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Abstract 

: In this thesis, we study the statistical and quantum properties of the light generated by a coherently driven three level 

laser in which three level atoms in a cavity coupled to a vacuum reservoir are pumped to upper level at a rate of ra . 

Applying the quantum langevein equation for our system, we obtain the explicit form of atomic operators. Employing Q 

function we have calculated the mean photon number, variance of photon number, photon number distribution and 

quadrature variance. It is found that the mean and variance of photon number are greater for a = 0 than for a = 1. 

Furthermore, we determine the quadrature squeezing such as global and local quadrature squeezing for the cavity mode 

light. And 50% of maximum quadrature squeezing have been obtained from the system under consideration for x = 0.5 

and a = 0. 

IndexTerms - Component,formatting,style,styling,insert. 

Quantum optics is a field of quantum physics that deals specifically with the interaction of radiation with matter. The 

quantum and statistical properties of the radiation generated by different quantum optical systems have been investigated 

since the earliest days that quantum optics was known. The quantum description of radiation is one of the central topics in 

quantum optics. This description requires the quantization of the radiation field. The quantization of the radiation field 

leads to the introduction of various possible quantum states of light such as the number, the coherent, chaotic and the 

squeezed states. Squeezed state is one of a non-classical features of light that has attracted a great deal of interest. In 

squeezed light the noise in one 

quadrature is below the coherent state level at the expense of enhanced fluctuations in the other quadrature with the 

product of the uncertainty in the two quadrature satisfying the uncertainty relation. Squeezed light has potential 

application in low noise optical communication and weak signal detection. Quantum optics developed through the first 

half of the twentieth century more by understanding how photons 

and matter interacted and interrelated . And also in 1953, the maser (micro amplifcation by stimulated emission of 

radiation) was developed which emitted coherent micro wave. After a time of being, laser (light amplification by 

stimulated emission of radiation) could be developed by different quantum optical system [1].There has been considerable 

interest in the analysis of the squeezing and the statistical properties of the light generated by the three level laser and 

coherently driven by cavity mode. A three level laser  may be be defined as a quantum optical system in which three level 

atom in a cascade configuration, 

 

 

Initially prepared in a coherent super position of the top and the bottom levels, are injected into a cavity coupled to a 

vacuum reservoir via a single port-mirror. When a three-level atom in a cascade configuration makes a transition from 

http://www.ijrti.org/


            © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG   
 

IJNRD2310311 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 
d83 

the top to the bottom level via the intermediate level, two photons are generated. If the two photons have same frequency, 

then the three level atom is called degenerate three-level atom otherwise it is called non degenerate[2]. The squeezing and 

statistical properties of the light produced by three-level atoms in which the crucial role is played by the coupling of the top 

and bottom levels. The coupling of the top and bottom levels is responsible for the interesting non-classical feature of the 

generated light. In general the atomic coherence can be induced in a three-level atom by coupling the levels between 

which direct transition is dipole for bidden by coherent light or by preparing the atom initially in coherent superposition 

of these two levels [3]. The statistical properties of three level lasing were investigated theoretically. It is assumed that the 

three level medium was coherently excited by another laser with an arbitrary photon statistics. It was proved that under 

the specific conditions, the photon statistics of three level laser duplicate the photon statistics of the exciting laser. 

Generally the three level of a laser is a unique source of bright light [4]. The statistical and squeezing properties of light 

generated by three level lasers have been investigated by several authors [6]-[11]. Fesseha Kassahun [5] was found that a 

three level laser in either model generated squeezed light under certain conditions. It appears to be quite difficult to prepare 

the atoms in coherent super-positions of the top and bottom levels before they are injected in to the laser cavity. In addition,he 

studied that the atoms have decayed spontaneously before they are removed from the cavity. On the other hand, he study 

showed the degree of squeezing of the light generated by the three level laser, with the top and bottom levels coupled by 

coherent light, is relatively large when the mean photon number is relatively very small. A three level laser in which the top 

and bottom levels of the atoms injected into the cavity are coupled by a strong light has also been studied by different 

authors. Misrak Getahun [6] studied the squeezing and statistical properties of the light produced by a three-level laser 

whose cavity contains a parametric amplifier and with the cavity mode driven by coherent light and coupled to a 

squeezed vacuum reservoir. He obtained stochastic differential equations associated with the normal ordering using the 

pertinent master equation. Making use of the solutions of the resulting differential equations, he calculated the quadrature 

variances and squeezing spectrum. He also determined the mean and variance of the photon number and the 

photon number distribution for the cavity mode employing the Q function. And almost perfect squeezing can be 

obtained for slightly more probability for the atoms to be in the bottom level and for large value of linear gain coefficient. 
Sintayehu [7] has a detailed analysis of the squeezing properties of the light produced by the degenerate three-level cascade 

laser coupled to an external coherent light via one of the coupler mirrors and vacuum reservoir in the other employing 

the stochastic differential equation associated with the normal ordering. He studied the squeezing properties and also 

calculated the mean photon number of the cavity radiation. The cavity radiation exhibits 98.3% squeezing under certain 

conditions 

pertaining to the initial preparation of the superposition and strength of the coherentradiation. His results also showed that 

the mean photon number is found to be large where there is a better squeezing and the system under consideration could 

generate an intense squeezed light. Beyene [8] has studied the squeezing and statistical properties for degenerate three 

level laser and the superposition of light beams produced by pair of degenerate three level laser. He carried out the 

analysis applying the solutions of c-number Langevin equations associated with the normal ordering. These equations were 

obtained using the master equation obtained applying the linear approximation scheme with the help of Q function, he has 

calculated the mean photon number, the variance of photon number, the photon number distribution and the quadrature 

variances. 

His results indicated that 47.9% quadrature squeezing has been obtained for A=3 and κ = 0.8 at steady state. It is observed 

that the degree of squeezing increases with the linear gain coefficient and the steady state mean photon number simple 

sum the mean photon numbers of the two light beams. The squeezing of the superposed light mode increases with the linear 

gain coefficient. His results indicated that 95.8% 

squeezing have be found for A = 3 and κ = 0.8. Driba Demissie [9] has studied the quantum analysis of coherently driven 

three level laser. He carried out the analysis by applying the solution of c- number langevin 

equations associated with normal ordering. These equations were obtained applying the linear approximation scheme. 

Using of Q functions he calculated quadrature 

variance, squeezing spectrum, the variance of the photon number and photon number distribution. 

 

Dawit Hiluf and Fesseha Kassahun [10] have studied the statistical and squeezing properties odegenerate three level 

laser coupled to a squeezed vacuum reservoir. They carried out the analysis of quantum optical system using of the 

pertinent stochastic differential equations for the cavity mode variables associated with normal ordering. The solutions of 

the resulting equations are then used to calculate the quadrature variance the squeezing spectrum, the mean photon number 

and the variance of photon number distribution. 

 

Mulugeta Melaku [11] has studied the quantum properties of the light emitted by a degenerate three level atom 
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available in open cavity and driven by coherent light. And he also studied the interaction of the degenerate three level 

atoms with resonant coherent light in open cavity coupled to vacuum reservoir. From his thesis hederived the equation of 

evolutions of atomic and cavity mode operators by applying 

the quantum langevin equation and the master equation. Using the steady state solution of the resulting equations he 

obtained photon statistics, quadrature squeezing and power spectrum. In this thesis, we consider the case in which N three 

level atoms in cascade configuration and available in a cavity coupled to a vacuum reservoir via a single port mirror are 

pumped from the lower level to the upper level at a rate of ra . We first drive the equation of evolution of atomic 

operator applying the quantum langevin equation using of large approximation scheme. Employing the steady state 

solution of the resulting equation, we obtain the expectation value of the atomic operator. In addition using of Q function in 

anti normal order we calculate mean photon number, variance of photon number, photon number distribution and 

quadrature variance of cavity mode light. Finally we calculate quadrature squeezing such as global and local 

quadrature squeezing for cavity mode light 

              2.The Three Level Laser 
We consider here the case in which N three level atoms in cascade configuration are available in a closed cavity. We denote 

the top, middle and bottom levels of these atoms by |a , |b and |c respectively. In addition, we assume the cavity modes 

to be at resonance with the two transitions |a → |b and |b → |c , with direct transition between levels |a and |c to be 

dipole forbidden as shown in Fig. (2.1) 

 

In this chapter we seek to determine the operator dynamics for coherently driven three level atom in side a cavity, in 

which the atom is pumped by coherent light coupled to a vacuum reservoir. We first drive the equation of evolution of 

atomic operators applying the quantum langevin equation. Employing the steady state solution of the resulting equations, we 

obtain the expectation value of the atomic operators. The 

 

 

 

 

 

Fig. 2.1: The transition between |a → |b and |b → |c at frequency wa and wb are taken at 

resonant with the cavity. coupling of the top and bottom levels of three level atom by coherent light treated 

classically can be described by the Hamiltonian [12]. 

 
[σc - σc], (2.1) 

 

 
Ω = 2εg , (2.2) 

 
 

σc = |c a|, (2.3) 

with g being the coupling constant between the coherent light and three level atom. 

Moreover, the interaction of three level atom with the cavity modes can be described 

at resonance by the Hamiltonian 

ˆ H = ig [σaâ - â†σa + σb
ˆ - b ˆ (2.4) 

 
ˆ where â and b are the cavity mode operators, 

 

iΩ 

2 
ˆ† ˆ                                            Ĥ = 

 
where 

ˆ 

ˆ†
σb], ˆ† ˆ ˆ†b 
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σa = |b a|, (2.5) 

 

 

σb = |c b|. (2.6) 

are lowering atomic operators. On account of Eq. (2.1) and Eq. (2.4) the total Hamil- 

tonian describing the interaction of a three level atom with the coherent light and 

cavity modes a and b has the form 

 
[σc - σc] + ig [σaâ - â†σa + σb

ˆ - b ˆ (2.7) 

 

We assume that the laser cavity is coupled to a vacuum reservoir via a single port mir- 

ror. Moreover, we carry out our calculation by putting the noise operators associated 

with the vacuum reservoir in normal order. Thus the noise operators will not have 

any effect on the dynamics of the cavity mode operators. We can therefore drop the 

ˆ noise operators and write the quantum langevin equations for the operators â and b as 

â - i[â, Ĥ], (2.8) 

 

in which κ is the cavity damping constant. Then using Eq. (2.7), we easily find 

d 

dt 

 
 

d 

dt 

 

2.1 Operator Dynamics 

. In this section we seek to determine the time evolution for the expectation values of 

the atomic operators. To this end, using the relation 

 
Â = -i [Â, Ĥ] , (2.12) 

 

along with Eq. (2.7), one can readily establish that 

 
+ g (ηb - ηa)â + g †̂σc . (2.13) 

 

 

 

ηa = |a a|, (2.14) 

 

 

ηb = |b b|, (2.15) 

 

 

ηc = |c c|, (2.16) 

ˆ 

ˆ 

iΩ 

2 
ˆ†

σb]. ˆ† ˆ ˆ† ˆ ˆ†b Ĥ = 

κ 
=             - 

2 

d 

dt 

κ 

2 
â - gσa , (2.10) ˆ â = - 

 
 
 
ˆ b = - 

κˆ 
b - gσb, (2.11) ˆ 

2 

d 

dt 

Ω 

2 

d 

dt 

where 

σb ˆ
† b ˆ σa = ˆ ˆ ˆ 

ˆ 

ˆ 

ˆ 
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Following the same procedure, we can easily find that 

 
+ g (ηc - ηb)

ˆ - g â†σc , (2.17) 

 

 

 

ˆ ηa  ) + g( σbâ - σa
ˆ ), (2.18) 

 
 

( σc + ˆ ˆ† â†σa  ), (2.19) 

 

 
ˆ†

σb), â†σa  ) + g( σb
ˆ + b ˆ (2.20) 

 
 

ˆ†
σb ), σc ) - g( σb

ˆ + b ˆ 

 

The probability of finding an atom in the top, middle and bottom levels respectively 

are defined by ηa  , and respectively. We observe that Eqs. (2.13), (2.17), 

(2.18), (2.19), (2.20) and Eq. (2.21) are non liner differential equations. Hence it is not 

possible to obtain the exact time dependent solutions of these equations. Thus ap- 

plying the large time approximation schemes, we obtain from Eq. (2.10) and Eq. (2.11) 

the approximately valid relation 

 
â(t) = - 

 

 
ˆ b(t) = - σb. (2.23) 

 

(2.23) into Eq. (2.13), (2.17), (2.18), (2.19), (2.20) and 

 
 

σa = -γc σa + σb , (2.24) 

 

 

σa  , (2.25) 

 

 

( ηc - ηa  ), (2.26) 

 

 

= -γc ηa + ( σc + σc ), (2.27) 

 

 

ηb = -γc ηb + γc ηa  , (2.28) 

Ω 

2 

d 

dt 

 
 
d 

dt 

ˆ = - ˆ ˆ b σa ˆ
† ˆ σb 

= ( ηc - ˆ ˆ ˆ b  
2 

Ω 
σc ˆ 

d 

dt 

 
d 

dt 

 
d 

dt 

ηb ˆ 

Ω 

2 
ˆ† σc ) + g( σaâ + ˆ 

 

 
ˆ ˆ†b 

ηa = ˆ 

= -g( σaâ + ˆ† 

Ω 

2 
ηc = - ˆ ( σc + ˆ ˆ†b (2.21) ˆ† 

ˆ ηc ˆ ˆ ηb 

(2.22) 
2g 

κ 

 
 

2g 

ˆ σa . 

ˆ 
κ 

Now inserting Eq. (2.22) and 

(2.21), we have 

d Ω 
ˆ 

2 

 
Ω 

2 

dt 

 
d 

dt 

 
 

σc 

 
 

ηa 

 
 
d 

ˆ† ˆ 

ˆ 

ˆ 

σb = - σb - ˆ ˆ 
2 

γc 
ˆ† 

Ω 

2 

 
Ω 

d 

dt 

 
d 

dt 

= - σc + ˆ 
2 

γc 
ˆ ˆ 

ˆ† 

2 
ˆ ˆ 

dt 
ˆ ˆ ˆ 
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σc ), (2.29) 

 

 
(2.30) 

 
The parameter defined by Eq. (2.30) is called the stimulated emission decay constant. 

 
The three level atoms available in the cavity are pumped from the bottom level to 

the top level by means of electron bombardment . The pumping process must surely 

affect the dynamics of ηa and ηc . If ra represents the rate at which a single atom is 

pumped from the bottom to the top level then increases at the rate of ra  ηc and 

decrease at the same rate of ra  ηc [5]. Incorporating the effect of the pumping 

process, we can write Eqs. (2.27) and Eq. (2.29) as 

 
( σc + σc ) + ra  ηc . (2.31) 

 

 

 

- ( σc + ˆ ˆ (2.32) 

 

Now summing over N three level atoms, we can write Eqs. (2.24), (2.25), (2.26), (2.28), (2.31) 

and Eq. (2.32) in the form of 

 
ma = -γc ma + m† , (2.33) 

 

 

 

m†  , (2.34) 

 

 
ˆ ˆ ( Nc - Na  ), (2.35) 

 
 

ˆ mc ) + ra  Nc , (2.36) 

 
 

ˆ ˆ ˆ Nb = -γc Nb + γc Na  , (2.37) 

 

 
 
 

|b a| = N |b a|, (2.39) 

i 

 
N 

|c b| = N |c b|, (2.40) 
i 

 
N 

Ω 

2 
ˆ ( σc + ˆ† ηc = γc ηb - 

 

 
γc = 

ˆ ˆ 

4g2 

. 
κ 

ˆ ˆ 

ˆ ˆ ηa 

ˆ ˆ ηc 

Ω 

2 

d 

dt 
= -γc ηa 

 

 

 

= γc ηb 

+ ˆ† ˆ ˆ ηa ˆ ˆ 

 
 
 

σc ) - ra  ηc . ˆ 
Ω d 

dt 2 
ηc ˆ ˆ† 

d 

dt 

 
 
d 

dt 

 
 

mc ˆ 

Ω 

2 

 
 
Ω 

2 

ˆ b ˆ ˆ 

= - mb - 
2 
ˆ 

γc 
ˆ a ˆ mb 

 
 

= - 
d 

dt 

 
 
ˆ Na 

Ω 

2 

γc 

2 
ˆ mc + 

Ω ̂  = -γc Na + ( m† + 
2 c ˆ 

d 

dt 
ˆ 

d 

dt 
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|c a| = N |c a|, (2.41) 
i 

 
N 

|a a| = N |a a|, (2.42) 

i 

 
N 

|b b| = N |b b|, (2.43) 
i 

 
N 

|c c| = N |c c|, (2.44) 

i 

ˆ ˆ ˆ Here the operators Na, Nb and Nc representing the number of atoms in the top, middle 

and bottom levels . Employing the parameter a, we can rewrite Eq. (2.35) as 

 
+ Nc . (2.45) 

 

We see that we can recover Eq. (2.35) upon setting a = 1. We also consider some 

other value of a later on. By taking ra = 0, we note that the steady state solutions of 

Eqs. (2.36) and (2.37) are given by 

 
mc ). (2.46) 

 

 

 
(2.47 

 

 

 

 

Hence with the aid of Eqs. (2.46) and (2.48), we get 

2 

ˆ ˆ Nc = Na  . (2.49) 
 
 

In addition employing the completeness relation 

 
ˆ ηa + ηb + ηc = I . (2.50) 

 
we easily arrive at 

= N. (2.51) 

 
With the aid of Eqs. (2.47), 

Ω2N 

γc + (2 + a)Ω2 

Thus in view of this result Eq. (2.49) takes the form 

(γc + aΩ2) 

γc + (2 + a)Ω2 

γc 

2 

Ω ˆ d 

dt 
ˆ Ω 

mc - a Na ˆ 
2 

ˆ mc = - 
2 

Ω 
= 

2γc
 

c 

Na ( m† + ˆ ˆ ˆ 

ˆ Na  . 

 
 
Ω 

- a 
γc 

ˆ Nb 

 
 
Ω 

= 
γc 

γc + aΩ2 

Ω2 

ˆ ˆ ˆ 

 
 
 

ˆ ˆ ˆ Na + Nb + Nc 

(2.49) and Eq. (2.51) we readily find 

, (2.52) ˆ Na = 
2 

2 

N, (2.53) ˆ Nc = 
2 
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Finally, combination of Eqs. (2.48), (2.52) and (2.53), we get 

γcΩN 
= 

γc + (2 + a)Ω2 

 

In the presence of N three level atoms, we can rewrite Eq. (2.10) and (2.11) as 

 
â = - â + λma . (2.55) 

 
 
 

b + λmb. (2.56) 

 
in which λ is a constant whose value remains to be fixed . Applying the steady state 

solution of Eq. (2.10), we get 

 
[â, â†] = (ηb - ηa), 

 

and on summing over all atoms, we have 

 
[â, â†] = (Nb - Na), 

which 
N 

[â, â†] = [âi , â
†]. (2.59) 

i=1 

Stands for the commutator of â and â† when the cavity mode is interacting with all the 

 

  

  

 

 

. 

 

 N three level atoms . On the other hand, using the steady state solution of Eq. (2.55), 

one can easily verify that 

2 

ˆ ˆ (Nb - Na), (2.60) 

 

Thus on account of Eqs. (2.58) and Eq. (2.60), we say that 

 
. (2.61) 

 
And in view of this result, Eqs. (2.55) and (2.56) can be written as 

 
(2.62) 

 
 
 

(2.63) 

 
Lastly taking in to account in steady state, the cavity mode operators can be con- 

ˆ . (2.54) mc 
2 

d κ 

dt 2 
ˆ 

κˆ ˆ b = - 
d 

dt 
ˆ 

2 

γc 
ˆ ˆ (2.57) 

κ 

(2.58) 
γc ˆ 

ˆ 

κ 

i 

2λ 

κ 
[â, â†] = N 

g 
√ λ = ± 

N 

d 

dt 

 
 
d 

dt 

g κ 

2 
√ ma 

ˆ N 
â + â = - 

 
 
 
ˆ b = - 

κˆ 
b + 

g 

2 
√ mb. 

ˆ N 
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nected with atomic operator as 

 √ ma . ˆ 
 

 

 

 √ mb. ˆ 

 

Then up on adding Eqs. (2.62) and Eq. (2.63) 

κ 
ĉ = - 

2 
 
Where 

m = ma + mb. 

 
In addition one can easily verify that for N identical three level atoms 

 
ˆ ˆ m†m = N (Na + Nb). 

mm† = N (Nb + Nc). (2.69) 
 
 
 

m2 = Nmc. (2.70) 

 
 

 
3.The Q Function for cavity mode light 

The Q function for the cavity mode light is expressible in terms of anti normally ordered 
characteristic function as[15]. 

d2zφa(z ∗ , z, t)exp[z ∗ α - zα∗ ], (3.1) 

 
where 

φa(z ∗ , z, t) = T r ρ(0)e
-z â(t)ezâ (t) . (3.2) 

In our case using of Eq. (2.66), we have 

 
ˆ ĉ(t) = â(t) + b(t). (3.3) 

 

Then Eq. (3.2) becomes 

 
φa(z ∗ , z, t) = T r ρ(o)e

-z ĉ(t)ezĉ (t) , (3.4) 

and one can say that 
[ĉ, ĉ†] = ĉĉ† - ĉ†ĉ = η . 

 
where 

γc ˆ 

κ 

Using of Baker-Housdorff identity 

Eq. (3.4) can be written as 

 

2g 

N 

 
2g 

κ N 

â = 

 
 
ˆ b = 

(2.64) 

 
 

(2.65) 

 
 
 

(2.66) 

 
 
 

(2.67) 

 
 
 

(2.68) 

ĉ + 
g d 

dt 
√ m. 

ˆ N 

ˆ ˆ ˆ 

ˆ ˆ 

ˆ ˆ 

Q(α∗ , α, t) = 

∗  † 

ˆ 

∗  † 

ˆ 

ˆ η = [ Nc - Na  ], (3.6) 

1 

2 
† 

ezĉ -z∗ ĉ , (3.8) 
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φa(z ∗ , z, t) = e - ηz ∗ z 

 

Now assuming ĉ(t) is a Gaussian variable with zero mean. we can write as 

 
φa(z ∗ , z, t) = e - ηz ∗ z exp 

 
and this can be written as 

 
φa(z ∗ , z, t) = e - ηz ∗ Z exp 

 

This can be put in the form 

 
φa(z ∗ , z, t) = exp - 

 

From Eq. (3.3) and its conjugate we have 

γc 
ĉ†ĉ = n = 

κ 
 
and 

d = ĉĉ† 

 
and also one can write as 

 
ĉĉ† 

 
 

γc 
ĉ2 = ĉ†2 = 

κ 

where 

ĉ2 = ĉ†2 = b = 

 
with 

x = 

Applying Eq. (3.12), (3.14) and Eq. (3.16) into Eq. (3.11), we see that 

 
φa(z ∗ , z, t) = exp[-z ∗ z ĉĉ† 

This can be written as in the form 

 
φa(z ∗ , z, t) = exp[-dz ∗ z + (z2 + z ∗ 2)], (3.19) 

 
where 

d = n + η. (3.20) 

 

substituting Eq. (3.19) into (3.1), we have 

 
exp[-dz ∗ z - α∗ z + αz ∗  + (zz + z ∗ 2)], (3.21) 

 

1 

2 

1 

2 [zĉ† - z ∗ ĉ]2 , 

 

 

 

- z ∗ z ĉ†ĉ - z ∗ z ĉĉ† ] , 
1 

2 

 
 
1 

2 

[z2 ĉ†2 + z ∗ 2 ĉ2 
1 

2 

1 

2 
z ∗ z( ĉ†ĉ + ĉĉ† ) + (z2 ĉ†2 + z ∗ 2 ĉ2 ) , (3.11) 

ˆ ˆ Na + Nb , (3.12) 

 
 
 

ˆ ˆ Nb + Nc , (3.13) 

¯ 

γc 
= 

k 

 
 
 

= η + (3.14) 

 
 
 

N. (3.15) 

 
 

(3.16) 

 
 

(3.17) 

¯ ĉ†ĉ 

 
 
γc 

= 

 
 

γc 

κ 

= n + η , 

 
 

x 

1 + (2 + a)x2 
ˆ mc 

κ 

x 

1 + (2 + a)x2 

 
Ω 

. 
γc 

N, 

b 

2 
+ (z2 + z ∗ 2)], (3.18) 

b 

2 

¯ 

b 

2 

η d2z 

π π 
Q(α∗ , α, t) = 
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so that carrying out the integration with the help of the relation 

 
exp[-dz ∗ z + bz + cz ∗  + Az2 + Bz ∗ 2] = 

 

 

 

 

Q(α∗ , α, t) = 

 

 
1 

2 

Q(α∗ , α, t) = exp - uα∗ α + (α2 + α∗ 2) . (3.24) 
π 

One can check that the Q function is normalized to η which is 

 
d2αQ(α∗ , α, t) = η. (3.25) 

 

where the value of u and v in Eq. (3.24) are given by 

d 

d2 - b2 

 
 

b 

d2 - b2 

Eq. (3.24) represents the Q function for cavity mode light produced by coherent light 

3.1 Photon Statistics 

The statistical properties of light beam can be described in terms of the mean photon 

number, variance of photon number, phot0n number distribution and power spec- 

trum. Here employing the Q function we wish to calculate the mean photon number, 

variance of photon number and photon number distribution for the cavity light gen- 

erated by three level laser. Finally, we determine the power spectrum of cavity mode 

light produced by driven coherent light. 

 

3.1.1 Mean Photon Number 

 
The expectation value of an operator function A(â†, â) is expressible in terms of den- 

sity operator as 

Â = T r(ρÂ). (3.28) 

 

Expanding the density operator in normal order and using the density operator for 

coherent state Eq. (3.28) can be written as 

 
Â = Q(α∗ , α + η , t)Ân(α∗ , α), (3.29) 

 

√ 
η 

d2 - 4AB 

d2z 

π 

 

we get 

dbc + Ac2 + Bb2 

d2 - 4AB 

 
 
 
 

(α2 + α∗ 2) , 

exp , d > 0. 

(3.22) 

 
 
 

(3.23) 
η 

π(d2 - b2) 

dα∗ α 

d2 - b2 

b 

2(d2 - b2) 
1 

2 

+ exp - 

η(u2 - v2) v 

2 

. (3.26) 

 
 
 

. (3.27) 

u = 

 
and 

v = 

ˆ 

d2α ∂ 

η ∂α∗  
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Where Ân(α∗ , α) is the c-number function corresponding to the operator function 

Â = Â(ĉ, ĉ†) with the normal order. On the basis of Eq. (3.29), the mean photon num- 

ber for a cavity mode light is expressed by 

 
n = Q(α∗ , α + η , t)α∗ α. (3.30) 

 

When we express Q(α∗ , α + η 

 
, t) = Q(α∗ , α, t)exp - η(uα∗  - vα) 

 

On account of Eq. (3.31), we see that 

 
Q(α∗ , α, t)exp - η(uα∗  - vα) 

 

 

Expanding the exponential function in power series, we have 

 
exp - η(uα∗  - vα) 

 

- η(uα∗  - vα) 

 
(3.33) 

 
So that substituting Eq. (3.33) in to Eq. (3.32), we write as 

 
Q(α∗ , α, t) α∗ α - αη(uα∗  - vα) , (3.34) 

 
And also this can be written as in the form of 

 
Q(α∗ , α, t) (1 - ηu)α∗ α + ηvα2 , (3.35) 

 

 

 

n = (1 - ηu)I1 + ηvI2, (3.36) 

 

 

Q(α∗ , α, t)α∗ α, (3.37) 

 

 
d2α 

η 

On account Eq. (3.24), we see that 

 
I1 = [u2 - v2]1/2 

 

This equation can be rewritten as 

 

d2α ∂ 

η ∂α∗  

, t) in Eq. (3.30) in terms of Q(α∗ , α, t), we have 

¯ 

∂ 

∂α∗  

. (3.31) 
∂ 

∂α∗  

v 
+ η2 

∂ 

∂α∗  2 

∂2 

∂α∗ 2 Q(α∗ , α + η 

v 
+ η2 

d2α 
n =          

η 

∂ 

∂α∗  
α∗ α, (3.32) ¯ 

2 

∂2 

∂α∗ 2 

∂ v ∂2 

∂α∗  2 ∂α∗ 2 
+ η2 + η2 

∂ v ∂2 

∂α∗  2 ∂α2 = 1 - η(uα∗  - vα) 

∂ 

∂α∗  

∂2 

∂α∗ 2 

v 
+ η2 

2 

+ - - - 
2 

1 

2! 
+ 

¯ 
d2α 

n = 
η 

¯ 
d2α 

n = 
η 

Eq. (3.35) can be written as 

 
 
 

where 

¯ 

d2α 

η 
I1 = 

 
 

I2 = 

v 

2 

Q(α∗ , α, t)α2, (3.38) 

 

 

 

- uα∗ α + (α2 + α∗ 2) α∗ α. (3.39) 
d2α 

exp 
π 

d 

du 

d2α 
exp 
π 

v 

2 
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- uα∗ α + (α2 + α∗ 2) , (3.40) 

 

Further more, carrying out the integration,we find 

 
I1 = -(u2 - v2)1/2 [(u2 - v2)-1/2]. (3.41) 

 

Performing the differentiation, we get 

 
I1 = -[u2 - v2]1/2( 

Following similar procedure, we easily find I2 using of Eq. (3.24) 

 
- uα∗ α + (γα2 + α∗ 2) α2|γ=1, (3.44) 

 

 

 

exp - uα∗ α + (γα2 + α∗ 2) |γ=1, (3.45) 

 

Integrating over α Eq. (3.45) becomes 

 

                           I2 =[u2 - v 2γ]-1/2|γ=1 , (3.46) 

This gives as 

2[u2 - v 2]1/2 

v 

Finally we can write I2 in the form of 

 

I2 = 

 

Substituting Eq. (3.43) and Eq. (3.48) into Eq. (3.36), we obtain 

 

(1 - ηu) + η , (3.49) 

 

This can be written in the form of 

u 
n =                       - η . 

u2 - v 2 

Taking in to account Eq. (3.26), the mean photon number, is expressed as 

 

n = d - η. (3.51) 

 

More over using Eqs. (3.12) and (3.20),we have 

ˆ ˆ Na + Nb , (3.52) 

 

Substituting of Eq. (2.47) and Eq. (2.52) into Eq. (3.52), we finally obtain 

γc 2x2 

κ 1 + (2 + a)x2 

Eq. (3.53) represents the mean photon number for the cavity mode light produced by 

the coherent light. 

 

 

 

I1 = -(u2 - v2)1/2 

)[u2 - v2]-3/22u, (3.42) 

d 

du 

 
 

-1 

2 

d2α 
exp 
π 
 
 
 
d2α 

π 

v 

2 
I2 = [u2 - v2]1/2 

This can be written as 

 
I2 = [u2 - v2]1/2 

v 

2 

2 d 

v dγ 

2(u2 - v2)1/2 d 

v dγ 

I2 = (- 
1 

2 
)(u2 - v2)-3/2(-v2), 

 

 
v 

. 
u2 - v2 

(3.47) 

 
 
 

(3.48) 

u 

u2 - v2 

v2 

u2 - v2 
¯ n = 

(3.50) ¯ 

¯ 

¯ 
γc 

n = 
κ 

N (3.53) n = ¯ 
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Fig. 3.1: plots of mean photon number(Eq. (3.53)) versus x for γc = 0.4, κ = 0.8 and N = 50. 

 

The plot in Fig. (3.1) indicates that the mean photon number for a = 0 is greater 

than for a = 1. And the mean photon number for the cavity mode light is increase as 

the parameter x increase for small value of a. 

 

3.1.2 The Variance of Photon Number 

 

The variance of the photon number for cavity mode light can be written as 

 

(∆n)2 = n2 - n . (3.54) 

 

 

ˆ (∆n)2 = c†ĉĉ†ĉ - ĉ†ĉ , (3.55) 

 

and 

(∆n)2 = ĉ†2ĉ2 + ĉ†ĉ - n2. (3.56) 

 

From the fact that one can write 

 

ĉ†2ĉ2 =d2αQ(α∗ , α + η 

Where α∗ 2 and α2 are c- number variables corresponding to the operator ĉ†2 and ĉ2. 

And also When we write Q(α∗ , α + η , t) in terms of Q(α∗ , α, t) we use the following 

expression. 

 

Q(α∗ , α + η , t) = Q(α∗ , α, t)exp 

 

Applying Eq. (3.33) along with Eq. (3.58),we write as 

 

d2αQ(α∗ , α, t) 1 - η[uα∗  - vα] 

for a=1 

for a=0 

2 ˆ ˆ 

2 

¯ 

, t)α∗ 2α2, (3.57) 
∂ 

∂α∗  

∂ 

∂α∗  

∂2 

∂α∗  

v 
+ η2 

∂ 
, (3.58) 

2 

∂ 

∂α∗  

 
 
∂ 

∂α∗  

- η[uα∗  - vα] 
∂α∗  

∂2 

∂α∗ 2 
ĉ†2ĉ2 = 

 
+ 

+ M 
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]2 + ... α∗ 2α2, (3.59) 

 

where 

(3.60) 

 

From Eq. (3.59) it then follows that 

 

d2αQ(α∗ , α, t) 

 

- η[uα∗  - vα] 

 

And also Eq. (3.61) can be put in the form 

 

α∗ 2α2 - η[uα∗  - vα].2α∗ α2 + 2Mα2 

2 

α∗ 2α2, (3.62) 

 

From Eq. (3.62) one can say that 

 

d2αQ(α∗ , α, t) α∗ 2α2 - 2ηuα∗ 2α2 + 2ηvα∗ α3 + 2Mα2 

 

(α∗ 2α2), (3.63) 

 

Then we can put Eq. (3.63) as 

 

ĉ†2ĉ2 = d2αQ(α∗ , α, t) α∗ 2α2 - 2ηuα∗ 2α2 + 2ηvα∗ α3 + 2Mα2 

 

+ u2η2α∗ 2α2 - 2uvη2α∗ α3 + ηv2α4 , (3.64) 

And also one can write Eq. (3.64) as 

 

ĉ†2ĉ2 = d2αQ(α∗ , α, t) (uη - 1)2α∗ 2α2 + 2ηv(1 - uη)α∗ α3 + vη2α2 + v 2η2α4 , (3.65) 

 

This can be rewritten as 

 

ĉ†2ĉ2 = (uη - 1)2I1 + 2vη(1 - uη)I2 + vη2I3 + v 2η2I4, (3.66) 

 

in which 

I1 = 

 

 

I2 = 

 

 

I3 = 

 

 

I4 = 

∂2 

∂α∗  

∂ 

∂α∗  

1 

2! 
+ M [-η(uα∗  - vα) 

M = η2 . 
2 

v 

∂ 

∂α∗  

∂2 

∂α∗ 2 
ĉ†2ĉ2 = 

 
+ 

α∗ 2α2 - η[uα∗  - vα] (α∗ 2α2) 

 
(3.61) 

(α∗ 2α2) + M 

∂ 

∂α∗  

∂2 

∂α∗ 2 

2 

α∗ 2α2, 
1 

2! 
+ M 

ĉ†2ĉ2 = 

 
+ 

d2αQ(α∗ , α, t) 

 

- η[uα∗  - vα] 
∂2 

∂α∗  

∂ 

∂α∗  

1 

2! 
+ M 

ĉ†2ĉ2 = 

 
+ 

∂2 

∂α∗ 2 

1 

2 
η2[uα∗  - vα]2 

d2α 

η 

 
d2α 

η 

Q(α∗ , α, t)α∗ 2α2, (3.67) 

 

 

Q(α∗ , α, t)α∗ α3, (3.68) 

d2α 

η 

 
d2α 

η 

Q(α∗ , α, t)α2, (3.69) 

 

 

Q(α∗ , α, t)α4, (3.70) 
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Using of Eq. (3.24), we have 

 

I1 = (u2 - v 2)1/2 

 

and this expression can be put in the form 

 

exp[-uα∗ α + (α∗ 2 + α2)], (3.72) 

 

Carrying of the integration with the help of Eq. (3.22), we get 

 

I1 = (u2 - v 2)1/2 

 

Then it follows that 

 

I1 = (u2 - v 2)1/2 (-u(u2 - v 2)-3/2), (3.74) 

 

Applying differentiation, we find 

 

I1 = (u2 - v 2)1/2 

One can rewrite this as 

(2u2 + v 2) 

(u2 - v 2)2 

Following similar procedure, we also find that 

 

, (3.77) 

 

 

 

(3.78) 

 

 

, (3.79) 

 

Substituting Eq. (3.76), (3.77), (3.78) and Eq. (3.79) into Eq. (3.66), we get 

(2u2 + v 2) u 

(u2 - v 2)2 u2 - v 2 

 

 

ĉ†2ĉ2 = 2(d - η)2 + b2, (3.81) 

 

Taking in to account Eq.(3.20), Eq. (3.81), takes the form 

 

ĉ†2ĉ2 = 2n2 + b2, (3.82) 

 

Employing Eq. (3.16), (3.53) and Eq. (3.82) into Eq. (3.56), we get 

 

3x2 + 2(1 + a)x4 

[1 + (2 + a)x2]2 

exp[-uα∗ α + (α2 + α∗ 2)]α∗ 2α2, (3.71) 
d2α 

π 2 

v 

d2 d2α v 

du2 π 2 
I1 = (u2 - v2)1/2 

[u2 - v2]-1/2, (3.73) 
d2 

du2 

d 

du 

, (3.75) 
-1 

(u2 - v2)3/2 

 
23 

3u2 

(u2 - v2)5/2 

I1 = . (3.76) 

3uv 

(u2 - v2)2 
I2 = 

v 
, 

u2 - v2 
I3 = 

and 

I4 = 
3v2 

(u2 - v2)2 

ĉ†2ĉ2 = 2 + - 4 , (3.80) 

 
This can be written as 

¯ 

2 

. (3.83) 
γcN 

κ 
(∆n)2 = 
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Eq. (3.83) represents the variance of the photon number for cavity mode light. And 

the variance of photon number in the cavity is maximum when the number of a 

tomes are maximum. 
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Fig. 3.2: plots variance of photon number(Eq. (3.83)) versus x for γc = 0.4, κ = 0.8 and N = 10. 

 

The plot in Fig. (3.2) indicates that like mean photon number the variance of pho- 

ton number for cavity mode is greater at a = 0 than that of a = 1. And also from 

the graph we observe that the variance of photon number for the cavity mode light is 

greater when the parameter x is greater as the value of a is smaller. 

 

3.1.3 The Photon Number Distribution 

 

We next seek to obtain, employing Q function the photon number distribution for 

the cavity mode produced by the system under consideration. The photon number 

distribution for cavity mode light is expressible in terms of the Q function as 

 

Q(α∗ , α, t)eα∗ α , (3.84) 

α∗ =α=0 

Now using Eq. (3.24), the photon number distribution for the cavity mode under con- 

sideration can be written in the form 

 

exp[(1 - u)α∗ α + (α∗ 2 + α2)]α∗  , (3.85) 

Then expanding the exponential functions in power series, we have: 

(1 - u)k (α∗ α)k 
, 

 
 
 
 
 

for a=1 

for a=0 

π ∂αn 

n! ∂α∗ n∂αn P (n, t) = 

1 

n! 

∂αn 

∂α∗ n∂αn 

v 

2 
[u2 - v2]1/2 P (n, t) = =α=0 

∗  

e(1-u)α α = 

k 

 

 
uα

2 

= e 

(3.86) 
k! 

v lα2l 

2ll! 
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(3.87) 

 

and 

(3.88) 

 
Then Eq. (3.85) becomes 

 

[α∗ k+2mαk+2l ]α∗  , (3.89) 

 

Applying the properties of knocker delta and up on differentiating with the help of 

the identity 

 

∂xm (n - m)! 

We arrive at 

 

(1 - u)k v l+m(k + 2l)!(k + 2m)! 

2l+mk!m!(k + 2l - n)!(k + 2m - n)! 

 

Finally on setting of the result that m = l and k = n - 2, the photon number distribu- 

tion takes the form 

[n] 

P (n, t) = [u2 - v 2]1/2 

l=0 

where [n] = n/2 for even n and [n] = 

the probability to observe n number of photons in the cavity decrease as n increase. 

There is a finite probability to observe odd number of photons in the cavity. This is 

due to the cavity damping. Moreover, the probability of observing even number of 

photons in general greater than the probability of observing odd number of photons 

3.1.4 Power Spectrum 

 

We next seek to obtain the power spectrum of the cavity mode light when both light 

modes a and b have the same central frequency w0 . The power spectrum of the cavity 

mode light is expressible by [14]. 

∞ 

ĉ†(t)ĉ(t + τ ) ei(w-w )τ dτ, (3.93) 
-∞ 

where ”ss” stands for a steady state. And upon integrating both sides of Eq. (3.93) over 

w, we get 

∞ ∞ 

P (w)dw = ĉ†(t)ĉ(t + τ ) e-iw τ dτX 
-∞ -∞ 

so that using the fact that 

δ(τ ) = 

 

, 

l 

 

 
vα

∗ 2 

e = 2 

2 

m 

 

 

(1 - u)k v l+m ∂αn 

2l+mk!l!m! ∂α∗ n∂αn 

vmα∗ 2m 

2mm! 
, 

1 

n! 
P (n, t) = =α=0 [u2 - v2]1/2 

klm 

∂m n! 
xn = xn-m, (3.90) 

 
 
 

δk + 2l, nδk + 2m, n, 

(3.91) 

P (n, t) = [u2 - v2]1/2 

klm 

1 

n! 

n!(1 - n)n-2lv2l 

, 
22ll!2(n - 2l)! 

(3.92) 

[n - 1]/2 for odd. Eq. (3.92) represents that 

1 

2π 
0 

ss P (w) = 

∞ 

eiwτ dw. (3.94) 
-∞ 

 

 

(3.95) 

1 

2π 
ss 

0 

1 

2π 

∞ 

eiwτ dw, 
-∞ 

http://www.ijrti.org/


            © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG   
 

IJNRD2310311 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 
d100 

We find 
∞ ∞ 

P (w)dw = ĉ†(t)ĉ(t + τ ) e-iw τ δ(τ )dτ. (3.96) 
-∞ -∞ 

In view of the relation 
∞ 

f (x)δ(x)dx = f (x)|x=0, (3.97) 
-∞ 

It then follows 
∞ 

P (w)dw = n, (3.98) 
-∞ 

in which n is the steady state mean photon number. On the basis of this result, we 

assert that P (w)dw is the steady state mean photon number in the frequency interval 

between w and w + dw[13,14]. We hence realize that the local mean photon number 

= λ is expressible by 

λ 

P (w )dw . 
-λ 

in whichw = w - w0. 

 

It proves to be convenient to rewrite Eq. (3.93) as 

0 

 ĉ†(t)ĉ(t + τ ) ei(w-w )τ dτ + 

so that replacing t by -τ in the first integral, we find 

∞ 

ĉ†(t)ĉ(t + τ ) ei(w-w )τ dτ , (3.101) 
0 

We observe that one integral is the complex conjugate of the other. Hence the power 

spectrum can be written as 

∞ 

Re ĉ†(t)ĉ(t + τ ) ei(w-w )τ dτ, (3.102) 
0 

in which ”Re” denotes the real part. We now proceed to determine the two time corre- 

lation function that appears in Eq. (3.93). To this end, we realize that the expectation 

value of the solution of Eq. (2.66) can be written as 

τ 

eκτ /2 m(t + τ ) dτ , (3.103) 
0 

Applying the large - time approximation schemes on Eq. (2.34), we calculate the power 

spectrum of cavity mode. 

m†(t) , (3.104) 

 

Now applying the complex conjugate of this result, one can put Eq. (2.33) in the form 

 

 

ma = -µ ma  , (3.105) 

 

 

µ = γc + . (3.106) 

0 
ss 

¯ 

¯ 

in the interval between w = -λ and w 

ss 
0 

(3.99) 

 
 
 
 
 
 

ĉ†(t)ĉ(t + τ ) ei(w-w )τ dτ , (3.100) 

n±λ = ¯ 

1 

2π 

1 

2π 

∞ 

 
0 

0 
ss P (w) = 

∞ 

ĉ†(t)ĉ(t - τ ) e-i(w-w )τ dτ + 
0 

1 

2π 
o 

ss 

1 

2π 
P (w) = 0 

ss 

1 

π 
0 

ss P (w) = 

N 

g 
√ e-κτ /2 ĉ(t + τ ) = ĉ(t) e-κτ /2 + ˆ 

Ω 

γc 
a mb(t) = - ˆ ˆ 

d 

dt 

in which 

ˆ ˆ 

Ω2 

2γc 
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With the atoms considered to be initially in the bottom level, the solution of Eq. (3.105) 

turns out to be 

ma(t) = 0. (3.107) 

 

Moreover, using the same approximation scheme, we obtained from Eq (2.33) that 

 

m†(t) , (3.108) 

 

Then with the aid of the complex conjugate of this relation, we can put Eq. (2.34) in 

the form 

= - µ mb , (3.109) 

 

With the atoms considered to be initially in the bottom level, the solution of Eq. (3.109) 

is found to be 

= 0. (3.110) 

 

Hence assuming the cavity light to be initially in a vacuum state we find the expecta- 

tion value of the solution of Eq. (2.66) to be 

 

ĉ(t) = 0. 

 

On account of Eqs. (3.105) and (3.109), we get 

 

= - µ mb - 

 

and in view of Eq. (2.67), we see that 

 

m = - µ m , (3.113) 

 

On the basis of this equation , one can write 

 

ˆ m = - µm + Fm(t), (3.114) 

 

ˆ in which Fm(t) is a noise operator with a vanishing mean, the solution of Eq.‘(3.114) 

can be put in the form 

τ 
ˆ m(t + τ ) = m(t)e-µτ /2 + e-µτ /2 eµτ /2Fm(t + τ )dτ , (3.115) 

0 

Thus combination of Eqs. (3.103) and (3.115) yields 

 
τ τ 

ˆ dτ e(κ-µ)τ /2 dτ eµτ /2Fm(t+τ ), 
0 0 

(3.116) 

Multiplying both sides on the left by ĉ† and taking the expectation value of the result- 

ing equation, we have 

ˆ 

Ω 

2γc 
b ma(t) = ˆ ˆ 

d 

dt 

1 

2 
mb ˆ ˆ 

mb ˆ 

ˆ 

(3.111) 

 
 
 
 

µ ma  , (3.112) 
1 

2 

1 

2 

d 

dt 
ˆ m ˆ 

1 

2 

d 

dt 
ˆ ˆ 

ˆ 
d 1 

dt 2 
ˆ 

ˆ ˆ 

2gm(t) 

N (κ - µ) 

g 
√ e-κτ /2 

N 

ˆ 
√ ĉ(t+τ ) = ĉ(t)e-κτ /2+ e-µτ /2-e-κτ /2 + 
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 ĉ†(t)ĉ(t + τ ) e-κτ /2 + √
 

dτ e(κ-µ)τ /2 dτ eµτ /2 ĉ†(t)Fm(t + τ ) , (3.117) 

so that in view of the fact that 

 

ĉ†(t)Fm(t + τ ) = 0, (3.118) 

 

we readily arrive at 

 

X ĉ†(t)m(t) [e-µτ /2 - e-κτ 2], (3.119) 

 

Applying the large - time approximation to Eq. (2.66) and Eq. (3.119), there emerges 

 

ĉ†(t)ĉ(t + τ ) = ĉ†(t)ĉ(t) 

 

Hence on substituting Eq. (3.120) into Eq. (3.102) and carrying out the integration, we 

get 

κ¯ µ/2π κ¯ κ/2 
- 

κ - µ (w - w0)2 + (κ/2)2 κ - µ (w - w0)2 + (κ/2)2 

 

Therefore, inserting Eq. (3.121) into Eq. (3.99) and carrying out the integration apply- 

ing the relation 

= tan-1(λ/a) , (3.122) 

 

We arrive at 

n±λ = nz(λ). (3.123) 

 

where n is the mean photon number and with z(λ) defined by 

 

Z(λ) = tan-1( ) - tan-1( ) . (3.124) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2g ĉ†(t)m(t) ˆ 

g 
√ e-κτ /2 

e-µτ /2 - e-κτ /2 ĉ†(t)ĉ(t + τ ) = 

 
+ 

τ 

 
0 N 

N (κ - µ) 
τ 

√ 
2g 

N (κ - µ) 
ĉ†(t)ĉ(t + τ ) = ĉ†(t)ĉ(t) e-κτ /2 + ˆ 

κ µ 
e-µτ /2 - 

κ - µ κ - µ 
e-κτ /2 . (3.120) 

n n 
P (w ) = . (3.121) 

λ 

 
-λ 

dx 2 

x2 + a2 a 

¯ ¯ 

¯ 

2µ/π 2λ 
κ 

κ - µ 

2λ 

µ 
2κ/π 

κ - µ 
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Fig. 3.3: plots of power spectrum(Eq. (3.124)) versus λ for κ = 0.8 and µ = 50. 

 

From the plot in Fig. (3.3) we easily find z(0.5) = 0.66, z(1) = 0.86 and z(2) = 0.96. 

The combination of these results with Eq. (3.123) yields n±0.5 = 0.66n, n±1 = 0.86n 

and n±2 = 0.96. From this we can observe that a large part of the total mean photon 

number is confined in a relatively small frequency interval 

        4.Quadrature Squeezing 

In this chapter we wish to calculate the quadrature squeezing of the cavity mode, out 

put mode and squeezing spectrum in a given frequency interval. 

 

4.1 Global Quadrature Squeezing 

The squeezing properties of the cavity light are described using the Hermitian oper- 

ators defined by[13]. 

ĉ+ = ĉ† + ĉ. (4.1) 

 

and 

ĉ- = i[ĉ† - ĉ]. (4.2) 

 

The operators ĉ+ and ĉ- represent physical quantities called the plus and minus quadra- 

tures. Employing Eq. (3.3) it can be readily established that 

 

[ĉ+, ĉ-] = 2i [Nc - Na ], (4.3) 

 

On the basis of Eq. (4.3), the uncertainty relations for ĉ+ and ĉ- can be written as 

 

ˆ ˆ Nc - Na . (4.4) 

 

¯ ¯ ¯ ¯ 

¯ 

γc ˆ 

ˆ 

κ 

γc 

κ 
∆ĉ+∆ĉ- ≥ 
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The variances of the quadrature operator are expressible as 

 

∆c2 = ± [ĉ† ± ĉ]2 ∓ [ ĉ† ± ĉ ]2. (4.5) 

This can be written as 

 

∆c2 = ± ĉ†2 ± ĉ†ĉ ± ĉĉ† ± ĉ2 ∓ ĉ† ∓ 2 ĉ ĉ† ∓ ĉ 2 . (4.6) 

 

and it is possible to write Eq. (4.6) as 

 

∆c2 = η + 2 ĉ†ĉ ± ĉ2 ± ĉ†2 - 2 ĉ ĉ† ∓ ĉ ∓ ĉ† , (4.7) 

 

We next proceed to obtain the expectation values involved in Eq, (4.7). To this end, 

the expectation value for an operator expressible by 

 

ĉ = d2αQ(α∗ , α + η 

 

employing Eq. (3.31) and Eq. (3.33) into Eq. (4.8), we see that 

 

ĉ = d2αQ(α∗ , α, t) 1 - η[uα∗  - vα] 

 

Applying Eq. (3.24) and carrying out the integration we obtain 

 

ĉ = 0. 

 

Following the same procedure, we obtain as 

 

 

 

 

and 

ĉ2 

 

Using of Eq. (3.24), we easily find 

v 
ĉ2 = 

u2 - v 2 

 

similarly 

ĉ†2 = b, 

 

and 

ĉ†ĉ = n, 

Substituting Eq. (4.10), (4.11), (4.13), (4.14), and (4.15) into Eq. (4.7), we get 

 

∆c2 = η + 2n ± 2b. (4.16) 

 

 

 

2 
± 

2 2 
± 

∂ 

∂α∗  , t)α, (4.8) 

α, (4.9) 

 
 
 
 

(4.10) 

+ η2 
∂ v ∂α2 

∂α∗  2 ∂α∗ 2 

= 0. (4.11) 

 
 
 

Q(α∗ , α, t)α2, (4.12) 

ĉ† 

 
 
d2α 

= 
η 

= b, (4.13) 

 
 
 

(4.14) 

 
 

(4.15) ¯ 

¯ ± 
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Taking into account Eq. (3.16), (3.6) and Eq. (3.53) into Eq. (4.16), we obtain 

 
. 

 

 
1 + (a + 2)x2 

For the place and minus quadrature variances we have 

x2 + 2x 

1 + (a + 2)x2 

 

x2 - 2x 

1 + (a + 2)x2 

From Fig. (4.1) we say that the cavity light is in a squeezed state for x < 2 and 

the squeezing occurs in the minus quadrature. And the plus and minus quadrature 

variances are greater for a = 0 than that of a = 1. As the number of a tomes increase 

the plus quadrature is increase while the minus quadrature is decrease. Moreover, the 

plus and minus quadrature have a common starting point depending on the number 

N , γc and κ. 

                        2 

 
 
 
 
 
 

                       1.5 

 
 
 
 
 
 

                        1 

 
 
 
 
 
 

                        0.5 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 4.1: plots of quadrature variance (Eq. (4.18) and (4.19)) versus x for γc = 0.4, κ = 0.8 and 

N = 2. 

 

Moreover on setting Ω = 0 in Eq. (4.17), we get 

 

(∆c2 )v = (∆c2 )v = N. (4.20) 

 

Eq. (4.20) represents the quadrature variance of a cavity mode light in vacuum state. 

And also we next determine the quadrature squeezing of the cavity mode light rela- 

tive to the quadrature variance of the cavity mode of vacuum state. We then define 

the quadrature squeezing of the cavity mode light relative to the vacuum state by 

x2 ± 2x 
1 + 

γc 

κ 

N. (4.17) 

 
 
 
 

N. (4.18) 

 
 
 

N. (4.19) 

∆c2 = ± 

1 + 

 
 
 

1 + 

γc 
∆c2 = 

κ 

 
 
γc 

= 
κ 

+ 

and 

∆c2 
- 

for a=0 

for a=0 

γc 

κ + - 
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S = . (4.21) 

 

Hence with the aid of Eq. (4.19) and Eq. (4.20), one can put Eq. (4.21) as 

 

 

1 + (2 + a)x2 

We observe from Eq. (4.22) that, unlike mean photon number, the quadrature squeez- 

                        0.5 

 
                        0.45 

 
                        0.4 

 
                        0.35 

 
                        0.3 

 
                         0.25 

 
                        0.2 

 
                        0.15 

 
                       0.1 

 
                       0.05 

 
0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x 

 

Fig. 4.2: plots of global quadrature squeezing (Eq. (4.22)) versus x 

 

ing doesn’t depend on the number of atoms. This impulse that the quadrature squeez- 

ing of the cavity mode is independent of the number of photons. The plot in Fig. (4.2) 

indicates that the maximum quadrature squeezing is 43.3% for a = 1 and 50% for 

a = 0 at x = 0.5. 

 

On the other hand, we define the quadrature squeezing of the out put light by 

 

Sout = . (4.23) 
- v 

where (∆cout)2 is the quadrature variance of the out put light in vacuum state. Since 

all calculations are carried out by putting the vacuum noise in normal order, the out 

put and cavity mode variable can be related by [5] 

 

ĉout = κĉ, (4.24) 

 
It can also ready variable that 

 

(∆cout)2 = κ(∆c2 )v (4.25) 
 
 

(∆c2 )v - (∆c2 ) 

(∆c2 )v 

- - 

- 

2x - x2 

. (4.22) S = 

for a=1 

for a=0 

(∆cout)2 - (∆cout)2 

(∆cout)2 

- v - 

- v 

√ 

and 

 
 

Now in view of Eq. (4.23), (4.25), 
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- - 

 

(4.26) and Eq. (4.21), we easily get 

 

Sout = S. (4.27) 

 

From Eq. (4.27) we observe that the quadrature squeezing of the out put light is equal 

to that of the cavity light. 

 

4.2 Local Quadrature Squeezing 

In this section we seek to determine the quadrature squeezing of the cavity and out 

put modes in a given frequency interval. To this end, we seek to determine the squeez- 

ing spectrum which is expressible by 

∞ 

Re ĉ±(t), ĉ±(t + τ ) ei(w-w )τ dτ. (4.28) 
0 

Upon integrating both sides over w, we get 

∞ 

S±(w) dw = (∆c2 )ss, (4.29) 
-∞ 

in which 

ĉ±(t), ĉ±(t) , (4.30) 

 

is the quadrature variance for the light mode at steady state. On the basis of the result 

given by Eq. (4.29), we assert that S±(w)dw is the steady state quadrature variance of 

the light mode in the interval between w and w + dw. In view of Eq. (3.111), we note 

that 

ĉ±(t), ĉ±(t + τ ) = ĉ±(t)ĉ±(t + τ ) , (4.31) 

 

We now proceed to determine the two time correlation that appears in Eq. (4.31) 

for the cavity light. To this end, we realize that the solution of Eq. (2.66) can be written as 

 

                           

 

 

 

 

substituting Eq. (3.115) in to Eq. (4.32), we get 

 

ĉ(t + τ ) = ĉ(t)e-κτ /2 + 

 

dτ e(κ-µ)τ /2X 
0 0 

On account of this equation, we see that 

(∆cout)2 = κ(∆c2 ), (4.26) 

1 

π 
0 

ss S±(w) = 

± 

ss ∆c2 = ± 

ss ss 

τ 

eκτ /2m(t + τ )dτ , (4.32) 
0 

ˆ 
N 

g 
√ e-κτ /2 

 

2gm(t) 

N (κ - µ) 

ˆ 
√ 

τ 

ˆ dτ eµτ /2Fm(t + τ ). (4.33) 

 
 
 
 

ĉ†(t)m(t) [e-κµ/2 - e-τ/2], (4.34) ˆ 

e-κµ/2 - e-κτ /2 

 
τ 

N 

g 
√ e-κτ /2 + 
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ĉ†(t)ĉ(t + τ ) = ĉ†(t)ĉ(t + τ ) e-κτ /2 + 

 

Applying the large time approximation, we write from Eq. (3.3), that 

√ 

m(t) = , (4.35) 

 

Substituting Eq. (4.35) into Eq. (4.34), we have 

 

ĉ†(t)ĉ(t + τ ) = ĉ†(t)ĉ(t) 

 

Following the same procedure, one can also readily establish that 

 

ĉ(t)ĉ†(t) = ĉ(t)ĉ†(t + τ ) 

 

And 

ĉ(t)ĉ(t + τ ) = ĉ2(t) 

 

Therefore, on account of Eqs. (4.36), (4.37) and Eq. (4.38), Eq. (4.31)takes the form 

κ µ 
e-κτ /2 - 

κ - µ κ - µ 
 

Now introducing of Eq. (4.39) into Eq. (4.28) and carrying out the integration, we find 

the spectrum of the quadrature fluctuation for the cavity light to be 

κ µ/2π µ κ/2π 
- 

κ - µ (w - w0)2 + [µ/2]2 κ - µ (w - w0)2 + [κ/2]2 

 

We realize that the variance of the minus quadrature in the interval between w = -λ 

and w = λ is expressible as 

λ 

(∆c2 )±λ = S-(w )dw . (4.41) 
-λ 

 

in which w = w - w0 . Applying Eq. (4.40) and carrying out the integration, we readily 

get 

(∆c2 )±λ = z(λ)(∆c2 ), (4.42) 

 

 

Z(λ) = tan-1(2λ/µ) - 

 

On account Eq. (4.42), the quadrature variance of a cavity mod light in vacuum state 

can be written in the same frequency interval as 

 

(∆c2 )v±λ = z(λ)(∆c2 )v , (4.44) 

 

We define the quadrature squeezing for the cavity light in the λ± frequency interval 

by 

√ 
2g 

N (κ - µ) 

ˆ 
κ N ĉ(t) 

2g 

e-κτ /2 , (4.36) 
κ µ 

e-κτ /2 - 
κ - µ κ - µ 

e-κτ /2 , (4.37) 
κ µ 

e-κτ /2 - 
κ - µ κ - µ 

µ 

κ - µ 
e-κτ /2 , (4.38) 

κ 

κ - µ 
e-κτ /2 - 

e-κτ /2 , (4.39) ± ss ĉ±(t), ĉ±(t + τ ) = ∆c2 

, (4.40) - S-(w ) = ∆c2 

- 

- - 

2µ/π 

κ - µ 

2κ/π 

κ - µ 
tan-1(2λ/κ) . (4.43) 

- - 
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(∆c2 )v±λ - (∆c2 )±λ 
, 

- 

so that on account of Eq. (4.42), (4.44) and (4.21), there follows 

 
S±λ = S. (4.46) 

 

This shows that the quadrature squeezing of the cavity light in a given frequency in- 

terval is equal to that of the cavity light in the entire frequency interval. We also notice 

that as λ increase the local quadrature squeezing approaches the global quadrature 

squeezing. It is not hard to realize that the mean photon number is very small when 

the quadrature squeezing is relatively large. Finally, defining the quadrature squeez- 

ing of the out put light in the aforementioned frequency interval by 

 

S±λ = , (4.47) 

 

and taking in to account the fact that 

 

(∆cout)2 = z(λ)(∆cout)2 , (4.48) 

 

and 

 
- ±λ - 

substituting Eq. (4.48) and Eq. (4.49) in to Eq. (4.47), we arrive at 

 

S±λ = sout. (4.50) 

 

From Eq. (4.50) we observe that the quadrature squeezing of the out put light in cer- 

tain frequency interval is the same as that of the out put light in the entire frequency interval. 

            5.Conclusion 
In this thesis, we have studied the squeezing and statistical properties of alight generated by three level laser whose cavity 

modes are coupled to vacuum reservoir. The three level atoms available in the cavity are pumped from the bottom to the top 

level by means of electron bombardment 

 

 

We carry out our analysis by putting the noise operators associated with the vacuum reservoir in normal order. Making 

use of the quantum langevin equation at steady state solution, we have determined the time 

evolution for the expectation values of atomic operators and stimulated emission decay constant. 

On the other hand, using of the Q function in anti normal ordered, we have calculated the mean photon number, 

variance of photon number, photon number distribution, and quadrature variances of cavity mode light. It is found that 

both the mean and variance of photon number for a = 0 are greater than that for a = 1. 

the meanand variance of photon number for a = 0 are greater than that for a = 1. Moreover, the mean photon number is 

very small when the quadrature squeezing is relatively very large. We observe from power spectrum we observed that a large 

part of the total mean photon number is confined in a relatively very small frequency interval.total,mean photon number is 

confined in a relatively very small frequency interval . This study shows that the cavity light produced by the system 

under consideration can be in squeezed state for x < 2 and the squeezing occurs in the minus quadrature , it is observe 

S±λ = (4.45) - - 

(∆c2 )v±λ 

out (∆cout)2 - (∆cout)2 

- v±λ 

- v±λ - ±λ 

(∆cout)2 

- v±λ - v 

 

 

 

(∆cout)2 = z(λ)(∆cout)2, (4.49) 

out 

http://www.ijrti.org/


            © 2023 IJNRD | Volume 8, Issue 10 October 2023 | ISSN: 2456-4184 | IJNRD.ORG   
 

IJNRD2310311 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 
d110 

that, the maximum quadrature squeezing is 43.3% for a = 1 and 50% for a = 0 at x = 0.5. And also the quadrature 

squeezing doesn’t depend on the number of atoms. And the quadrature squeezing of the cavity light in a given frequency 

interval is equal to that of the cavity light. Finally, we can conclude that the quadrature squeezing of the out put light in a 

certain frequency interval is the same as that of the out put light in the entire frequency. 
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