
 © 2023 IJNRD | Volume 8, Issue 11 November 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2311024 International Journal of Novel Research and Development (www.ijnrd.org)

a206

COLLEGE LECTURE NOTES

MANAGEMENT SYSTEM

(1) Dr.K.SAILAJA MCA,M.TECH,phD (2)CHANDRAHASREDDY

PROFFESOR & HOD Student

DepartmentofComputer Applications Department of Computer Applications

Chadalwadaramanamma engineering colleagechadalawadaramanammaengineerincolleage

Abstract – As the world is being developed with the new technologies, discovering and manipulating

new ideas and concepts of taking everything online are rapidly changing. It is difficult for teacher’s to

circulate their notes to each and every student whom is he/she teaching. College Notes Gallery provide an

easy approach for both students and teachers to circulate the notes whether of any kind like lecture notes,

assignment questions, question papers and all the important documents. The teachers and students can

upload the documents from anywhere and students can download it. Overall it is managed by the admin.

Existing System and its Limitations Mostly the notes are circulated on WhatsApp or any kind so it gets

very difficult to manage the important notes at the time of need. Need of Proposed System My system

will provide an easy approach to share the documents for studying purpose. Multiple users can work

simultaneously on the system. It will be easy for the teachers to circulate the notes to each and every

students.

Keywords- Admin panel, Notes, Student, Teacher, College notes, Gallery

1.INTRODUCTION

Distributed systems, such as scale-out

computing frameworks distributed key-value

stores scalable file systems and cluster

management servicesare the fundamental

building blocks of moderncloud applications. As

cloud applications provide 24/7online services

to users, high reliability of their

underlyingdistributed systems becomes crucial.

However, distributedsystems are notoriously

difficult to get right. There are widelyexisting

software bugs in real-world distributed

systems,which often cause data loss and cloud

outage, costing serviceproviders millions of

dollars per outrage.

Among all types of bugs in distributed systems,

distributedconcurrency bugs are among the most

troublesome. These bugs are triggered by

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 11 November 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2311024 International Journal of Novel Research and Development (www.ijnrd.org)

a207

complex interleavingsof messages, i.e.,

unexpected orderings of communicationevents.

It is difficult for programmers to correctlyreason

about and handle concurrent executions on

multiplemachines. This fact has motivated a

large body of research ondistributed system

model checkers whichdetect hard-to-find bugs

by exercising all possible messageorderings

systematically. Theoretically, these model

checkerscan guarantee reliability when running

the same workloadverified earlier. However,

distributed system model checkers face the

state-space explosion problem. Despite

recentadvancesit is still difficult to scale them to

many largereal-world applications. For example,

in our experimentsfor running the WordCount

workload on Hadoop2/Yarn,5,495 messages are

involved. Even in such a simple case, itbecomes

impractical to test exhaustively all possible

messageorderings in a timely manner.

 2. ITERATURE SURVEY

2.1DIFFERENTAUTHORSDISCUSSION:X

u et al. mine console logs from a system and

apply machine learning techniques to detect

anomaly executions. Mined information such as

logged values and logging frequencies is

visualized to help users diagnose anomaly

behaviors. DISTALYZER compares logs from

abnormal and normal executions to infer the

strongest association between system

components and performance. Iprof extracts

request IDs and timing information from logs to

profile request latency. Stitch [60] organizes log

instances into tasks and sub-tasks, by analyzing

relations among the logged ID variables to

profile different components in the entire

distributed software stack.

2.2 DOMAIN DESCRIPTION

Fault injection techniques are commonly used to

test the resilience of distributed systems.

However, they focus on how to inject faults at

different system states to expose bugs in the

fault handlers. CLOUDRAID can be applied

together to detect fault-related concurrency bugs

more effectively.

3. PROBLEM STATEMENT

3.1.EXISTING SYSTEM

Liu et al. have recently extended race detection

techniques for multi-threaded programs to detect

race conditions in distributed systems. Their

approach instruments memory accesses and

communication events in a system to collect

runtime traces at run time. An offline analysis is

performed to analyze the happen-before relation

among the emory accesses, by using a happen

before model customized to distributed systems.

Concurrent memory accesses that may trigger

exceptions are regarded as harmful data races.A

trigger is employed to further verify the detected

race conditions. In, its approach mines logs to

recover runtime traces without instrumentation,

by restricting itself to message orderings

involving only two messages. In this paper, we

have improved the effectiveness of this earlier

approach with two significant extensions.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 11 November 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2311024 International Journal of Novel Research and Development (www.ijnrd.org)

a208

3.2DISADVANTAGES OF EXISTING

SYSTEM

An existing methodology doesn’t implement a

novel strategy for detecting distributed

concurrency bugs.The system is not aiming at

CLOUDRAID leverages the run-time logs of live

systems and avoids unnecessary repetitive tests.

4. PROPOSED SYSTEM

4.1 PROPOSED SYSTEM

We propose a new approach, CLOUDRAID, for

detecting concurrency bugs in distributed systems

efficiently and effectively. CLOUDRAID

leverages the run-time logs of live systems and

avoids unnecessary repetitive tests, thereby

drastically improving the efficiency and

effectiveness of our approach.We describe a new

log enhancing technique for improving log

quality automatically. This enables us to log key

communication events in a system automatically

without introducing any noticeable performance

penalty. The enhanced logs can further improve

the overall effectiveness of our approach.

4.2ADVANTAGES OF PROPOSED SYSTEM

The proposed approach focuses on detecting the

bugs caused by order violation, i.e., the bugs

which manifest themselves whenever a message

arrives at a wrong order with respect to another

event. The majority of these bugs can be exposed

by reordering a pair of messages, as suggested

previously.However, relatively few but critical

bugs still occur when more than two messages are

involved. These bugs can only be exposed under

special timing conditions, involving, for example,

some specific messages or events (e.g., node

crashes or reboots). To detect such errors, we

have empowered our approach with the capability

of reordering an arbitrary number of messages for

an application.

5.IMPLEMENTATION

5.1 Admin

In this module, the Service Provider has to login

by using valid user name and password. After

login successful he can do some operations such

as View All Users and Authorize, View All

Datasets,View All Bug Report Datasets By

Chain,View All Severity Category

Results,ViewAll Bug Fixed Results,View All

Bug Resolved Results.

5.2 View and Authorize Users

Inthismodule,facultyregisterandlogintothesyste

m.Heallowsuploadingmaterials, events,

attendance, marks in the system. He can view

theirstudent’sattendancedetails, marksdetails,

and updatehisprofile.

5.3 End User

In this module, there are n numbers of users are

present. User should register before doing any

operations. Once user registers, their details will

be stored to the database. After registration

successful, he has to login by using authorized

user name and password. Once Login is

successful user will do some operations like

MyProfile,UploadDatasets,View All

Datasets,Find Bug Severity Category,Find

Severity Category Results By Hashcode.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 11 November 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2311024 International Journal of Novel Research and Development (www.ijnrd.org)

a209

6.SYSTEM ARCHITECTURE

7.CONCLUSION

We present CLOUDRAID, a simple yet

effective tool for detectingdistributed

concurrency bugs. CLOUDRAID achieves

itsefficiency and effectiveness by analyzing

message orderingsthat are likely to expose

errors from existing logs. Ourevaluation shows

that CLOUDRAID is simple to deploy

andeffective in detecting bugs. In particular,

CLOUDRAID cantest 60 versions of six

representative systems in 35 hours,finding

successfully 31 bugs, including 9 new bugs that

have never been reported before.

7.1 FUTURE ENHANCEMENT

Distributed concurrency bugs are notoriously

difficult to find as they are triggered by

untimely interaction among nodes, i.e.,

unexpected message orderings. To detect

concurrency bugs in cloud systems efficiently

and effectively, CLOUDRAID analyzes and

tests automatically only the message orderings

that are likely to expose errors. Specifically,

CLOUDRAID mines the logs from previous

executions to uncover the message orderings

that are feasible but inadequately tested. In

addition, we also propose a log enhancing

technique to introduce new logs automatically in

the system being tested.

8.REFERENCES

[[1] J. Dean and S. Ghemawat, “Mapreduce:

Simplified data

processing on large clusters,” Commun. ACM,

vol. 51,

no. 1, pp. 107–113, Jan. 2008. [Online].

Available: http:

//doi.acm.org/10.1145/1327452.1327492

[2] V. K. Vavilapalli, A. C. Murthy, C. Douglas,

S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,

B. Saha, C. Curino,

O. O’Malley, S. Radia, B. Reed, and E.

Baldeschwieler, “Apache

hadoop yarn: Yet another resource negotiator,”

in Proceedings of

the 4th Annual Symposium on Cloud

Computing, ser. SOCC ’13.

New York, NY, USA: ACM, 2013, pp. 5:1–

5:16. [Online]. Available:

http://doi.acm.org/10.1145/2523616.2523633

[3] L. George, HBase: the definitive guide:

random access to your planet-size

data. " O’Reilly Media, Inc.", 2011.

[4] A. Lakshman and P. Malik, “Cassandra: a

decentralized structured

storage system,” ACM SIGOPS Operating

Systems Review, vol. 44,

no. 2, pp. 35–40, 2010.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 11 November 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2311024 International Journal of Novel Research and Development (www.ijnrd.org)

a210

[5] Z. Guo, S. McDirmid, M. Yang, L. Zhuang,

P. Zhang,

Y. Luo, T. Bergan, P. Bodik, M. Musuvathi, Z.

Zhang, and

L. Zhou, “Failure recovery: When the cure is

worse than

the disease,” in Proceedings of the 14th

USENIX Conference on

Hot Topics in Operating Systems, ser.

HotOS’13. Berkeley, CA,

USA: USENIX Association, 2013, pp. 8–8.

[Online]. Available:

http://dl.acm.org/citation.cfm?id=2490483.2490

491

[6] D. Yuan, Y. Luo, X. Zhuang, G. R.

Rodrigues, X. Zhao, Y. Zhang,

P. U. Jain, and M. Stumm, “Simple testing can

prevent most critical

failures: An analysis of production failures in

distributed dataintensive

systems,” in Proceedings of the 11th USENIX

Conference on

Operating Systems Design and Implementation,

ser. OSDI’14. Berkeley,

CA, USA: USENIX Association, 2014, pp.

249–265. [Online].

Available:

http://dl.acm.org/citation.cfm?id=2685048.2685

068

[7] H. S. Gunawi, M. Hao, T.

Leesatapornwongsa, T. Patana-anake,

T. Do, J. Adityatama, K. J. Eliazar, A. Laksono,

J. F. Lukman,

V. Martin, and A. D. Satria, “What bugs live in

the cloud?

a study of 3000+ issues in cloud systems,” in

Proceedings of

the ACM Symposium on Cloud Computing, ser.

SOCC ’14. New

York, NY, USA: ACM, 2014, pp. 7:1–7:14.

[Online]. Available:

http://doi.acm.org/10.1145/2670979.2670986

[8] T. Leesatapornwongsa, J. F. Lukman, S. Lu,

and H. S. Gunawi,

“Taxdc: A taxonomy of non-deterministic

concurrency bugs in

datacenter distributed systems,” in Proceedings

of the Twenty-First

International Conference on Architectural

Support for Programming

Languages and Operating Systems, ser.

ASPLOS ’16. New

York, NY, USA: ACM, 2016, pp. 517–530.

[Online]. Available:

http://doi.acm.org/10.1145/2872362.2872374

[9] T. Leesatapornwongsa, M. Hao, P. Joshi, J.

F. Lukman, and H. S.

Gunawi, “Samc: Semantic-aware model

checking for fast discovery

of deep bugs in cloud systems.” in OSDI, 2014,

pp. 399–414.

[10] H. Lin, M. Yang, F. Long, L. Zhang, and L.

Zhou, “Modist: Transparent

model checking of unmodified distributed

systems,” in 6th

USENIX Symposium on Networked Systems

Design & Implementation

(NSDI), 2009.

[11] J. Simsa, R. E. Bryant, and G. Gibson,

“dbug: systematic evaluation

http://www.ijrti.org/
http://doi.acm.org/10.1145/2670979.2670986

 © 2023 IJNRD | Volume 8, Issue 11 November 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2311024 International Journal of Novel Research and Development (www.ijnrd.org)

a211

of distributed systems.” USENIX, 2010.

[12] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang,

and L. Zhang, “Practical

software model checking via dynamic interface

reduction,” in

Proceedings of the Twenty-Third ACM

Symposium on Operating Systems

Principles. ACM, 2011, pp. 265–278.

[13] D. Borthakur et al., “Hdfs architecture

guide,” Hadoop Apache Project,

vol. 53, 2008.

[14] P. Hunt, M. Konar, F. P. Junqueira, and B.

Reed, “Zookeeper: Waitfree

coordination for internet-scale systems.” in

USENIX annual

technical conference, vol. 8, no. 9, 2010.

[15] P. Carbone, A. Katsifodimos, S. Ewen, V.

Markl, S. Haridi, and

K. Tzoumas, “Apache flink: Stream and batch

processing in a single

engine,” Bulletin of the IEEE Computer Society

Technical Committee on

Data Engineering, vol. 36, no. 4, 2015.

[16] (2018) Wala home page. [Online].

Available: http://wala.

sourceforge.net/wiki/index.php/Main_Page/.

[17] W. Xu, L. Huang, A. Fox, D. Patterson,

and M. I. Jordan, “Detecting

large-scale system problems by mining console

logs,” in Proceedings

of the ACM SIGOPS 22nd symposium on

Operating systems principles.

ACM, 2009, pp. 117–132.

[18] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah,

Y. Luo, D. Yuan, and

M. Stumm, “lprof: A non-intrusive request flow

profiler for

distributed systems.” in OSDI, vol. 14, 2014,

pp. 629–644.

[19] L. Li, C. Cifuentes, and N. Keynes,

“Boosting the performance of

flow-sensitive points-to analysis using value

flow,” in Proceedings of

the 19th ACM SIGSOFT Symposium and the

13th European Conference

on Foundations of Software Engineering, ser.

ESEC/FSE ’11. New

York, NY, USA: ACM, 2011, pp. 343–353.

[Online]. Available:

http://doi.acm.org/10.1145/2025113.2025160

[20] ——, “Precise and scalable context-

sensitive pointer analysis

via value flow graph,” in Proceedings of the

2013 International

Symposium on Memory Management, ser.

ISMM ’13. New

York, NY, USA: ACM, 2013, pp. 85–96.

[Online]. Available:

http://doi.acm.org/10.1145/2464157.2466483

[21] T. Tan, Y. Li, and J. Xue, “Efficient and

precise points-to

analysis: Modeling the heap by merging

equivalent automata,” in

Proceedings of the 38th ACM SIGPLAN

Conference on Programming

Language Design and Implementation, ser.

PLDI 2017. New

York, NY, USA: ACM, 2017, pp. 278–291.

[Online]. Available:

http://doi.acm.org/10.1145/3062341.3062360

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 11 November 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2311024 International Journal of Novel Research and Development (www.ijnrd.org)

a212

[22] Y. Sui and J. Xue, “On-demand strong

update analysis via valueflow

refinement,” in Proceedings of the 2016 24th

ACM SIGSOFT

International Symposium on Foundations of

Software Engineering, ser.

FSE 2016. New York, NY, USA: ACM, 2016,

pp. 460–473. [Online].

Available:

http://doi.acm.org/10.1145/2950290.2950296

[23] (2018) Google protocol buffer. [Online].

Available: https:

//developers.google.com/protocol-buffers/.

[24] E. Gamma, Design patterns: elements of

reusable object-oriented software.

Pearson Education India, 1995.

[25] J.-G. Lou, Q. Fu, Y. Wang, and J. Li,

“Mining dependency in

distributed systems through unstructured logs

analysis,” ACM

SIGOPS Operating Systems Review, vol. 44,

no. 1, pp. 91–96, 2010.

[26] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S.

Savage, “Improving

software diagnosability via log enhancement,”

ACM Transactions

on Computer Systems (TOCS), vol. 30, no. 1,

pp. 1–28, 2012.

[27] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu,

and D. Zhang, “Learning

to log: Helping developers make informed

logging decisions,”

in 2015 IEEE/ACM 37th IEEE International

Conference on Software

Engineering, vol. 1. IEEE, 2015, pp. 415–425.

http://www.ijrti.org/

