
 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310165 International Journal of Novel Research and Development (www.ijnrd.org) b607

Remote Debugging in Edge Computing

Environments for Containerized Applications

Nakul Ashok Gade
MVPS’s Rajarshi Shahu Maharaj Polytechnic, Nashik

Vikas Pralhad Gawai
MVPS’s Rajarshi Shahu Maharaj Polytechnic, Nashik

Ankita Kamlakar Pangavhane
MVPS’s Rajarshi Shahu Maharaj Polytechnic, Nashik

Sachin Ashok Surywanshi
MVPS’s Rajarshi Shahu Maharaj Polytechnic, Nashik

Priya Gulabrao Deshmukh
MVPS’s Rajarshi Shahu Maharaj Polytechnic, Nashik

ABSTRACT

Abstract—With the development of IoT, Cloud

Computing, and Industry 4.0, the term edge computing

(EC) acquired popularity once more. The difficulties of

developing applications in the EC environment are

described in this paper, and a container-based approach

leveraging remote debugging at the edge is suggested.

Application developers can now write code in the

production environment thanks to this container. Our

solution speeds up development and makes in-place

debugging easier for EC setups.

Keywords

Edge computing, remote debugging, Docker, containers, the

Internet of Things, and Industry 4.0 are a few associated terms.

INTRODUCTION

Machine learning, big data platforms, cloud infrastructures, and

the Industrial Internet of Things (IIoT) may all be utilized to

optimize industrial processing [1]. The term "Industry 4.0" is

also used for this new revolution. The capacity of edge
networks has not grown in the majority of the world's regions

over the previous decade, despite the cloud computing and

storage capacities required to maintain the large volume and

velocity of IIoT sensor data scaling rather effectively [2]. In
order to solve this issue, 5G and mobile edge computing, or

MEC, deployments are growing [3, 4]. Instead of sharing a

wide-area network (WAN), placing computer resources closer

to IoT devices minimizes latency and increases per-device
bandwidth at the LAN level. Instead of processing all the data

in the cloud, EC moves some of it to the edge (i.e., fog) to

reduce network bandwidth [1], [7].

In the EC sector, industrial use cases like "smart
manufacturing" are highly popular [5]. For instance, a large

number of sensors in a Computer Numeric Control (CNC)

machine might be combined and modeled to assess machine

status, forecast tool breakage events, and estimate the quality
of the output. These sensors send rapidly and huge quantities

of data to the appropriate analysis channels. However, quick

connections and potent processors are necessary for real-time

data collection and analysis. Following security-related
difficulties and these performance issues are making EC more

and more appealing for manufacturing. G-Codes are used by

users of manufacturing equipment to produce parts. These

program files for various systems and parts indicate highly
secret designs for vehicles like cars, planes, spacecraft, or

military gear. As a result, many factories are not even permitted

to have internet access. However, analysis of data is required to

increase both the quality and speed of their output.

The technology of containerization is widely employed in edge

computing as well as software development. Docker [8], which

facilitates the development, deployment, and operation of

distributed applications, is one of the most widely used
application containers. Since there is no requirement to start a

full-stack OS for each application, it is much smaller and

quicker over virtual machine (VM) technologies. Only the

running-time requirements of applications, like as libraries,
environment variables, and external files, are retained by

containers. Vendor-specific IIoT apps are created for a variety

of platforms and operating systems. Containerization can help

developers manage this variability more readily. However,
whereas attempting to debug the programs, this ease has a cost.

DIFFICULTIES OF APP

DEVELOPMENT AT THE EDGE

IIoT application development is different from the creation of

desktop applications in general. Application interfaces and

apps offered by manufacturers are employed for security
concerns because programs cannot get machine data on their

own. These monolithic methods are challenging to handle at

the edge, hence container-based systems have lately gained

popularity. However, containerization has additional

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310165 International Journal of Novel Research and Development (www.ijnrd.org) b608

drawbacks, including the need for continuous enhancement and

Continuous Deployment (CI/CD) processes to be triggered for

any change to the code base while creating, releasing, and

evaluating apps using containers. The issues in developing IIoT

edge applications that we have seen are as follows:
1. There are several aspects of edge hardware settings that

set them apart from desktop development environments,

including their computing capabilities, operating

systems, connectivity to networks, and power
requirements. System libraries, available functionality,

and encoding can all vary in the software domain. When

creating IIoT applications, these ambiguities demand

particular care and attention.
2. Synthetic data is difficult to model industrial

circumstances; actual machine data is needed.

Additionally, testing with data at high speeds helps to

better understand how the system responds in actual
situations. It is challenging to acquire real-time data from

CNC machines that transport gigabytes of information

per second and have microsecond latency.

3. In order to access machine data, edge apps typically rely
on those of other vendors. Engineers must get knowledge

about and keep up with vendor-specific data gathering.

For software engineers, this is an added expense that they

don't need. Additionally, developers must report issues
with these vendor programs and wait for patches, which

are frequently tiresome and time-consuming.

4. Applications for the IIoT are now using containerization.

Platform independence is increased, although there are
additional expenses associated with changing some

configuration files. The cycle must be repeated after each

modification, requiring another containerization of the

application. The new container must then be transferred
to the edge devices via a customized remote environment

interface before being evaluated. The entire process must

be performed in the event of a minor bug, and an updated

version of the program must be released. The developers
who operate in the EC context find this to be a tiresome

task.

5. To improve software quality and examine real-world

case studies, remote debugging methods are frequently
employed in machine-dependent development. When

working with closed industrial systems, developers are

only left with the options of remote and black-box

debugging.

PROPOSED METHOD

We built a remote-debugging mechanism to solve these issues.
Figure 1 shows the suggested method's architectural layout. All

the requirements (software packages and modules) needed for

development and runtime are added to a specific Docker

container that has been constructed. Now, other programs can
be built and run within the edge device. This application-by-

itself remote debugging container is exclusively employed

when developing.

The efficiency of IIoT applications in a production setting can
be evaluated using the suggested method. An encrypted link to

the edge device ensures security. Running the appropriate CNC

program makes obtaining machine data simple because the

application has been tested and debugged on a real device.

Finally, the use of remote debugging helps to resolve the issues

with containerized apps. Without having to repeatedly create

new containers, new modifications in the applications may be

directly tested inside the edge device. A secured backup of the
application executable to the appropriate directory inside the

remote debugging program container can be used to

accomplish this. Any port (we used 2232) can be used to map

the container to the outside world. A safe connection for safe
sharing of files is provided by an SSH server running inside the

container. The following section provides more information on

these and the DockerFile.

A. Remote Debugging

For various programming languages and frameworks, remote
debugging is offered by the Microsoft Visual Studio (VS) 2017

IDE [12]. It enables programmers to create their apps in

Windows and run them in Linux, or the other way around. The
original code is transferred to the remote surroundings, where

it is then built and run on the device.

Additionally, aspects of the remote environment are fetched

back to the development environment so that the developer may
see the remote environment's libraries and code auto-

completion (like IntelliSenseTM). It's the same as working in a

production setting. Instead of fixing problems, developers now

have more time to work on creating new features and testing
them in real-world situations.

B. DockerFile and Dependencies

As seen in Figure 2, the DockerFile made using our technique

begins by including a debian-based base Linux image. Then,
more necessary packages are included, such as rsync, ssh

server, cmake, gdb, and others. To move and synchronize

source files between machines, use Rsync. The files are then

assembled and run inside the edge device. Any open port can
be utilized for SSH. Gdb, G++, Cmake, and Wget are the

compiler and debugging tools needed for this DockerFile. The

fact that our Docker picture is not a release image must be

understood. It is only utilized for the application developer for
testing and development purposes. Typically, the Docker

image would contain simply the compiled application files.

C. Security

We cautiously enable debug messages to and from the remote
container because security is of the utmost concern. The

internal port of the container is mapped to the external port

using the docker-compose.yml file, as seen in Figure 3. In this

illustration, the edge device's port 2222 is mapped to port 2222
of the application. However, the outcomes of debugging cannot

be acquired by the IDE if we merely enable security. The "--

security-opt seccomp= unconfined" option is therefore

included to permit unrestricted access to the desktop
environment for development. The "SYS_PTRACE" capability

is a key that is also important in this file. System and memory

records are returned outside the container using the key. The

development of C++ applications using gdb especially makes

use of this functionality.

RELATED WORK

We seek to fill a gap in the literature about remote debug and

deployment for EC. Premsankar, et al.'s [9] assessment of edge

computing's viability for new IoT applications focuses on

mobile gaming. Since network capacity is constrained and
causes delay in mobile games, they draw the following

conclusion:

Figure 1. The architecture of the proposed container method.

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310165 International Journal of Novel Research and Development (www.ijnrd.org) b609

Figure 2. The DockerFile of the proposed container method

Figure 3. The docker-compose.yml of the proposed method

Figure 4. edge computing for speech recognition in container

Even a small quantity of EC usage enhances the quality of the

gaming experience. Plastiras, et al. [10] address the advantages
and disadvantages of edge intelligence. They demonstrate an

application scenario where a correctly constructed

Convolutional Neural Network (CNN) can execute computer

vision tasks in real time on edge computing devices.
Benchmarking amongst cloud providers' new Edge offerings

becomes required as they are released. EdgeBench was created

by Das, et al. [11] to compare the Amazon AWS Green Glass

and Microsoft IoT Edge services. For CPU light tasks, they
discovered that these services offer an appealing alternative to

cloud computing.

Conclusion and Future Work

The new standard for IIoT app development is edge
computing (EC), however its implementation presents new

difficulties. In this research, we recognized such difficulties

and suggested a brand-new approach to remote debugging

to get around them. Our approach requires no additional
configuration work but offers significant development time

and security gains. All of the application dependencies

needed during compilation and runtime are included in the

remote debugging container. Any program may be privately
and securely debugged within the edge device by opening a

specified port and launching an SSH server within the

container. This can address the issues with edge application

development. Remote C++ application development was
made possible by this study.

ACKNOWLEDGEMENT

The Siemens Turkey Corporate Technology division funded

this research project. We appreciate their ongoing assistance
and amenities

References

1) K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. P. C.

Rodrigues and M. Guizani, "Edge Computing in the

Industrial Internet of Things Environment: Software-

Defined-Networks-Based Edge-Cloud Interplay," in IEEE

Communications Magazine, vol. 56, no. 2, pp. 44- 51,

Feb. 2018.

2) P. Corcoran and S. K. Datta, "Mobile-Edge Computing

and the Internet of Things for Consumers: Extending

cloud computing and services to the edge of the network,"

in IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp.

73-74, Oct. 2016.

3) W. Shi and S. Dustdar, "The Promise of Edge

Computing," in Computer, vol. 49, no. 5, pp.

78-81, May 2016. doi: 10.1109/MC.2016.145

FROM debian:stretch

Install dependencies to compile and execute C++

apps RUN apt-get update && apt-get -y upgrade && apt-

get install -y -f --no-install-recommends \

cmake wget gdb g++ rsync build-essential openssh-

server && rm -rf /var/lib/apt/lists/*

#Prepare SSH server settings and credentials

RUN echo "mkdir /var/run/sshd" >>

/usr/bin/runme.sh RUN echo "echo \"root:root\" |

chpasswd" >>

/usr/bin/runme.sh

RUN echo "echo \"PermitRootLogin yes\" >>

/etc/ssh/sshd_config" >> /usr/bin/runme.sh

SSH login - Otherwise user is kicked out after

login RUN echo "sed

's@session\s*required\s*pam_loginuid.so@session

optional pam_loginuid.so@g' -i /etc/pam.d/sshd" >>

/usr/bin/runme.sh

RUN echo "echo \"export VISIBLE=now\" >>

/etc/profile"

>> /usr/bin/runme.sh

#Install latest version of the

CMake RUN wget --no-check-

certificate

https://cmake.org/files/v3.13/cmake-3.13.0-

rc2.tar.gz RUN tar -xvf cmake-3.13.0-rc2.tar.gz

RUN cd cmake-3.13.0-rc2 && bootstrap && make && make

install

Start SSH server on port 2222

CMD ["/usr/sbin/sshd", "-p 2222", "-D"] –D

version: '3'

services:

remotedebugapplication:

build: .

security_opt:

- seccomp:unconfined
ports:

- "2222:2222"

cap_add:

- SYS_PTRACE

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310165 International Journal of Novel Research and Development (www.ijnrd.org) b610

4) W. Yu et al., "A Survey on the Edge Computing for the

Internet of Things," in IEEE Access, vol. 6, pp. 6900-

6919, 2018.

5) OpenFog Consortium Arch. Working Group, "OpenFog

reference architecture for fog computing." OPFRA001

20817 (2017): 162.

6) A. Ahmed, G. Pierre. “Docker Container Deployment in

Fog Computing Infrastructures”. IEEE EDGE 2018 -

IEEE International Conference on Edge Computing, Jul

2018, San Francisco, CA, United States. IEEE, pp.1-8,

2018.

7) W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge

Computing: Vision and Challenges," in IEEE Internet of

Things Journal, vol. 3, no. 5, pp. 637-646, Oct. 2016.

8) Docker Inc., “Docker: Build, ship, and run any app,

anywhere,” https://www.docker.com/

9) G. Premsankar, M. Di Francesco and T. Taleb, "Edge

Computing for the Internet of Things: A Case Study," in

IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1275-

1284, April 2018.

10) G. Plastiras, M. Terzi, C. Kyrkou and T. Theocharidcs,

"Edge Intelligence: Challenges and Opportunities of

Near-Sensor Machine Learning Applications," 2018 IEEE

29th International Conference on Application-specific

Systems, Architectures and Processors (ASAP), Milan,

2018, pp. 1-7.

11) A. Das, S. Patterson and M. Wittie, "EdgeBench:

Benchmarking Edge Computing Platforms," 2018

IEEE/ACM International Conference on Utility and Cloud

Computing Companion (UCC Companion), Zurich,

Switzerland, 2018, pp. 175-180.

12) “Remote Debugging a Visual C++ Project in Visual

Studio”, Microsoft Docs, Accessed Feb. 2, 2019,

https://docs.microsoft.com

13) /en-us/visualstudio/debugger/remote-debugging-

cpp?view=vs-2017

