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Abstract 

               The utilization of Sentinel-1 Synthetic Aperture Radar (SAR) satellite data offers an exceptional 

opportunity for crop growth monitoring due to its better revisit frequency and extensive spatial coverage. This study 

leverages Sentinel-1 SAR data, specifically the dual-pol data comprising VV (Vertical-Vertical) polarization and VH 

(Vertical-Horizontal) polarization, to apply remote sensing and geospatial techniques in agriculture. These 

techniques harness Sentinel-derived information to support crop growth monitoring, particularly as an alternative to 

Sentinel 2A optical data, which can be hindered by cloud coverage. while previous literature has explored the use of 

backscatter data for crop characterization, this research takes a novel approach. It combines scattering information, 

including the degree of polarization and eigenvalue spectrum, to derive a new vegetation index known as the Dual 

Polarimetric Radar Vegetation Index (DpRVI) from dual-pol SAR data. This innovative index provides valuable 

insights into vegetation dynamics. Furthermore, this study focuses on assessing plant growth in the Bhada Revenue 

Circle, Latur district, Maharashtra. It does so by considering key crop biophysical parameters such as Plant Area 

Index (PAI), Vegetation Water Content (VWC), Normalized Difference Vegetation Index (NDVI), and Land Surface 

Water Index (LSWI) at various crop phenological growth stages. This approach allows for a comprehensive analysis 

of crop development throughout its lifecycle, emphasizing each critical growth stage. To validate the accuracy of 

these assessments, statistical analyses, including Linear regression, are employed. These analyses reveal correlations 

between each biophysical parameter and the Dual Polarimetric Radar Vegetation Index (DpRVI). These correlations 

provide valuable insights into Soybean crop performance, aiding in the prediction of crop yields and overall crop 

health. The study's findings indicate promising results for Soybean crop monitoring and highlight the potential of 

SAR data in agricultural applications. 

           Indeed, the accumulation of key biophysical parameters including Plant Area Index (PAI), Vegetation Water 

Content (VWC), Normalized Difference Vegetation Index (NDVI), and Land Surface Water Index (LSWI) plays a 

significant role in plant growth development. In this context, The Dual Polarimetric Radar Vegetation Index (DpRVI) 

is a useful monitoring plant development during the kharif season, when microwave data may be used instead of 

optical data. Its correlation with biophysical parameters like PAI, VWC, NDVI, LSWI enhances yield predictions 

and supports informed decision-making, improving agricultural productivity and crop management practices. 
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Aims and Objectives 

1. Crop health monitoring of Soybean crop in the kharif season 

2. Determination of crop condition with crop biophysical properties and their relationship between crop growth 

stages and vegetation dynamics using Sentinel 1 data  

 

1.Introduction  

         In 2009 ESA launched an international AgriSAR field campaign, by this campaign frequent coverage from the 

C-band radar on Sentinel-1 could deliver essential information to improve agricultural practices which leads to crop 

growth monitoring and vegetation condition. The Sentinel-1 mission's dual-pol SAR dataset availability offers 

exceptional chances to expand operational monitoring for a number of application communities. (User guide ESA).  

Monitoring crop conditions is a key component of production estimation and forecasting. When organizations need 

to continuously monitor agricultural production over huge geographic areas, mapping from space is a practical 

solution. Despite the fact that optical remote sensing has been employed successfully (Boryan et al., 2011; de Wit et 

al., 2012; Lopez-Lozano et al., 2015; Chipanshi et al., 2015) must be restricted to almost cloud-free situations for 

useful acquisitions by this sort of sensor in numerous operational frameworks (for example, MODIS vegetation 

products). Due to the fact that synthetic aperture radar (SAR) systems can monitor in all-weather situations and that 

the microwave signal is sensitive to the dielectric and geometrical characteristics of crops, synthetic aperture radar 

(SAR) data are of great importance for agricultural applications in this context. (Ulaby, 1975; Mcnairn and Shang, 

2016). Due to their wider swaths and smaller data volumes, dual-pol modes are preferable to full-pol acquisitions, 

but at the expense of their insufficient polarimetric information. (Lee et al., 2001; Ainsworth et al., 2009), providing 

certain advantages for organizations continuing operational processes. The Sentinel-1 dual-pol mode (VV-VH) 

describes the simultaneous reception of vertical and horizontal polarizations while transmitting a vertically polarised 

signal. As a result, backscatter intensities from the received wave in cross-polarized channels (VV-VH) reveal 

information about a target. The backscatter intensities were used in several investigations to identify different 

varieties of crops. (Kussul et al., 2016; Nguyen et al., 2016; Bargiel, 2017; Van Tricht et al., 2018; Mandal et al., 

2018; Whelen and Siqueira, 2018; Arias et al., 2020) and crop biophysical parameter estimation (Bousbih et al., 

2017; Kumar et al., 2018; Mandal et al., 2020). Due to the sensitivity of backscatter intensities to crop morphological 

and phenological development, crop monitoring methods based purely on scattering powers were developed. 

(Nelson et al., 2014; De Bernardis et al., 2015; Nguyen et al., 2016; Lasko et al., 2018; Singha et al., 2019; Fikriyah 

et al., 2019). Several research has investigated the derivation of vegetation metrics from SAR data using backscatter 

intensity ratios. (Blaes et al. 2006) growth dynamics of maize is investigated by the sensitivity of σVH0 /σVV0. At 

incidence angles of 35–45°, σVV0 /σVH0 was sensitive to plant growth until the leaf area index (LAI) and vegetation 

water content (VWC) reached 4.9 m2m−2) and 5.6 kg m−2, these parameters are applied to crop classification 

(McNairn et al., 2009; Inglada et al., 2016; Denize et al., 2019), phenology estimation (McNairn et al., 2018; Canisius 

et al., 2018), and vegetation characterization (Veloso et al., 2017; Vreugdenhil et al., 2018; Khabbazan et al., 2019). 

Veloso et al. (2017) noted that this ratio was relatively stable during the pre-cultivation stages and increased 

significantly at the tillering stages of cereal crops like wheat and barley. Besides, this ratio provided better 

separability among maize, soybean, and sunflower during their heading/flowering stages. In this research, we utilize 

and derived the dual-pol Sentinel-1 SAR data to dual-pol radar vegetation index (DpRVI) for crop condition 

monitoring. (D. Mandal, et al., 2020) To create this new index, the degree of polarization is employed along with 

the eigenvalue spectrum produced by the dual-pol covariance matrix's eigen-decomposition. Leaving out the 
backscatter intensities for the polarisation channel (Chang et al., 2018; Periasamy, 2018), DpRVI is a ranging and 

valuation between 0 and 1.  

                We Performed and assessed the plant growth variables, on the basis of performance of the DpRVI with the 

help of Croptech PRO mobile application powered by Semantic Technologies and Agritech Services Pune for the 

ground truth plots of soybean crop, we perform a comparison and analysis between DpRVI, PAI, VWC, NDVI, 

LSWI for the soybean crop. also, assess the temporal variations of Soybean crop with DpRVI and biophysical 

parameters including PAI, VWC, NDVI, LSWI. 
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2. Study area  
          Latur is a district located in the Indian state of Maharashtra, situated within the Marathwada region. The city 

of Latur serves as the district headquarters. This region is situated on the Harishchandra- Balaghat plateau, at an 

elevation of approximately 636 meters above mean sea level. Latur is positioned near the Maharashtra-Karnataka 

state border. 

         The climate in Latur exhibits a wide temperature range, with temperatures varying between 13 to 41 degrees 

Celsius (55 to 106 degrees Fahrenheit). The monthly rainfall in Latur can fluctuate significantly, ranging from 9.0 

to 693 millimeters (0.35 to 27.28 inches). On average, Latur receives approximately 725 millimeters (28.5 inches) 

of rainfall annually. 

        In recent times, Latur has experienced the impacts of climate change. This includes extreme weather events 

such as heavy rainfall and hailstorms during the summer months. 

        Latur District primarily specializes in Soybean cultivation during the kharif season. Specifically, the Bhada 

Revenue Circle, situated in the Ausa Taluka of Latur district, serves as the study area. Bhada is also known for being 

a dominant region for Soybean cultivation, making it a key area of focus for agricultural research and monitoring. 

 
Fig 1: Location map of Bhada revenue circle in Latur district 

3. Dataset 

      In this study data are as follows: 

 Sentinel 1 SLC by ESA https://scihub.copernicus.eu/ 

 Sentinel 1 GRD by ESA https://scihub.copernicus.eu/ 

 Sentinel 2A by ESA https://scihub.copernicus.eu/ 

 MODIS by NASA  https://modis.gsfc.nasa.gov 

 Ground Truth Data using Croptech Pro mobile application by Semantic Technologies and Agritech Services 

Pune 

            In our current research, we focused on the Bhada revenue circle, which is known for its dominant Soybean 

crop cultivation. We adopted a systematic approach to sample 62 plots for Soybean analysis, following the principles 

http://www.ijrti.org/
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of the central limit theorem. These selected plots were registered and meticulously monitored using the Croptech 

Pro mobile application. This application provided us with valuable ground truth data, ensuring the accuracy and 

reliability of our study. 

 

          To monitor the crop growth at various phenological stages using the DpRVI, we relied on Sentinel-1 data. 

Specifically, we used Sentinel-1 Single Look Complex (SLC) data for crop classification purposes. Additionally, we 

utilized Sentinel-1 Ground Range Detected (GRD) data with VH polarization, which provided us with essential 

information for our research. 

         This comprehensive approach allowed us to assess and monitor Soybean crop growth in the Bhada revenue 

circle, enhancing our understanding of the crop's development and health throughout its lifecycle. 

 

4. Methodology 

 
Fig 2: Methodology for overall research 

 

4.1 SAR data preprocessing 

              In this study, we conducted various procedures on SAR data using the SNAP 9.0 Software. We utilized 

Sentinel 1-SLC multitemporal images, starting with the first image that was processed into TOPSAR split with the 

Interferometric Wide (IW) sub-swath product. We selected Bursts 3 to 7 out of a total of 9 Bursts and opted for both 

VV and VH polarizations. The IW swath comprises three sub-swaths: IW1, IW2, and IW3 in the range direction. 

Next, we applied the orbit file with a polynomial degree for radiometric calibration, selecting all the source bands 

in the processing parameters. The output was saved as a complex output, as complex values were necessary to 

generate the covariance matrix in subsequent steps. 

         Following this, we proceeded with the S-1 TOPSAR Deburst operation, selecting VV and VH polarizations in 

the processing parameters. Subsequently, we performed a subset operation in the UTM projected coordinate system 

http://www.ijrti.org/
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for the study area. Moving forward, we conducted Multilooking with a selection of all bands and generated the 

PolSAR matrix (C2). We selected C2 in the Polarimetric Matrix in the processing parameters. It's worth noting that 

all these steps were carried out using SNAP 9.0, a tool provided by ESA for processing Sentinel-1 images. 

          Once the C2 matrix/band was generated, we applied a polarimetric speckle filter. In the processing parameters, 

we selected the refined Lee filter with a window size of 5x5. We continued by specifying a number of looks as 1. 

          Subsequently, we proceeded with the range doppler terrain correction, selecting all source bands and sub-pixel 

accuracy with SRTM 3-Second data. The geocoded image was projected using the UTM Zone 43N projection in the 

processing parameters, and the default output was saved in BEAM DIMAP format. 

           For further analysis, each matrix element (C11, C22, C12, and C21) was stored individually in a binary format 

along with separate header information. DpRVI was then generated from the covariance matrix elements for each 

date. The DpRVI output was exported in GeoTIFF format for subsequent analysis, which included comparison with 

field and ground truth data. 

 

There are two types of processing for SAR data which are as follows: 

1) Single-date Processing 

 
Fig 3. Processing flow chart for Sentinel 1 data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijrti.org/


                    © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG  

  

IJNRD2310068 International Journal of Novel Research and Development (www.ijnrd.org)  
 

a594 

2) Multi-date Processing 

 

 
Fig 4. Processing flow chart for Sentinel 1 data 

 

4.2 Dual-pol Radar Vegetation Index (DpRVI)  

            Information about spatial and temporal variations in crop growth and changes in their phenology growth 

stages provided by radar backscatter intensity (Lopez-Sanchez et al., 2014). SAR indices give a good physical 

interpretable vegetation descriptor that we can use for vegetation monitoring. Dual-pol-based vegetation index using 

Sentinel-1 data would be advantageous for operational crop monitoring over fields. (D. Mandal et.al, 2020) for 

calculating the DpRVI degree of polarization and the eigenvalue spectrum to derive a new vegetation index from 

dual-pol SAR data.  The equation mentioned below explains the mechanism of DpRVI.   
           The equation and mechanism in DpRVI are explained as follows: 

DpRVI is calculated from dual-pol 2x2 covariance matric C2.  

                                 “C2 =[
𝑪𝟏𝟏 𝑪𝟏𝟐
𝑪𝟐𝟏 𝑪𝟐𝟐

]=[
(|𝑺𝒗𝒗|) (𝑺 ∗ 𝒗𝒉)

(𝑺𝒗𝒉𝑺𝒗𝒗) (|𝑺𝒗𝒉|𝟐)
]            (1) 

            The scattering information in terms of the degree of polarization and the eigenvalue spectrum is jointly 

utilized to derive the vegetation index from dual-pol SAR data. The state of polarization of an EM wave is 

characterized in terms of the degree of polarization (m) as proposed by Barakat (1977):  

                            m=√𝟏 −
𝟒|𝑪𝟐|

(𝑻𝒓(𝑪𝟐))𝟐
                   (2) 

           where Tr is the matrix trace operator (i.e., the sum of the diagonal elements) and |.| is the determinant of a 

matrix.  

           The two non-negative eigenvalues (λ1>= λ2>=0) are obtained from the eigen-decomposition of the C2 matrix 

which is then normalized with the total power Span (Tr(C2) = λ1 + λ2). The eigenvalues quantify the dominance of 

scattering mechanisms. Hence, the parameter beta is introduced as beta = lambda1/Span  

          The dominant scattering information is modulated with the degree of polarization (m), which in particular 

characterizes anisotropy for dual-pol SAR data. The scattering randomness is then obtained by subtracting m x beta 

from unity, as given in the following equation by (Mandal et al. 2020), and user guide SNAP Software.”” 

    

                        “DpRVI = 𝟏 −  𝒎𝜷, 𝟎 ≤ 𝐃𝐩𝐑𝐕𝐈 ≤ 𝟏         (3)” 

 

            Plant structural heterogeneity throughout the Sentinel-1 pre-processing phase for time-series data. 

reproductive to maturity stage may result in spatial variation within a parcel. as a result, at advanced development 

stages, the deviation in DpRVI values from the mean may rise.  

(Mandal D., et al. 2020) 

http://www.ijrti.org/


                    © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG  

  

IJNRD2310068 International Journal of Novel Research and Development (www.ijnrd.org)  
 

a595 

            The standard deviation of λ1/Span is lower than that of λ2/Span, and the mean value decreases with the plant 

growth stage. As a result, the product of m and corresponds to the dominating scattering scaling. As the crop canopy 

develops, the order of scattering increases. during the early stages of crop development (early leaf development), 

scattering from the soil surface is typically dominant. However, multiple scattering from the canopy and soil is more 

visible at the advanced vegetative stage. As a result, m is projected to decrease from the early to the mature vegetative 

stage. It should be observed that as the order of scattering increases, so does the sensitivity of the degree of 

polarization.   (Mandal, D., et al. 2020) 

                 The main reason for coupling m and β is their differential sensitivity to crop growth dynamics.   

 

 
                        fig 5: Dual-pol radar vegetation index for Bhada Revenue Circle (DpRVI) 

 

 

 

 

4.3 Plant Area Index (PAI) 
             The plant area index (PAI) represents the aggregated leaf and woody plant parts, such as stems, twigs, and 

fine branches, according to Macfarlane et al. (2007) and Zhao et al. (2011). Images of the canopy's cover and PAR 

readings above and below the canopy are used to directly compute the PAI, which may then be used to calculate the 

proportion of PAR transmitted through the canopy. Furthermore, the Plant Area Index assists in determining crop 

phenological transition dates. 

4.4 Vegetation Water Content (VWC) 

               Vegetation water content (VWC) is expressed in 0 to 1. It is an essential biophysical aspect of plant health, 

and its estimate may be used to monitor vegetation water stress in real time. 

4.5 Normalized Difference Vegetation Index (NDVI) 

http://www.ijrti.org/


                    © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG  

  

IJNRD2310068 International Journal of Novel Research and Development (www.ijnrd.org)  
 

a596 

               NDVI is a widely used index for assessing vegetation health and density. It measures the difference 

between near-infrared (NIR) and red (R) reflectance. NDVI is used to assess vegetation health and density 

            “The formula for NDVI is: NDVI = (NIR - R) / (NIR + R).” 

 

4.6 Land Surface Water Index (LSWI) 

                LSWI is used to detect the presence of water bodies on the land surface. It operates based on the principle 

that water absorbs energy at near-infrared wavelengths and reflects energy at shortwave-infrared wavelengths. LSWI 

primarily focuses on identifying the presence of water on the land surface 

             “The formula for LSWI is: LSWI = (NIR - SWIR) / (NIR + SWIR).” 

            For this research, we derived biophysical parameters using Google Earth Engine and coding techniques, 

specifically for selected plots of soybean crop. These plots were obtained from the Croptech Pro mobile application. 

In collaboration with Semantic Technologies and Agritech Services Pune, these 62 soybean plots from the Bhada 

revenue circle in Latur district were carefully selected. These plots were not only registered but also geotagged 

within the Croptech Pro mobile application. This application provided valuable crop information, including details 

such as farmer names, survey numbers, and crop inventory data. 

 

            With this rich dataset in hand, which enabled us to calculate several biophysical parameters, including 

DpRVI, PAI, VWC, NDVI, and LSWI, for the selected plots. These parameters were derived to assess and monitor 

crop growth performance at various phenological growth stages. 

 

           This comprehensive approach allowed us to analyze and understand the dynamics of soybean crop growth, 

leveraging both remote sensing data from Google Earth Engine and ground-truth information from the Croptech Pro 

mobile application. 

 

 
Fig 6: Map of selection of Soybean plots through Croptech PRO mobile application for 

derivation of DpRVI and Biophysical parameters.                                     
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5. Results and Discussions 

5.1 Soybean and Dual Polarimetric Radar Vegetation Index (DpRVI) 

             Soybean (Glycine max) cultivation in Maharashtra occurs in kharif  seasons. The kharif season runs from 

June to October. Soybean is known for its specific canopy architectural characteristics, particularly its bushy and 

random canopy structure after maturity, which consists of trifoliate leaves. In this study, we focused on the kharif 

season of 2022 in the Bhada revenue circle of Latur district 

           The developmental stages of soybean can be broadly categorized into two types: vegetative and reproductive 

stages. Within the vegetative stages, the emergence stage occurs within 1 to 10 days after sowing. The data from the 

government of Maharashtra indicated that the average sowing date ranged from June 13th to 20th. During this period, 

the DpRVI showed the lowest values. As the crop progressed through stages such as cotyledon (DAS 10 to 15), first 

trifoliate (DAS 15 to 17), second trifoliate (DAS 17 to 20), and V3 – V(n) (DAS 20 to 35), there was a gradual 

increase in DpRVI values. 

          In the reproductive stages, when flowering began (DAS 30-35), DpRVI values started to decrease. This decline 

continued through stages like full bloom (DAS 40-45), beginning pod (DAS 45-50), full pod (DAS 50-55), beginning 

seed (DAS 55-60), and full seed (DAS 60-70), where DpRVI reached a plateau condition. Subsequently, from the 

beginning of maturity (DAS 70-80) to full maturity (DAS 80 to 90-100), there was a notable decline in DpRVI 

values. This decrease in DpRVI was particularly evident between October 3rd and 10th when soybean was ready for 

harvest. 

 

                                         Fig 7 Soybean crop growth profile for showing DpRVI            

                 

         In this study, we examined three specific plots in the Bhada revenue circle, registered within the Croptech Pro 

mobile application and featuring comprehensive crop inventory data, including farmer names and survey numbers. 

These plots were selected randomly, and we present the derived DpRVI for each of them in Figures 8 and 9, 11 and 

12, and 14 and 15. These plots, labeled as 36, 39/42 and 85/A, exhibited DpRVI values ranging from 0.3 to 0.7, 0.1 

to 0.7, and 0.1 to 0.8, respectively. This DpRVI data allowed us to interpret the crop growth conditions throughout 

the season (June to October in Maharashtra) for these individual plots, considering their spectral, spatial, and 

temporal characteristics at different phenological growth stages. This information provides valuable insights into the 

health and development of the soybean crop in each plot. 

         Based on the observations from this study, we enabled that the DpRVI has the potential to be employed for 

precision farming and providing crop advice to farmers. It enables the tracking of crop vegetation dynamics for crop 

growth monitoring on an individual basis, which can improve farm management, aid in crop disease management, 

and assist in irrigation scheduling and other farming practices.                 
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Fig 8 Temporal variations of plot no 36                               Fig 9 Temporal variations of plot no 36 

Dates Growth Stages 
DpRVI    Plot 36       

Minimum Maximum Optimum 

06-Jun Pre DAS 0.1 0.3 0.2 

18-Jun VE Emergence 0.2 0.4 0.3 

24-Jul V1 Vegetative Trifoliate  0.1 0.4 0.25 

05-Aug V6 Vegetative Trifoliate 0.2 0.6 0.4 

17-Aug Full Pod Formation  0.3 0.6 0.45 

29-Aug Beginning Seed  0.3 0.7 0.5 

10-Sep Full Seed 0.3 0.6 0.45 

22-Sep Beginning Maturity 0.3 0.7 0.5 

04-Oct Full Maturity 0.5 0.8 0.65 

16-Oct Harvest 0.3 0.7 0.5 

                                                

                                                       Fig 10 Table of Temporal variations of plot no 36                                  

     
Fig 11 Temporal variations of plot no 39/42                           Fig 12 Temporal variations of plot no 39/42 

 

Dates Growth Stages 
DpRVI    Plot 39/42       

Minimum Maximum Optimum 

06-Jun Pre DAS 0.2 0.6 0.4 

18-Jun VE Emergence 0.1 0.6 0.35 

24-Jul V1 Vegetative Trifoliate  0.1 0.6 0.35 

http://www.ijrti.org/
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05-Aug V6 Vegetative Trifoliate 0.2 0.7 0.45 

17-Aug Full Pod Formation  0.1 0.6 0.35 

29-Aug Beginning Seed  0.2 0.7 0.45 

10-Sep Full Seed 0.3 0.7 0.5 

22-Sep Beginning Maturity 0.2 0.7 0.45 

04-Oct Full Maturity 0.3 0.7 0.5 

16-Oct Harvest 0.3 0.7 0.5 
                                              Fig 13 Table of temporal variations of plot no 39/42 

           

Fig 14 Temporal variations of plot no 85/A                                   Fig 15 Temporal variations of plot no 85/A 

 

Dates Growth Stages 

DpRVI    Plot 85/ A 

Minimum Maximum Optimum 

06-Jun Pre DAS 0.1 0.5 0.3 

18-Jun VE Emergence 0.1 0.6 0.35 

24-Jul V1 Vegetative Trifoliate 0.1 0.7 0.4 

05-Aug V6 Vegetative Trifoliate 0.2 0.7 0.45 

17-Aug Full Pod Formation 0.2 0.6 0.4 

29-Aug Beginning Seed 0.2 0.6 0.4 

10-Sep Full Seed 0.3 0.6 0.45 

22-Sep Beginning Maturity 0.2 0.7 0.45 

04-Oct Full Maturity 0.2 0.8 0.5 

16-Oct Harvest 0.3 0.8 0.55 
                                               

                                          Fig 16 Table of temporal variations of plot no 85/A 

5.2 Crop Biophysical Parameters 

               In this research we use biophysical parameters for crop growth monitoring which plays an important role 

in the season monitoring of soybean crop. PAI, VWC, and NDVI and LSWI are an indicator that plays an important 

role in crop growth monitoring and season monitoring of crop. Correlation of biophysical parameters with DpRVI 

can be used for monitoring crop growth conditions.   
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Date DPRVI PAI VWC LSWI NDVI Growth Stages 

06-Jun 0.34 0.37 -0.01 0.04 0.045 Day Before Sowing 

18-Jun 0.33 0.14 0.05 0.07 0.015 VE Emergence 

24-Jul 0.36 0.04 0.14 0.07 0.015 V1 Vegetative Trifoliate 

05-Aug 0.42 0.37 0.08 0.16 0.014 V6 Vegetative Trifoliate 

17-Aug 0.42 0.33 0.24 0.16 0.014 Full Pod Formation 

29-Aug 0.45 0.69 0.21 0.18 0.015 Beginning Seed 

10-Sep 0.53 0.92 0.14 0.18 0.140 Full Seed 

22-Sep 0.54 0.94 0.11 0.13 0.149 Beginning Maturity 

04-Oct 0.51 0.90 0.13 0.21 0.130 Full Maturity 

16-Oct 0.53 0.59 0.12 0.12 0.015 Harvest 
 

                       Fig 17 Table of Comparison between DpRVI and other biophysical variables                                  

 

              The DpRVI values for each field constantly increase as the vegetation growth increases from the emergence 

to the development stage to the beginning of pod development.  

              The observations presented in Figure 17 are based on the season average of the DpRVI and other biophysical 

parameters derived from 62 selected plots monitored through the Croptech Pro mobile application. These 

observations provided a comprehensive understanding of how these parameters change and evolve throughout the 

kharif season. Figure 17 likely illustrates how the average values of DpRVI, as well as other biophysical parameters 

such as PAI, VWC, LSWI, and NDVI, vary over the course of the growing season. By taking season averages with 

normalizes all indices. it's possible to identify trends and patterns in crop growth and health. 

           Additionally, Figure 18 presents a graphical representation that visually compares the temporal changes of 

DpRVI and the other biophysical parameters during the Kharif season. This comparison helped highlight 

correlations, fluctuations, and critical growth stages in the soybean crop. These graphical representations are valuable 

for gaining insights into how these parameters interact and influence each other over time, providing valuable 

information for crop monitoring and management decisions. 

 

              06-Jun (Day Before Sowing): just before sowing, the DpRVI is 0.34, indicating very limited vegetation.  

PAI is 0.37, suggesting a low plant canopy. VWC is -0.01, possibly indicating dry conditions. LSWI is 0.04, and the 

NDVI is 0.045, both of which indicate minimal vegetation. This corresponds to the "Day Before Sowing" stage. 

 

18-Jun (VE Emergence): By this date, after emergence, DpRVI remains low at 0.33, but there's an increase in PAI 

(0.14), suggesting the beginning of plant growth. VWC also increases to 0.05, indicating improved moisture levels. 

LSWI and NDVI also show slight increases. This corresponds to the "VE Emergence" (Vegetative Emergence) stage. 

 

24-Jul (V1 Vegetative Trifoliate): The crop has progressed to the "V1 Vegetative Trifoliate" stage. DpRVI remains 

steady at 0.36, while PAI and VWC continue to increase, indicating more developed vegetation. LSWI and NDVI 

also show slight increases. 

 

05-Aug (V6 Vegetative Trifoliate): At the "V6 Vegetative Trifoliate" stage, DpRVI increases to 0.42, indicating 

healthier vegetation. PAI is 0.37, VWC is 0.08, LSWI is 0.16, and NDVI is 0.014, all suggesting continued growth. 

 

17-Aug (Full Pod Formation): The "Full Pod Formation" stage sees DpRVI holding at 0.42, indicating stable 

vegetation. PAI and VWC are 0.33 and 0.24, respectively, suggesting a more developed crop canopy. LSWI and 

NDVI also show slight increases. 
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29-Aug (Beginning Seed): By the "Beginning Seed" stage, DpRVI has increased to 0.45, reflecting robust vegetation. 

PAI is notably higher at 0.69, indicating a dense plant canopy. VWC is 0.21, LSWI is 0.18, and NDVI is 0.015, 

further supporting healthy crop growth. 

 

10-Sep (Full Seed): At "Full Seed," DpRVI continues to rise to 0.53, confirming vigorous vegetation. PAI is 1.05, 

showing a well-developed plant canopy. VWC is 0.14, LSWI is 0.18, and NDVI is 0.140, indicating advanced growth 

stages. 

 

22-Sep (Beginning Maturity): The "Beginning Maturity" stage sees DpRVI at 0.54, with PAI at 0.94, suggesting a 

mature plant canopy. VWC is 0.11, LSWI is 0.13, and NDVI is 0.149, indicating the start of the maturity phase. 

 

04-Oct (Full Maturity): By "Full Maturity," DpRVI is 0.51, with PAI at 0.90, indicating a mature crop. VWC is 0.13, 

LSWI is 0.21, and NDVI is 0.130, suggesting the peak of maturity. 

 

16-Oct (Harvest): Finally, at the "Harvest" stage, DpRVI remains high at 0.53, but PAI decreases to 0.59 as the crop 

is harvested. VWC, LSWI, and NDVI values all decrease, indicating the end of the crop's growth cycle. 

          These observations demonstrate the progression of soybean crop growth and development throughout various 

phenological stages, with DpRVI and other parameters providing insights into the crop's health and maturity.  

 

 

 
  

                                          Fig 18 Comparison of DpRVI with Biophysical Parameters   

           In Figure 18, we conducted a comparative analysis of DpRVI with various biophysical parameters. To assess 

the effectiveness of using DpRVI to estimate biophysical parameters, we employed a linear regression model for 

cross-validation. This analysis aimed to evaluate the relationship between DpRVI and specific crop physical 

parameters, including the determination coefficient (R2) for DpRVI in relation to PAI, VWC, NDVI, and LSWI, 

resulting in an R2 value of 0.85. 

            Notably, the analysis revealed that DpRVI displayed the strongest correlation with the plant area index (PAI) 

and a moderate correlation with VWC, NDVI, and LSWI. These findings are graphically represented in Figure 17, 

which showcases the ranges of these biophysical parameters concerning DpRVI. These observations were aligned 

with specific dates corresponding to satellite data acquisition for soybean crops. 
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            Furthermore, we conducted a multiple regression analysis involving DpRVI and the other biophysical 

parameters (i.e., PAI, VWC, NDVI, and LSWI), resulting in an R2 value of 0.85, as depicted in Figure 19. 

            However, it's crucial to acknowledge that while these findings indicate strong relationships between DpRVI 

and certain biophysical parameters, it may not be appropriate to assert that all biophysical parameters hold equal 

significance in predicting crop growth during crop monitoring. The importance of these parameters can indeed vary 

significantly, as observed in our study. We noted spatial and temporal variability in these parameters, influenced by 

different cropping patterns in various study areas. This underscores the need for careful consideration of the specific 

context and conditions when interpreting the significance of each biophysical parameter in crop growth monitoring.  

 

Regression Statistics 

Multiple R 0.92 

R Square 0.85 

Adjusted R Square 0.75 

Standard Error 0.042 

Observations 62 
 

 Fig 19: Correlation regression analysis between vegetation index (DpRVI) and Crop Physical parameters i.e. 

 Plant area index (PAI), vegetation water content (VWC), Normalized difference vegetation index (NDVI) and Land surface water index 

for Soybean with linear regression. 

 

6. Limitations 

In this study, we selected a Bhada revenue circle, Latur district in Maharashtra as our study area, we found some 

limitations which are mentioned as follows: 

1. Fragmentation of land in Maharashtra. 

2. Small land holdings of farmers. 

3. Intercropping in cropping patterns in major crops like Soybean- cotton  

4. Trap trees, large canopy trees, forest trees, orchard like plantation of teak plants are present in farms, so 

spectral signatures can be differed and may be affected by values in the index or other parameters 

7. Benefits 

1. Synthetic Aperture Radars (SARs) use microwave frequencies to broadcast and receive energy. The response 

recorded by these sensors is substantially determined by the target's structure and dielectric characteristics.  

2. The structure of a canopy varies per crop and changes as the crop grows. SARs respond very well to structural 

variations, allowing them to properly identify crop types and to be sensitive to numerous crop biophysical 

factors (PAI, VWC, NDVI, LSWI).  

3. Although optical sensors have traditionally been used for crop monitoring, advances in SAR application 

research, combined with the availability of SAR data at various frequencies and polarizations, have increased 

the profile of these sensors for agricultural monitoring.  

4. "all-weather” capabilities of SARs make them useful in a variety of situations. 
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8. Conclusion 

            This study focused on experimenting with the Dual Polarimetric Radar Vegetation Index (DpRVI) derived 

from σVH0 / σVV0 data for Soybean crops. The index is based on the degree of polarization (m) and the dominant 

normalized eigenvalue (β = λ1/ Span) obtained from the 2 × 2 covariance matrix. Our particular emphasis was on 

tracking the phenological growth stages of Soybean crops and their relationship with independent biophysical 

variables: Plant Area Index (PAI), Vegetation Water Content (VWC), Normalized Difference Vegetation Index 

(NDVI), and Land Surface Water Index (LSWI), all in relation to the dependent variable, DpRVI. 

            Significant correlations were observed between these biophysical parameters and the Dual Polarimetric 

Radar Vegetation Index (DpRVI). DpRVI played a crucial role in assessing temporal variations in crop growth 

monitoring, predicting crop health, and monitoring overall crop development. We were able to describe the time 

series data, emphasizing each crop's phenological stage. Linear regression statistical analysis allowed us to quantify 

the relationship between PAI, VWC, and NDVI with DpRVI. 

           We found that Sentinel-1A data, with its 6-day revisit period, proved highly valuable for crop health 

monitoring, particularly during the kharif season when heavy cloud cover often obscures optical data. 

           In the context of India's population growth challenge and the need to increase the productivity to double 

farmers' income, the government has established a committee to support this goal, which is closely linked to crop 

yield and production. Hence, accurate crop monitoring, which measures and assesses crop yields, is of paramount 

importance. 

           The study's results indicates that using dual-polarimetric radar data enhances the accuracy of crop monitoring 

compared to single-polarization data. Furthermore, it underscores the significance of selecting an appropriate 

vegetation index capable of effectively capturing changes in crop growth dynamics. Overall, the utilization of 

Sentinel-1 SAR data and dual-polarimetric vegetation indices proves to be a valuable tool for crop monitoring and 

management, offering essential insights for crop yield estimation, crop mapping, and early detection of crop stress 

or damage. However, it's crucial to acknowledge that this approach has its limitations, and further research is 

necessary to fully comprehend its potential and constraints across various agricultural systems and environments. 
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