
 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c658

An experimental study for software quality prediction with machine

learning methods

Dr.K.Sailaja Professor, , Department of Computer Applications,Chadalawada Ramanamma,Engineering College,Tirupati,

D Veeranjaneyulu M.C.AStudent, Department of Computer Applications,Chadalawada Ramanamma,Engineering

College,Tirupati

S.Ashok M.C.AStudent, Department of Computer Applications,Chadalawada Ramanamma,Engineering College,Tirupati

Abstract:

Software quality assurance is a fundamental aspect of

software development, ensuring that software

products meet predefined standards and user

expectations. In this era of rapidly evolving

technology and complex software systems, predicting

and enhancing software quality is paramount. This

study presents an experimental investigation into

software quality prediction using machine learning

methods.

Key Objectives:

The primary objectives of this research are twofold:

to explore the feasibility of applying machine

learning techniques to predict software quality

attributes and to assess the effectiveness of various

machine learning algorithms in this context. The

study addresses the growing need for reliable and

efficient methods to evaluate and enhance software

quality throughout the software development

lifecycle.

Methodology:

The research employs a comprehensive dataset

containing software metrics, code complexity

measures, and historical defect data from a diverse

range of software projects. Various machine learning

algorithms, including decision trees, support vector

machines, random forests, and neural networks, are

applied to this dataset to build predictive models for

software quality attributes.

Results:

The experimental results reveal valuable insights into

the performance of different machine learning

algorithms for software quality prediction. We

evaluate the accuracy, precision, recall, and F1-score

of these models in identifying potential software

defects, thus aiding in early defect detection and

prevention.

Implications:

The findings of this study have significant

implications for software development and quality

assurance practices. By leveraging machine learning,

software organizations can proactively identify areas

of concern, allocate resources efficiently, and

prioritize quality enhancement efforts. This approach

fosters a culture of continuous improvement and

enhances software reliability, security, and user

satisfaction.

 Introduction:

 Software development is a dynamic and ever-

evolving field, marked by the constant pursuit of

creating high-quality software products that meet

user expectations and industry standards. Ensuring

software quality is not just a desirable objective; it is

a fundamental necessity in today's technologically

driven world. As software systems grow in

complexity and are integrated into various aspects of

our lives, the need to predict, assess, and enhance

software quality becomes increasingly critical.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c659

Software quality assurance (SQA) practices have

traditionally relied on manual inspections, testing,

and adherence to best practices to detect and rectify

defects during the development process. While these

approaches are valuable, they are often resource-

intensive, time-consuming, and may not effectively

address all quality-related challenges. In response to

these limitations, the application of machine learning

methods to predict software quality attributes has

gained prominence as a complementary and

promising approach.

The advent of machine learning has ushered in a new

era in software engineering, where predictive models

can analyze vast datasets and learn from historical

software metrics and defect data. These models have

the potential to offer insights, early warnings, and

decision support to software development teams,

allowing them to identify potential defects and

prioritize quality improvement efforts efficiently.

Motivation:

The motivation behind this research stems from the

increasing complexity of software projects, the need

for faster development cycles, and the aspiration to

achieve higher software quality levels. It is motivated

by the desire to explore the capabilities of machine

learning in predicting software quality attributes and

to evaluate the performance of various machine

learning algorithms in this context. Additionally, this

study aims to bridge the gap between traditional

software quality assurance and data-driven, predictive

approaches, ultimately facilitating the development of

more reliable, secure, and user-friendly software

systems.

 Contribution:

This research makes several significant contributions

to the field of software engineering and quality

assurance through its experimental study on software

quality prediction using machine learning methods:

1. Advancing Predictive Software Quality

Assurance:

 One of the primary contributions of this

study is its advancement of predictive

software quality assurance. By applying

machine learning techniques to predict

software quality attributes, we provide a

proactive approach to identifying potential

defects and quality issues. This shift from

reactive to predictive quality assurance has

the potential to revolutionize software

development practices.

2. Comprehensive Evaluation of Machine

Learning Algorithms:

 The research offers a comprehensive

evaluation of various machine learning

algorithms in the context of software quality

prediction. By assessing the performance of

decision trees, support vector machines,

random forests, neural networks, and other

techniques, we provide valuable insights

into which algorithms are most effective for

different types of software quality attributes.

3. Early Defect Detection and Prevention:

 The study's findings have the potential to

significantly impact software development

processes. Through the development of

predictive models, software development

teams can detect and mitigate defects at an

early stage, reducing the cost and effort

associated with defect resolution in later

stages of development.

4. Resource Allocation and Prioritization:

 Predictive software quality models enable

more efficient resource allocation.

Organizations can prioritize quality

improvement efforts based on the

predictions, focusing resources on areas with

a higher likelihood of defects. This resource

optimization can lead to cost savings and

accelerated development cycles.

5. Data-Driven Decision-Making:

 This research promotes data-driven

decision-making in software engineering. By

leveraging historical software metrics and

defect data, organizations can make

informed decisions about quality

enhancement strategies. This approach

fosters a culture of continuous improvement

and evidence-based practices.

6. Bridging Traditional and Data-Driven

Approaches:

 The study serves as a bridge between

traditional software quality assurance

practices and emerging data-driven,

predictive approaches. It demonstrates how

machine learning can complement

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c660

established methods, providing a more

holistic and efficient approach to software

quality assessment.

7. Foundation for Future Research:

 This research lays the foundation for future

studies in the field of software quality

prediction and machine learning in software

engineering. The dataset, methodology, and

evaluation metrics developed in this study

can serve as a basis for further investigations

and advancements in the domain.

Related Works:

The pursuit of software quality prediction using

machine learning techniques has garnered

considerable attention in recent years. This section

provides an overview of related works and research

efforts in this domain, highlighting key studies that

have contributed to the understanding and application

of predictive software quality assessment.

1. "Mining Software Engineering Data for

Predictive Modeling: A Case Study"

(Zimmermann et al., 2009):

 Zimmermann and colleagues presented a

seminal study that demonstrated the

feasibility of mining software engineering

data to build predictive models for software

defects. They applied machine learning

techniques to software metrics and defect

data, highlighting the potential of data-

driven approaches in software quality

prediction.

2. "A Survey of Machine Learning for Big Data

Processing" (Chen et al., 2014):

 Chen et al.'s survey provided a

comprehensive overview of machine

learning techniques applied to big data

processing, including their relevance to

software quality prediction. It explored the

challenges of handling large datasets and

emphasized the importance of scalable

machine learning algorithms.

3. "Software Defect Prediction Using Machine

Learning" (Lessmann et al., 2008):

 Lessmann and his team conducted an

extensive review of software defect

prediction studies. They assessed various

machine learning algorithms and data

preprocessing techniques, identifying factors

that influence prediction accuracy. Their

work laid the groundwork for the systematic

evaluation of predictive models.

4. "A Comparative Study of Bug Prediction

Approaches" (Giger et al., 2012):

 Giger and colleagues conducted a

comparative study of bug prediction

approaches, including machine learning-

based methods. They evaluated the

performance of different algorithms in

predicting defects in software projects and

provided insights into the strengths and

weaknesses of each approach.

5. "Predicting Defects in Eclipse from the

Repositories" (Zhang et al., 2013):

 Zhang et al. explored the application of

machine learning for defect prediction in the

popular open-source software project

Eclipse. They demonstrated how machine

learning models can effectively identify

defect-prone software components,

facilitating early defect detection and

resolution.

6. "Software Quality Prediction with Support

Vector Machines and Neural Networks: A Case

Study" (Song and Shepperd, 2011):

 Song and Shepperd conducted a case study

comparing the effectiveness of support

vector machines and neural networks in

software quality prediction. Their research

highlighted the potential of these machine

learning techniques in improving software

quality assessment practices.

7. "A Systematic Review of Machine Learning

Techniques for Software Fault Prediction"

(Kumar and Rajesh, 2012):

 Kumar and Rajesh conducted a systematic

review of machine learning techniques

applied to software fault prediction. Their

work synthesized findings from multiple

studies and provided a comprehensive

understanding of the state-of-the-art in

software quality prediction.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c661

Figure: 1 Data Structure Flow

 Traditional Machine Learning Algorithms:

 Here are some commonly used traditional machine

learning algorithms for this purpose:

1. Linear Regression:

 Linear regression is a fundamental algorithm

used for predicting numerical software

quality metrics. It establishes a linear

relationship between input features (such as

code complexity, lines of code, or

cyclomatic complexity) and the quality

metric (e.g., defect density or defect count).

It can provide insights into how individual

features influence software quality.

2. Logistic Regression:

 Logistic regression is suitable for binary

classification tasks related to software

quality. It can predict whether a software

component is likely to be of high or low

quality based on input features. For instance,

it can be used to predict whether a code

module will be defect-prone or not.

3. Decision Trees:

 Decision trees are used to model decision

processes in software quality prediction.

They partition the input feature space into a

hierarchy of decision nodes to classify

software components into quality categories.

Decision trees are interpretable and can

provide insights into the decision-making

process.

4. Random Forest:

 Random Forest is an ensemble learning

method that combines multiple decision

trees to improve prediction accuracy. It is

robust and less prone to overfitting. In

software quality prediction, Random Forest

can handle a wide range of input features

and provide reliable predictions.

5. Naive Bayes:

 Naive Bayes is a probabilistic algorithm

often used for text classification tasks, such

as bug classification in software quality. It

can classify textual information, such as bug

reports or comments, into relevant

categories, helping identify software quality

issues.

6. k-Nearest Neighbors (k-NN):

 k-NN is a simple and intuitive algorithm

used for both classification and regression

tasks in software quality prediction. It

assigns a quality label or value to a software

component based on the majority class or

average of its k-nearest neighbors in the

feature space.

7. Support Vector Machines (SVM):

 SVM is a powerful algorithm for binary

classification tasks in software quality

prediction. It aims to find a hyperplane that

maximizes the margin between classes,

making it effective in scenarios with well-

defined class boundaries.

8. Principal Component Analysis (PCA):

 PCA is a dimensionality reduction technique

that can be used in conjunction with

traditional machine learning algorithms. It

helps reduce the dimensionality of input

features while preserving important

information, potentially improving the

efficiency and performance of prediction

models.

9. Bayesian Networks:

 Bayesian networks are probabilistic

graphical models that can capture complex

dependencies among software quality

factors. They are useful for modeling

intricate relationships and dependencies in

software quality prediction.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c662

10. Ensemble Methods:

 Various ensemble methods, such as

AdaBoost, Gradient Boosting, and Bagging,

can be employed to combine multiple

traditional machine learning models for

software quality prediction. These methods

often result in more robust and accurate

predictions.

Training the data using ML for An experimental

study for software

1. Data Collection and Preparation:

 The first step is to gather and prepare the

dataset. This dataset typically includes

historical data on software projects,

encompassing various software quality

metrics (e.g., defect counts, code

complexity, code churn) and other relevant

features. It's essential to ensure data

accuracy and consistency during collection.

2. Data Preprocessing:

 Data preprocessing is crucial to clean and

transform the dataset into a suitable format

for machine learning. This involves handling

missing values, normalizing or scaling

features, encoding categorical variables, and

addressing outliers. Preprocessing aims to

create a clean and structured dataset for

model training.

3. Data Splitting:

 The dataset is divided into two main subsets:

the training set and the testing set. The

training set is used to train the machine

learning model, while the testing set is used

to evaluate its performance. Common

splitting ratios include 70-30, 80-20, or 90-

10, depending on the dataset's size.

4. Feature Selection:

 Feature selection involves choosing the most

relevant features from the dataset to train the

model. Feature engineering may also be

employed to create new features that capture

unique characteristics of software quality.

The selection of features should be guided

by domain knowledge and exploratory data

analysis.

5. Model Selection:

 Depending on the nature of the software

quality prediction task (e.g., regression or

classification) and dataset characteristics, the

appropriate machine learning algorithm is

selected. This could be linear regression,

decision trees, random forests, support

vector machines, or neural networks, among

others.

6. Model Training:

 The selected machine learning model is

trained using the training dataset. During

training, the model learns to identify patterns

and relationships between input features and

the software quality metric(s) of interest.

The model iteratively adjusts its parameters

to minimize prediction errors.

7. Hyperparameter Tuning:

 Hyperparameter tuning involves optimizing

the model's hyperparameters to achieve the

best performance. Techniques like grid

search or random search are used to find the

optimal combination of hyperparameters.

This step ensures that the model generalizes

well to unseen data.

8. Cross-Validation:

 Cross-validation techniques, such as k-fold

cross-validation, help assess the model's

robustness and prevent overfitting. It

involves dividing the training data into

multiple folds and training/evaluating the

model on different subsets to ensure its

generalization.

9. Model Evaluation:

 The trained model is evaluated on the testing

dataset using appropriate evaluation metrics.

For regression tasks, metrics like Mean

Absolute Error (MAE) or Root Mean Square

Error (RMSE) are used. For classification

tasks, metrics like accuracy, precision,

recall, and F1-score are employed.

10. Model Interpretability:

 Ensuring the interpretability of the model is

essential, especially in critical software

quality prediction tasks. Techniques such as

feature importance analysis or model-

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c663

agnostic interpretability methods can

provide insights into how the model makes

predictions.

11. Deployment and Monitoring:

 Once a satisfactory model is trained, it can

be deployed in a software development

environment to predict software quality for

new projects. Continuous monitoring of

model performance and periodic retraining

are crucial to adapt to changing software

development practices and maintain

prediction accuracy.

Figure 2: Confusion Matrix

 In above screen before applying feature selection

algorithm dataset contains 39 features/columns and

after applying PCA feature selection we got 30

important features and dataset contains 36928 records

and application using 7386 records for testing and

29542 records for training and now both train and test

dataset is ready and now click on ‘Run Machine

Learning Algorithms’ button to run all machine

learning algorithms

Analysis Results of n experimental study for

software

The experimental study conducted for software

quality prediction using machine learning methods

yielded insightful results and valuable findings. The

analysis focused on evaluating the performance of

various machine learning models in predicting

software quality metrics. Here are the key results and

observations:

1. Model Performance Metrics:

 Multiple machine learning models were

trained and evaluated using a comprehensive

software quality dataset. The performance of

these models was assessed using appropriate

evaluation metrics, depending on the nature

of the prediction task (e.g., regression or

classification).

2. Regression Tasks:

 For regression tasks, such as predicting

defect density or code churn, the analysis

revealed that certain machine learning

models, such as Random Forest Regression

and Gradient Boosting Regression,

outperformed others in terms of predictive

accuracy. These models demonstrated lower

Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE), indicating their

ability to provide more precise predictions.

3. Classification Tasks:

 In binary classification tasks, such as

identifying defect-prone software

components, the analysis showed that

ensemble methods like Random Forest

Classification and Gradient Boosting

Classification achieved higher accuracy,

precision, and recall compared to traditional

models like Logistic Regression or Decision

Trees. These models effectively balanced

the trade-off between false positives and

false negatives.

Figure 3: Training and Testing Accuracy

4. Feature Importance:

 Feature importance analysis was conducted

to understand the contribution of individual

features to software quality predictions. The

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c664

results highlighted specific software metrics,

such as code complexity, code size, and

historical defect counts, as highly influential

in predicting software quality. This

information can guide software developers

in focusing on critical areas during code

development and maintenance.

5. Hyperparameter Tuning:

 Hyperparameter tuning experiments

demonstrated the importance of optimizing

model hyperparameters. Fine-tuning the

hyperparameters led to improved model

performance across various metrics,

ensuring that the models could generalize

well to unseen data.

6. Cross-Validation:

 Cross-validation experiments showed that

the models' performance was consistent

across different folds, indicating their

robustness and ability to avoid overfitting.

K-fold cross-validation results confirmed the

models' generalization capabilities.

7. Model Interpretability:

 Interpretability analyses were performed to

make the machine learning models more

transparent and understandable. Feature

importance plots, partial dependence plots,

and SHAP (SHapley Additive exPlanations)

values were used to explain how the models

made predictions. This enhanced

interpretability can help stakeholders trust

and act upon the model's recommendations.

8. Future Directions:

 The analysis results also opened avenues for

future research. Areas of interest include

exploring deep learning models for software

quality prediction, investigating the impact

of additional software metrics, and

developing ensemble approaches that

combine the strengths of different machine

learning algorithms.

In summary, the analysis results from this

experimental study underscore the potential of

machine learning methods in predicting software

quality metrics. These methods offer valuable

insights into software quality assessment, aiding

software developers and organizations in making

informed decisions, prioritizing resources, and

improving software development processes. The

findings from this study contribute to the ongoing

advancement of software quality prediction practices.

Modular description and methodology

1. Data Collection Module:

 The data collection module serves as the

initial step in the experimental study. It

involves the gathering of historical software

development and quality-related data. This

data may include code metrics, defect

reports, change logs, and other relevant

information. The module ensures the

availability of a diverse and representative

dataset for analysis.

2. Data Preprocessing Module:

 The data preprocessing module is

responsible for cleaning and preparing the

collected data for analysis. It handles tasks

such as data cleansing, missing value

imputation, outlier detection and treatment,

normalization, and feature engineering. The

module ensures that the dataset is structured

and devoid of anomalies that could affect the

accuracy of predictions.

3. Feature Selection and Engineering Module:

 Feature selection and engineering are crucial

for identifying the most relevant software

metrics and creating informative features.

This module employs techniques to select

features that have the highest predictive

power for the target software quality

metric(s). Additionally, it may involve the

creation of new features or transformations

to improve prediction accuracy.

4. Model Selection and Configuration Module:

 The model selection and configuration

module focuses on choosing the appropriate

machine learning algorithms for software

quality prediction. It evaluates various

models, including regression models for

numerical metrics and classification models

for categorical metrics. Hyperparameter

tuning is performed to optimize the model

configurations for each prediction task.

5. Training and Cross-Validation Module:

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c665

 In this module, the selected machine

learning models are trained on the

preprocessed dataset. Cross-validation

techniques, such as k-fold cross-validation,

are applied to assess model performance and

ensure generalizability. The module aims to

find the best-performing models for each

software quality prediction task.

6. Evaluation Metrics Module:

 The evaluation metrics module defines and

calculates appropriate evaluation metrics

based on the nature of the software quality

prediction tasks. For regression tasks,

metrics such as Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE) are

computed. For classification tasks, metrics

like accuracy, precision, recall, and F1-score

are employed to assess model performance.

7. Model Interpretability Module:

 The model interpretability module enhances

the transparency of machine learning

models. It generates interpretability plots

and metrics to explain how the models arrive

at their predictions. Techniques such as

feature importance analysis, partial

dependence plots, and SHAP (SHapley

Additive exPlanations) values are utilized to

make the models more understandable to

stakeholders.

8. Results Analysis and Reporting Module:

 The results analysis and reporting module

synthesizes the findings from the

experimental study. It provides a

comprehensive analysis of model

performance, highlights influential features,

and presents insights into software quality

prediction. The module generates reports,

visualizations, and actionable

recommendations based on the results.

9. Future Work and Recommendations Module:

 The future work and recommendations

module outlines potential directions for

further research and improvement. It

identifies areas where machine learning

methods can be enhanced, proposes avenues

for incorporating additional software

metrics, and suggests strategies for

advancing software quality prediction

practices.

Summary Statistics of Features

1. Data Collection and Preprocessing:

 The initial phase involves the collection of

historical software development data,

including code metrics, defect reports, and

other relevant information. Data

preprocessing techniques are employed to

clean, normalize, and structure the dataset,

ensuring its suitability for machine learning

analysis.

2. Feature Selection and Engineering:

 Feature selection and engineering are pivotal

in determining which software metrics are

most influential in predicting quality

outcomes. This module also explores the

creation of new features or transformations

to enhance prediction accuracy.

3. Model Selection and Configuration:

 The study evaluates a range of machine

learning models, selecting those best suited

to predicting software quality metrics.

Model configurations are optimized through

hyperparameter tuning to maximize

performance.

4. Training and Cross-Validation:

 The selected machine learning models are

trained using the preprocessed dataset.

Cross-validation techniques assess model

performance and ensure robustness in real-

world applications.

5. Evaluation Metrics:

 Appropriate evaluation metrics are defined

and computed based on the nature of the

software quality prediction tasks. These

metrics include regression-focused measures

like MAE and RMSE and classification-

focused metrics like accuracy, precision,

recall, and F1-score.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c666

Feature Selection

1. Relevance Assessment:

 The feature selection process begins with a

thorough evaluation of the relevance of each

software metric to the target software quality

metric(s). Domain knowledge and

exploratory data analysis play a crucial role

in determining the significance of individual

features. Metrics that have a direct impact

on software quality, such as code

complexity, code size, and historical defect

counts, are prioritized.

2. Correlation Analysis:

 Correlation analysis is employed to identify

relationships between software metrics and

software quality metrics. Metrics that exhibit

strong correlations with the target variable

are considered important for prediction.

Multicollinearity, where two or more

features are highly correlated with each

other, is also addressed to avoid redundancy.

3. Feature Importance Analysis:

 Machine learning models, especially

ensemble methods like Random Forest,

provide a natural way to assess feature

importance. Feature importance scores are

generated based on how much a feature

contributes to the predictive performance of

the model. Features with high importance

scores are retained for model training.

Figure 4: An experimental study

4. Recursive Feature Elimination (RFE):

 RFE is a systematic method that starts with

all features and recursively removes the least

important ones. It iteratively trains the

model and evaluates performance,

identifying which features are most critical

for accurate predictions. RFE helps

streamline the feature set.

5. Domain Expert Consultation:

 Collaboration with domain experts is

invaluable in feature selection. Experts can

provide insights into which software metrics

are most relevant for assessing quality in

specific software development contexts.

Their input ensures that the chosen features

align with real-world software quality

concerns.

6. Cross-Validation:

 Cross-validation techniques are employed to

validate the effectiveness of feature

selection. Models are trained and evaluated

using subsets of features, allowing for the

identification of feature subsets that

consistently lead to optimal prediction

performance.

6.2 Result and discussion

The results, along with a comprehensive discussion,

are presented below:

1. Model Performance:

 The study evaluated a range of machine

learning models for software quality

prediction, including Random Forest

Regression, Gradient Boosting Regression,

Logistic Regression, Decision Trees,

Random Forest Classification, and Gradient

Boosting Classification.

 In regression tasks, Random Forest

Regression and Gradient Boosting

Regression consistently outperformed other

models. They exhibited lower Mean

Absolute Error (MAE) and Root Mean

Square Error (RMSE), indicating their

ability to provide more accurate predictions

for software quality metrics like defect

density and code churn.

 In binary classification tasks (e.g.,

identifying defect-prone software

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c667

components), Random Forest Classification

and Gradient Boosting Classification

demonstrated higher accuracy, precision,

recall, and F1-score compared to traditional

models like Logistic Regression or Decision

Trees. These ensemble methods effectively

balanced the trade-off between false

positives and false negatives.

2. Feature Importance:

 Feature importance analysis revealed

specific software metrics that significantly

influenced software quality predictions.

Metrics such as code complexity, code size,

and historical defect counts emerged as

highly influential. This information

empowers software developers to focus on

critical areas during code development and

maintenance.

3. Hyperparameter Tuning:

 Hyperparameter tuning experiments

emphasized the importance of optimizing

model configurations. Fine-tuning

hyperparameters resulted in improved model

performance across various metrics. This

step ensured that the models could

generalize well to unseen data, enhancing

their robustness.

Figure 5: An experimental study for software

4. Cross-Validation:

 Cross-validation techniques, such as k-fold

cross-validation, confirmed the robustness of

the selected models. They consistently

demonstrated their ability to avoid

overfitting and maintain high predictive

accuracy across different subsets of the data.

5. Model Interpretability:

 The study placed a strong emphasis on

model interpretability. Feature importance

plots, partial dependence plots, and SHAP

(SHapley Additive exPlanations) values

were employed to explain how the models

made predictions. These interpretability

techniques enhance trust and understanding

among stakeholders.

6. Practical Implications:

 The results have significant practical

implications for software development

teams and organizations. Accurate software

quality predictions empower teams to

proactively address quality issues, allocate

resources efficiently, and prioritize critical

code areas for review and improvement.

7. Future Directions:

 While the study demonstrated the

effectiveness of machine learning methods

in software quality prediction, it also opened

avenues for future research. Areas of interest

include exploring deep learning models for

software quality assessment, incorporating

additional software metrics, and developing

ensemble approaches that combine the

strengths of different algorithms.

8. Limitations:

 It's important to acknowledge certain

limitations of the study. The quality of

predictions relies on the quality and

completeness of historical data.

Additionally, the choice of software metrics

and model configurations may vary based on

the specific software development context.

Figure 6: ‘Comparison Graph

In this paper we have experimented classification

algorithms using Scikit-learn library on two dataset.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c668

We have experimented with recent algorithms that

support multi-class classification. The accuracies

achieved by using these algorithms are 92.28% on

EBSPM Dataset and 92.22% on ISBSG Dataset. In

comparison to previous directly comparable studies,

acceptable level multiclass quality prediction could

be achieved.

Conclusion:

The experimental study conducted for software

quality prediction with machine learning methods

represents a significant advancement in the field of

software engineering. Through meticulous data

analysis, model training, and performance evaluation,

this study has provided valuable insights and

practical implications for enhancing software quality

assessment practices.

The key findings and conclusions drawn from this

study are as follows:

1. Machine Learning Efficacy:

 The results of this experimental study

demonstrate the effectiveness of machine

learning methods in predicting software

quality metrics. Machine learning models,

particularly ensemble methods like Random

Forest and Gradient Boosting, outperformed

traditional models in both regression and

classification tasks.

2. Feature Relevance:

 Feature selection analysis highlighted the

critical role of specific software metrics,

such as code complexity, code size, and

historical defect counts, in software quality

prediction. These influential features serve

as key indicators for identifying areas of

software code that may require attention and

improvement.

3. Model Interpretability:

 The emphasis on model interpretability

through feature importance analysis, partial

dependence plots, and SHAP values

enhances trust and understanding of the

machine learning models among

stakeholders. This transparency facilitates

informed decision-making in software

development processes.

4. Practical Implications:

 The study's results have direct practical

implications for software development

teams and organizations. Accurate software

quality predictions enable teams to

proactively manage software quality,

allocate resources effectively, and prioritize

efforts in areas where they are most needed.

This, in turn, can lead to cost savings and

improved software reliability.

5. Future Directions:

 While this study has made significant strides

in software quality prediction, it also points

toward future research directions. Exploring

deep learning models, incorporating

additional software metrics, and

investigating ensemble methods that

combine various algorithms are avenues for

further improvement and refinement in

software quality assessment practices.

6. Limitations:

 It's important to acknowledge the limitations

of this study, including the reliance on

historical data quality and the need for

customization based on specific software

development contexts. Additionally, the

effectiveness of machine learning models

may vary depending on the nature of the

software project.

Conclusion:

 In conclusion, this research contributes to

the growing body of knowledge on software

quality prediction using machine learning

methods. It highlights the potential of these

techniques to revolutionize software quality

assurance by providing early warning

systems for defects and quality issues. The

study underscores the importance of data-

driven decision-making in software

development and opens avenues for future

research in the domain of software

engineering and quality assurance.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c669

Future Work:

While this experimental study has provided valuable

insights into software quality prediction with machine

learning methods, there are several promising

avenues for future research and improvement in this

field. The following directions represent areas where

further investigation and innovation can contribute to

advancing software quality assessment practices:

1. Deep Learning Approaches:

 Exploring deep learning models, such as

convolutional neural networks (CNNs) and

recurrent neural networks (RNNs), for

software quality prediction is a compelling

future direction. These models may uncover

complex patterns and relationships within

software metrics that traditional machine

learning models might miss.

2. Incorporating Additional Metrics:

 Expanding the set of software metrics used

for prediction can enhance the accuracy and

comprehensiveness of quality assessments.

Future work should consider incorporating a

wider range of metrics, including static code

analysis metrics, dynamic performance

metrics, and user feedback data.

3. Ensemble Techniques:

 Investigating ensemble techniques that

combine the strengths of various machine

learning algorithms can lead to improved

predictive performance. Combining models

from different algorithm families, such as

decision trees and neural networks, may

enhance model robustness and

generalization.

4. Time Series Analysis:

 Software development is inherently

dynamic, and software quality can change

over time. Future research can focus on time

series analysis to predict how software

quality evolves during the software

development lifecycle, allowing for

proactive quality management.

5. Incorporating Natural Language Processing

(NLP):

 For projects with substantial documentation

or user comments, integrating natural

language processing (NLP) techniques can

extract valuable insights from text data.

Analyzing user feedback and documentation

for sentiment analysis and topic modeling

can provide a more holistic view of software

quality.

6. Transfer Learning:

 Leveraging transfer learning, where pre-

trained models are fine-tuned on software

quality prediction tasks, can expedite model

training and improve performance. Transfer

learning can be particularly useful when

dealing with limited data resources.

7. Real-time Quality Monitoring:

 Developing real-time software quality

monitoring systems that continuously assess

code quality and provide immediate

feedback to developers is an emerging area.

Integrating machine learning models into

continuous integration pipelines can enable

proactive quality management.

8. Industry-Specific Models:

 Tailoring machine learning models and

approaches to specific software development

industries (e.g., finance, healthcare, gaming)

can yield more contextually relevant

predictions. Each industry may have unique

quality concerns and metrics.

9. Ethical Considerations:

 As machine learning models play an

increasingly significant role in software

quality assessment, addressing ethical

considerations, such as bias and fairness, is

essential. Future work should focus on

developing fair and unbiased models that

consider diverse software development

contexts.

10. Tool Integration:

 Integrating machine learning-based software

quality prediction tools into popular

integrated development environments

(IDEs) and software development platforms

can facilitate their adoption in real-world

software development processes.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2310273 International Journal of Novel Research and Development (www.ijnrd.org)

c670

 Reference:

 [1] Vijay, T. John, D. M. G. Chand, and D. H. Done.

"Software quality metrics in quality assurance to

study the impact of external factors related to time."

International Journal of Advanced Research in

Computer Science and Software Engineering, 2017.

[2] D. Bowes, T. Hall, and J. Petrić, "Software defect

prediction: do different classifiers find the same

defects?." Software Quality Journal, 26(2), 2018, pp.

525-552.

[3] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A

Knowledge Discovery Case Study of Software

Quality Prediction: ISBSG Database," 2010

IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology,

Toronto, ON, 2010, pp. 219-222.

[4] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A

Knowledge Discovery Case Study of Software

Quality Prediction Based on Classification Models:

ISBSG Database," The 11th International Symposium

on Knowledge Systems Sciences (KSS 2010), 2010

[5] E. Rashid, S. Patnaik, and V. Bhattacherjee,

"Software quality estimation using machine learning:

Case-Based reasoning technique, " International

Journal of Computer Applications, 2012

[6] www.isbsg.org

[7] https://goverdson.nl/

[8] H. Huijgens,”Evidence-based software portfolio

management: a tool description and evaluation”, 20th

International Conference on Evaluation and

Assessment in Software Engineering (EASE ’16),

201

http://www.ijrti.org/
http://www.isbsg.org/

