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Abstract: This paper implements methodologies for seizure detection and prediction using mathematical techniques like FFT and 

Machine Learning classifiers such as Random Forest. The dataset for this project includes both training data, called Ictal and testing 

data called Interictal. For data pre-processing the Fast Fourier Transform is applied to each 1 second clip, taking frequency magnitudes 

in the range 1-47Hz and discarding phase information. Correlation coefficients and their eigenvalues are then calculated in both the time 

and frequency domains and are appended to the FFT data to form the feature set. This feature set is then trained on a Random Forest 

classifier using 3000 trees. The approach is used to train per-patient classifiers. A prediction module concludes this project by presenting 

the probability of seizure within a patient. The results are visualized for easy and clear representation. 
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1. INTRODUCTION  

Epilepsy, a neurological disorder characterized by recurrent seizures, affects millions of people worldwide. Timely and accurate seizure 

detection is crucial for effective management and intervention, enhancing the quality of life for individuals living with epilepsy. In 

recent years, advancements in signal processing and machine learning have opened new avenues for developing robust seizure detection 

systems. 

The research presented in this paper focuses on the implementation of methodologies for seizure detection and prediction, utilizing 

mathematical techniques such as Fast Fourier Transform (FFT) and machine learning classifiers, specifically Random Forests. The study 

aims to contribute to the field of epileptic seizure detection by exploring innovative approaches that leverage both signal processing and 

machine learning. 

2. NEED FOR STUDY 

The need for an efficient and reliable seizure detection system arises from the significant impact that timely intervention can have on 

the lives of individuals with epilepsy. Seizure prediction can enable prompt medical attention, potentially preventing serious 

consequences associated with unanticipated seizures. Current medical practices often rely on clinical observation or patient self-

reporting, which may not provide real-time and objective data for timely intervention. 

The integration of machine learning techniques, particularly Random Forests, offers a promising avenue for the development of accurate 

and automated seizure detection systems. Machine learning models have demonstrated the ability to learn complex patterns from diverse 

datasets, making them well-suited for analyzing electroencephalogram (EEG) signals associated with seizures. 

Furthermore, the utilization of FFT in signal preprocessing allows for the extraction of relevant features from EEG data, providing 

valuable input to the machine learning classifier. The combination of FFT and Random Forests presents a synergistic approach, 

leveraging both the frequency domain information and the powerful classification capabilities of Random Forests. 

This paper addresses the need for a systematic exploration of feature selection, model training, and cross-validation techniques to 

develop a robust seizure detection system. Through extensive experimentation, the authors have identified optimal combinations of 

features and classifiers, providing insights into the effectiveness of the proposed methodology. The research not only contributes to the 
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scientific understanding of seizure detection but also offers practical implications for healthcare professionals and individuals living 

with epilepsy. 

In the subsequent sections, the paper delves into the detailed methodology, feature selection processes, modeling techniques, and cross-

validation results, providing a comprehensive overview of the research undertaken. The ultimate goal is to contribute to the development 

of accurate and efficient seizure detection systems that can enhance the quality of life for individuals with epilepsy. 

3. FEATURE SELECTION 

The features used in the model were determined through heavy experimentation. Study of the literature of prior work in the field as well 

as our own study of signal processing and machine learning gave inspiration for ideas to experiment with. Features were kept or 

discarded based on their cross-validation performance. The first thing we experimented on with was Fast Fourier Transform on the belief 

that the various magnitudes of different frequencies would provide a good source of features. This turned out to be correct with FFT 

alone providing the best single-feature model compared to all other singular pre-processing steps we tried. Combinations of multiple 

features eventually proved to provide a better classification score once the right features were combined. It was shown by Schindler, 

Leung, Elger & Lehnertz (2007) [6] that correlation coefficients in the time domain and their corresponding eigenvalues are effective 

features for seizure detection. So we decided to apply this technique over both the time domain of the original data, and in the frequency 

domain.  

 
 

Fig 1. Flowchart explaining the process of Feature Selection 

 

Three sources of features are used to form the whole feature-set: 

A. FFT magnitudes in the low frequency range 1 to 47Hz 

Time-series -> FFT -> Slice(1, 47) -> Magnitude -> Log10 
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Fast Fourier Transform is applied to each 1 second clip across all EEG channels, taking log10 of the magnitudes of frequencies in the 

range 1-47Hz. Phase information is discarded. The output of each training example in this stage is in the shape (N, 47) where N is the 

number of EEG channels used for a given patient.  

The Fourier transform (FT) of the function f(x) is the function F(ω), where: 

 

and the inverse Fourier transform is: 

 

The range 1-47Hz was chosen through trial and error while attempting dimensionality reduction. It turned out to give a better result than 

using other frequency ranges such as 1-63Hz, 1-127 Hz, 1-191Hz, or the entire frequency range. Note that we have also omitted the 0Hz 

frequency, assuming this bias to be attributed to instrument error and would contribute only noise. 

 Finally, the frequency features from all of the different channels are concatenated together when used for training.  

B. Correlation coefficients (between EEG channels) and their eigenvalues in the frequency domain 

FFT 1-47Hz -> normalization -> correlation coefficients -> eigenvalues 

The output of the FFT stage with shape (N, 47) is then normalized across frequency buckets. For example, all the 1Hz buckets for each 

EEG channel are treated as a single vector, subtracting the mean and dividing by standard deviation. This is done for every frequency 

bucket from 1Hz up to 47Hz. The correlation coefficients (N, N) matrix is calculated from this normalized matrix of (N, 47). Real 

eigenvalues are calculated on this correlation coefficient matrix with complex eigenvalues made real by taking the complex magnitude. 

The output of this stage is the upper right triangle of the correlation coefficient matrix (as it is symmetric there is redundant data), and 

the eigenvalues are sorted by magnitude.  

C. Correlation coefficients (between EEG channels) and their eigenvalues in the time domain. 

Time series -> normalization -> correlation coefficients -> eigenvalues 

Schindler, Leung, Elger & Lehnertz (2007) [6] showed this to be an effective technique. However, we believe they normalized each 

channel independently, using mean and standard deviation across all the time-samples within a single channel. The cross validation 

showed that normalizing across samples performed the same as not applying normalization at all, and that normalizing each feature 

performed worse. However, leader board submissions showed better results normalizing each feature. The features from this stage are 

calculated the same as stage 2, but the input source of data is the original time-series source data instead of the FFT output. Like the 

previous stage, both the upper triangle of the correlation coefficients and the sorted eigenvalues are used as features. The output of all 3 

stages is combined together to form the feature set. 

The peculiarity in the solution is that normalizing across features (axis=0) instead of on samples performed better on the leaderboard, 

but worse in cross-validation. In cross-validation better performance was obtained by normalization across samples (axis=1) or by not 

normalizing at all. 

4. MODELLING TECHNIQUES AND TRAINING 

Our background is Computer Engineering with self-study of signal processing and machine learning. Our focus was therefore on writing 

performant code that would allow us to systematically experiment with different classifiers and different mathematical transforms to get 

quick feedback about what works and what doesn’t. It was a greedy brute force approach, trying the most promising techniques first but 

otherwise trying every technique we could find. To facilitate this heavy experimentation, we wrote a rudimentary framework to allow 

quick cross-validation of many different combinations of data processing techniques and classifiers. 

 

A. Experimentation framework  

Like the feature selection, the chosen model for classification was determined through experimentation. Each run gives a cross-validation 

score matching the scoring criteria used by the competition leaderboard (ROC AUC). Combinations of feature sets and classifiers that 

gave higher scores were explored further.  
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This approach was made easy using the scikit-learn python machine learning library which offers many different classifiers that can be 

easily substituted in the code. Many different classifiers were tried in succession from logistic regression to decision trees or support 

vector machines. There are too many in scikit-learn to list here. However Random Forest offered not only the best performance but also 

consistent performance. The performance of SVM for example changed wildly with only small changes to the tuning parameters. Some 

manual experimentation was then done to determine good parameters to maximize the Random Forest performance. 

 

The following python scikit-learn classifier was used to train the winning submission: 

RandomForestClassifier(n_estimators=3000, min_samples_split=1, bootstrap=False, random_state=0) 

 

B. Cross-validation  

Initially we split the training set and cross-validation randomly. However, scores achieved in cross-validation varied a significant amount 

from leaderboard scores suggesting this was not a good approach. Following advice on the forums from Kaggle user Alexandre, we split 

the ictal training data based on whole seizures. For example for a ratio of 0.25, if there were 4 seizures then 1 entire seizure was split 

out leaving the other 3 to train on. Some seizures for each patient were of different length. We sorted the seizures by length, then took 

the cross validation set from the middle, and trained on the shorter/longer seizures. This gave cross-validation scores that matched them 

very closely. However once cross-validation scores reached the 0.96-0.97 mark it was no longer sufficient to reliably rank models against 

each other and we fell back to submitting models based on intuition and checking performance on the leaderboard. For example, our 

first submission of FFT combined with correlation data increased my score significantly on the public leader board from 0.95748 to 

0.96961, an increase of 0.01213. However in cross-validation we saw an order of magnitude smaller increase of approximately 0.001. 

This indicates that there is perhaps room to improve in the cross-validation setup. These last numbers were taken with a cross-validation 

split of 50%. Other splits to try might be to train on the medium-length seizures, and cross-validate on the longer/shorter ones. However, 

after optimization, and running cross validation thrice we achieved accuracy of 98%, 96% and 94% respectively.  

An alternative option for cross validation would be to use k-fold cross-validation, which takes a longer time for evaluation making it 

less desirable. 

 

5. CROSS VALIDATION RESULTS 

The following is an example of the kind of output (although some data removed to make it easier to read in this document) that could 

be produced after 1 hour of trying different data processing steps. This includes trying various transforms such as FFT, frequency 

correlation, time correlation, MFCC, Daubechies wavelet and just basic stats of the time-series data. Note this is not an exhaustive list 

of the methods that we have tried to implement. All validators are implemented in random forests with 150 estimators, minimum sample 

split as 1, no bootstrap, and random state as 0 

The tags us, usf and none refer to the normalization option used with us referring to normalizing across all samples within a channel, 

and usf referring to normalizing each feature across all channels one by one. 

 

Table 1: Cross validation Results 

 

No. Method Normalization Accuracy 

1. FFT with Time and Frequency Correlation taking frequency 

slice 1-48 

none 96.750 

2. 

FFT with Time and Frequency Correlation taking frequency 

slice 1-48 

us 96.750 
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3. 

FFT with frequency slice 1-48 and taking the magnitude and 

log 10 of the result 

none 96.623 

4. 

FFT with frequency slice 1-128 and taking the magnitude 

and log 10 of the result 

none 96.496 

5. 

Daubechies Wavelet coefficients none 96.315 

6. 

FFT with frequency slice 1-96 and taking the magnitude and 

log 10 of the result 

none 96.257 

7. 

Gen FFT with Time and Frequency Correlation taking 

frequency slice 1-48 

none 96.237 

8. 

Gen FFT with Time and Frequency Correlation taking 

frequency slice 1-48 

us 96.237 

9. 

Resampling time series data using a Hanning window and 

then taking the Daubechies Wavelet coefficients 

none 96.188 

10. 

FFT with frequency slice 1-160 and taking the magnitude 

and log 10 of the result 

non 96.151 

11. 

FFT with Time and Frequency Correlation taking frequency 

slice 1-48 

usf 96.147 

12. 

FFT and taking the magnitude and log 10 of the result none 96.069 

13. Gen FFT with Time and Frequency Correlation taking 

frequency slice 1-48 

usf 95.886 

14. FFT with frequency slice 1-64 and taking magnitude and log 

10 of the result 

none 95.818 

15. Resampling time series data using a Hanning window and 

taking the Mel-frequency coefficients 

none 95.462 

16. Time Frequency correlation taking frequency slice 1-48 none 95.253 

17. Time Frequency correlation taking frequency slice 1-48 us 95.253 

18. Time Frequency correlation taking frequency slice 1-48 usf 93.334 
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6. CONCLUSION 

Thus we have achieved our aim of seizure detection and prediction using Mathematical and ML techniques by the implementation of 

Fast Fourier Transform and Random forest. We discussed in detail how the methods chosen were the optimal choices for this project. 

We have personally tried various alternatives and found these to be the best, providing fast and accurate results with great consistency. 

The prediction module of the project also helps identify the probability of seizure onset, thereby warning both the patient and the doctor. 

This could help prevent the seizure and deal with potential risks it proposes. It could really mean the difference of life and death for 

some. We hope to have achieved this target through this software. 
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