting problem

frequently connected to decision tree models. The Extra Tree

Regressor can produce more reliable and accurate predictions for

regression problems by combining the predictions from these many

trees. Its exceptional accuracy is further enhanced by its capacity to

recognize complicated connections, manage high-dimensional data,

and include feature significance analysis. Because it outperforms

earlier algorithms and provides outstanding prediction accuracy, the

Extra Tree Regressor has become a trustworthy and efficient option

for regression issues.

Algorithm R2 MSE

 Score

Linear regression 0.1224 582563377.75

Random Forest Regressor 0.5456 301576918.42

Extra Trees Regressor 0.7557 162166556.34

Extreme Gradient Boosting 0.7786 146961685.53

Orthogonal Matching 0.0677 618825162.98

Pursuit

Decision Tree Regressor 0.7659 155380378.26

Adaptive Boosting -0.6308 1082594352.39

Regressor

K-Nearest Neighbors -0.3111 870359796.13

Regressor

Table 5.1

Figure 9: R2 Scores of Different Models

IV. DISCUSSIONS

Significant disparities in the two code samples' ability for predicting

mobile phone prices may be seen when comparing the two. While the

second code sample makes use of a RandomForestRegressor model, the

first code sample uses a Linear Regression model. Both in terms of

mean squared error and R-squared score, the RandomForestRegressor

model performs better. This shows that

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310039 International Journal of Novel Research and Development (www.ijnrd.org)

a346

when compared to the Linear Regression model, the

RandomForestRegressor model achieves more accuracy and

accounts for a greater share of the variation in the target variable.

• For predicting mobile phone prices, the second code

sample using the RandomForestRegressor model performs

better than the first code sample using the Linear

Regression model.

• Lower mean squared error results from the

RandomForestRegressor model suggest greater accuracy

in forecasting mobile phone costs.

• A higher R-squared score for the RandomForestRegressor

model demonstrates its capacity to capture a greater amount

of the variation in the target variable.

• The advantages of adopting ensemble approaches, such

random forests, for prediction tasks including non-linear

correlations and complicated interactions are highlighted

by the higher performance of the RandomForestRegressor

model.

• Complex patterns and interactions in the data may be

captured using ensemble methods like random forests,

which helps forecast outcomes more accurately.

• The results highlight the significance of choosing the right

regression models based on the Unique’s of the dataset and

prediction objective.

• Combining a thorough exploratory data analysis, feature

selection, and the use of several regression models enables

a thorough assessment of the effectiveness and

acceptability of alternative strategies.

• The results show that the RandomForestRegressor model

is a potential option for precise and reliable forecasts,

offering useful insights for academics and practitioners

working in mobile phone pricing prediction.

Overall, the comparison of the two code samples and the

analysis that followed emphasize the importance of model

selection and the advantages of ensemble approaches for

increasing predictive accuracy in tasks involving mobile phone

pricing prediction. The results add to the body of current

knowledge in the topic and offer suggestions for further study

as well as real-world applications in projecting mobile phone

costs.

V. CONCLUSION AND FUTURE SCOPE

Future research and development for predicting mobile phone prices
may focus on many topics, including:

• Exploring new features or cutting-edge methods to

improve the accuracy and resilience of a model.
• Neural networks and other deep learning architectures are

used in deep learning approaches to identify complex

patterns in data.
• Using time series analysis methods to measure seasonality and

temporal trends in the cost of mobile phones.
• Further research should be done on ensemble methods,

which mix different algorithms to enhance prediction

accuracy.
• Cross-Domain Prediction: Using comparable machine

learning techniques across domains with comparable

properties.
• Real-Time Price Prediction: Creating models that can change

with the market and provide forecasts in real-time.

• Hyper parameterization and Optimization Tuning:

Improving model performance by fine-tuning

hyperparameters.

Enhancing forecast accuracy, including additional data sources, and
improving the models' capacity to respond to shifting market
dynamics are the goals of these future research topics.

In this research, we analyzed two code samples for predicting the

prices of mobile phones using Linear Regression and

RandomForestRegressor, two alternative regression models. Using

the RandomForestRegressor model, the study showed that the

second code sample performed better than the first code sample in

terms of mean squared error and R-squared score. This shows that a

bigger amount of the variance in the target variable was explained

by the RandomForestRegressor model, which had higher accuracy.

The findings emphasize the benefits of ensemble approaches like

random forests and the significance of model selection in prediction

tasks. The RandomForestRegressor model outperformed other

models in terms of handling non-linear interactions and capturing

complicated patterns in the data.

For academics and practitioners in the field of predicting mobile

phone prices, these findings offer useful insights. They show how

important it is to choose the right regression models based on the

particulars of the job and the dataset. The advantages of using

ensemble approaches, such as random forests, for capturing

complex relationships and enhancing forecast accuracy are also

emphasized.

Overall, this effort advances knowledge of regression modelling

approaches for predicting mobile phone prices and provides

recommendations for further study and real-world applications. The

results suggest using the RandomForestRegressor model for reliable

and accurate predictions in this field.

REFERENCES
[1] A Comparative Study of Machine Learning Techniques for
Mobile Phone Price Prediction

https://www.ijsdr.org/papers/IJSDR2004057.pdf

[2] Mobile Phone Price Prediction Using Machine Learning
Algorithms: A Comparative Study
https://www.irjmets.com/uploadedfiles/paper/volume3/issue_6_jun

e_2021/12265/1628083492.pdf

[3] Prediction of Phone Prices Using Machine Learning Techniques

https://www.researchgate.net/publication/338471736_Prediction_of

_Phone_Prices_Using_Machine_Learning_Techniques

[4] Learn Mobile Price Prediction through Four Classification

Algorithms https://analyticsvidhya.com/blog/2022/02/learn-mobile-

price-prediction-through-four-classification-algorithms/

[5] Mobile Price Class Prediction Using Machine Learning

Techniques

https://www.researchgate.net/publication/323994340_Mobile_Price

_Class_prediction_using_Machine_Learning_Techniques

[6] Mobile Price Classification" dataset available on Kaggle

https://www.kaggle.com/iabhishekofficial/mobile-price-

classification

[7] Mobile Price Range" dataset available on UCI Machine Learning

Repository

https://archive.ics.uci.edu/ml/datasets/Mobile+Price+Classification

http://www.ijrti.org/
https://www.ijsdr.org/papers/IJSDR2004057.pdf
https://www.irjmets.com/uploadedfiles/paper/volume3/issue_6_june_2021/12265/1628083492.pdf
https://www.irjmets.com/uploadedfiles/paper/volume3/issue_6_june_2021/12265/1628083492.pdf
https://www.researchgate.net/publication/338471736_Prediction_of_Phone_Prices_Using_Machine_Learning_Techniques
https://www.researchgate.net/publication/338471736_Prediction_of_Phone_Prices_Using_Machine_Learning_Techniques
https://analyticsvidhya.com/blog/2022/02/learn-mobile-price-prediction-through-four-classification-algorithms/
https://analyticsvidhya.com/blog/2022/02/learn-mobile-price-prediction-through-four-classification-algorithms/
https://analyticsvidhya.com/blog/2022/02/learn-mobile-price-prediction-through-four-classification-algorithms/
https://www.researchgate.net/publication/323994340_Mobile_Price_Class_prediction_using_Machine_Learning_Techniques
https://www.researchgate.net/publication/323994340_Mobile_Price_Class_prediction_using_Machine_Learning_Techniques
https://www.kaggle.com/iabhishekofficial/mobile-price-classification
https://www.kaggle.com/iabhishekofficial/mobile-price-classification
https://www.kaggle.com/iabhishekofficial/mobile-price-classification
https://archive.ics.uci.edu/ml/datasets/Mobile+Price+Classification

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310039 International Journal of Novel Research and Development (www.ijnrd.org)

a347

[8] Mobile Phone Price Range Prediction" article on Towards Data

Science https://towardsdatascience.com/mobile-phone-price-range-

prediction-7e365cc77c29

[9] Mobile Price Classification Using Machine Learning" article on

GeeksforGeeks

https://www.geeksforgeeks.org/mobile-price-classification-using-

machine-learning/

[10] Mobile Price Classification using Decision Trees" article on

Analytics Vidhya

https://www.analyticsvidhya.com/blog/2020/08/mobile-price-

classification-usingdecision-tree-python

http://www.ijrti.org/
https://towardsdatascience.com/mobile-phone-price-range-prediction-7e365cc77c29
https://towardsdatascience.com/mobile-phone-price-range-prediction-7e365cc77c29
https://towardsdatascience.com/mobile-phone-price-range-prediction-7e365cc77c29
https://www.geeksforgeeks.org/mobile-price-classification-using-machine-learning/
https://www.geeksforgeeks.org/mobile-price-classification-using-machine-learning/
https://www.geeksforgeeks.org/mobile-price-classification-using-machine-learning/
https://www.analyticsvidhya.com/blog/2020/08/mobile-price-classification-usingdecision-tree-python
https://www.analyticsvidhya.com/blog/2020/08/mobile-price-classification-usingdecision-tree-python
https://www.analyticsvidhya.com/blog/2020/08/mobile-price-classification-usingdecision-tree-python

