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1. ABSTRACT  

The proliferation of Android smartphones among consumers has fueled a rapid increase in malware attacks on the Android platform. 

Cybercriminals leverage technological advancements to actively create and distribute malicious content, posing a significant threat 

to users. While researchers have made considerable strides in generic Android malware detection, a deeper understanding of specific 

malware groups is essential for a more nuanced defense strategy. This paper addresses the critical challenge of Android malware 

detection by presenting a comprehensive solution that amalgamates static analysis of Android APKs with advanced machine 

learning techniques. Leveraging the recently introduced CICMalDroid 2020 dataset, our approach focuses on robust feature 

extraction, encompassing API Calls, Intents, Permissions, and Command signatures. To enhance classification accuracy, we employ 

a two-step methodology. Initially, we perform feature selection using Particle Swarm Optimization (PSO) on the dataset. 

Subsequently, we optimize the performance of XGBoost and CatBoost machine learning classifiers through an Adaptive Genetic 

Algorithm (AGA). Our experiments yield exceptional results, achieving a remarkable 99.175% accuracy and a corresponding F-

score of 99.054 % with the ensembled XGBoost and CatBoost classifiers. This performance is attributed to PSO-based feature 

selection and AGA-based hyperparameter optimization. This research underscores the effectiveness of our hybrid approach, which 

seamlessly integrates static analysis with ensembled machine learning models and adaptive genetic algorithms. The proposed 

solution significantly enhances classification performance, demonstrating its potential for improved Android malware detection in 

real-world scenarios. The findings contribute to advancing the field of Android security and serve as a foundation for developing 

more targeted defenses against evolving malware threats. 

 

IndexTerms - Android Malware, Malware Detection, Machine Learning, Static Analysis, Feature Selection, CICMalDroid 

2020 Dataset, Feature Extraction. API Calls, Particle Swarm Optimization (PSO), XGBoost, CatBoost. 
________________________________________________________________________________________________________ 

2. INTRODUCTION: 

 

The proliferation of Android smartphones, owing to the Android operating system's open-source nature and widespread 

accessibility, has undeniably transformed the mobile landscape. According to Stat-Counter, Android mobile phones commanded a 

remarkable 76.67% market share in 2019, marking a substantial growth of 1.1 billion users from 2015 to 2019. However, this 

widespread adoption has made Android a lucrative target for malicious actors aiming to exploit vulnerabilities and compromise 

user data. 

The advent of Android malware represents a formidable challenge in the realm of cybersecurity. Android, with its ecosystem of 

millions of applications available through various app stores like Google Play Store and Samsung Store, has become a breeding 

ground for a diverse array of malware. These malicious programs, ranging from viruses and spyware to keyloggers, have found 

ingenious ways to infiltrate Android devices, often bypassing traditional signature-based detection methods. 

The dynamic nature of Android malware is fueled by its ability to adapt and evolve over time. Through sophisticated techniques 

like coding obfuscation and encryption, malware creators continuously elevate the complexity of their malicious strains, rendering 

conventional detection approaches insufficient. Traditional signature-based methods, relying on known patterns and characteristics, 

struggle to keep pace with the ever-expanding repertoire of Android malware. 

Recognizing the inadequacy of traditional detection methods, researchers have turned to machine learning-based strategies. Android 

malware detection now extends beyond simple signature matching, with a growing emphasis on static and dynamic analysis 

approaches. Static analysis methods examine factors such as permission usage, function calls, and the presence of specific strings 

within the Android Application Package (APK). On the other hand, dynamic analysis involves scrutinizing system calls and API 

calls during the execution of an application. 

Despite the advancements in static and dynamic analysis, the Android malware landscape continues to evolve. This prompts 

researchers to explore innovative approaches, such as feature extraction based on permission combinations. By treating each 
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permission as a distinct entity and investigating their combinations, researchers aim to enhance the accuracy and robustness of 

Android malware detection. 

This paper delves into this dynamic landscape, proposing a groundbreaking solution that combines ensembling machine learning 

models with adaptive genetic algorithms for a more resilient Android malware detection system. Through this approach, the research 

aims to contribute to the ongoing efforts in fortifying the security of Android devices against the ever-growing sophistication of 

malware attacks. 

 

________________________________________________________________________________________________________ 

3. RESEARCH MOTIVATION: 

 

 Contributions to Android Security: The overall motivation of the research is to contribute to the field of Android 

security. The proposed hybrid approach, integrating static analysis, machine learning models, and adaptive genetic 

algorithms, is positioned as a significant advancement in addressing the challenges posed by Android malware. 

 Potential for Real-World Application: The research suggests that the proposed solution has the potential for real-world 

application in improving Android malware detection in practical scenarios. The robustness of the approach is demonstrated 

through experimentation and high-performance metrics. 

 Ineffectiveness of Signature-Based Approaches: Traditional signature-based detection methods struggle to keep up with 

the dynamic and evolving nature of Android malware. The limitations of these approaches necessitate the exploration of 

more advanced techniques. 

 Need for Specific Malware Group Understanding: While generic Android malware detection methods exist, a deeper 

understanding of specific malware groups is crucial for a more nuanced defense strategy. Different malware types may 

require tailored detection approaches. 

 Hybrid Approach with Ensembled Models: The proposed solution combines machine learning models (XGBoost and 

CatBoost) through ensemble learning, achieving exceptional accuracy through feature selection (Particle Swarm 

Optimization) and hyperparameter optimization (Adaptive Genetic Algorithm).  

 CICMalDroid 2020 Dataset: The research leverages the CICMalDroid 2020 dataset, indicating a commitment to utilizing 

up-to-date and relevant data for the development and evaluation of the proposed Android malware detection solution. 

________________________________________________________________________________________________________ 

4. PROJECT OBJECTIVE: 

 Enhancing Detection Accuracy: The primary goal is to improve the accuracy of Android malware detection beyond 

traditional methods by incorporating advanced techniques such as machine learning, ensemble learning, and adaptive 

algorithms.  

 Understanding Specific Malware Groups: The research aims to deepen the understanding of specific Android malware 

groups, recognizing that a nuanced defense strategy requires insights into the characteristics and behaviors of distinct types 

of malware.  

 Utilizing Comprehensive Feature Extraction: The study focuses on comprehensive feature extraction, encompassing 

API Calls, Intents, Permissions, and Command signatures, to create a detailed feature vector that captures diverse aspects 

of Android malware. 

  Optimizing Machine Learning Models: The objective is to optimize the performance of machine learning classifiers 

(XGBoost and CatBoost) through feature selection using Particle Swarm Optimization and hyperparameter optimization 

using an Adaptive Genetic Algorithm.  

 Contributing to Android Security: The overarching aim is to contribute to the field of Android security by providing a 

hybrid solution that seamlessly integrates static analysis, machine learning models, and adaptive genetic algorithms. This 

contribution is expected to enhance the capability of Android devices to defend against evolving and sophisticated malware 

threats in real-world scenarios. 

 

________________________________________________________________________________________________________

5. LITERATURE SURVEY: 

 

[1] The paper addresses the escalating threat of malware on the Android Operating System, proposing an innovative malware 

detection method using machine learning and static analysis of Android APKs. Leveraging the Drebin and Malgenome datasets, 

the model achieves impressive classification accuracies of 98.19% and 98.84%, respectively, with all four features. Notably, using 

a twosome permission combination, the model attains 96.27% accuracy with Random Forest for Drebin and 97.63% with SVM and 

PCA for Malgenome. These findings, presented at the 2022 CSCI conference by P. Raghuvanshi and J. P. Singh, underscore the 

paper's significant contribution to Android malware detection. 

 

[2] To enhance virus detection on Android IoT devices, a novel framework was introduced by Rajesh Kumar et al., integrating 

machine learning and blockchain technology. The proposed technique incorporates sequential clustering, classification, and 

blockchain to bolster its effectiveness. Specifically, machine learning is employed to autonomously identify and eliminate malware 

data, which is then securely stored in the blockchain. This innovative approach allows the network to disseminate historical malware 

data from the blockchain, thereby facilitating robust and efficient malware detection. 

 

[3] Machine learning techniques play a crucial role in numerous articles focused on the identification and categorization of malware. 

Various studies leverage dynamic or static analysis to extract features for effective malware detection. For instance, Nikola 

Milosevic et al. proposed two static analysis approaches for Android malware [5]. The initial method centers on permissions, while 

the second method involves parsing the source code with the assistance of machine learning, utilizing a model that encapsulates a 
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bag of words to characterize the data. The source code-based classification models achieved an impressive F-score of 95.1%, while 

permission-based classification models demonstrated a commendable F-measure of 89%. 

 

[4] Dynamic analysis methodologies are employed in Android malware detection due to the challenges posed by obfuscated 

malware and the loading of malicious dynamic content, which may go undetected through static analysis. Numerous research 

articles, including Mahindru and Sangal (2021a, 2021b), Martín et al. (2018), Abderrahmane et al. (2019), and D’Angelo et al. 

(2021), have delved into the realm of dynamic analysis-based Android malware detection. Martin A et al. (2018) introduced 

CANDYMAN, a malware classification tool that utilizes the power of Markov chains to categorize Android malware families. 

Their approach incorporates deep learning techniques, relying on Markov chains for robust detection. Abderrahamane et al. (2019) 

leveraged system calls as features in convolutional neural networks to identify fraudulent Android applications. This method relies 

on pair-level system call dependencies for effective detection. In another dynamic analysis-based Android malware classification 

system, D’Angelo et al. (2021) utilized the CuckooDroid sandbox (2020), a mobile security framework facilitating static and 

dynamic feature extraction. Their approach demonstrates the versatility and effectiveness of dynamic analysis in addressing the 

challenges posed by evolving Android malware threats. 

 

[5] In the referenced study Bayes' algorithm was applied for the analysis of cyber-terrorism on the Internet. The researchers gathered 

10,000 data samples from the AndroZoo and Drebin databases. Impressively, the maximum accuracy achieved through this 

approach reached 91%. However, it is noteworthy that the classification of Android malware using the Bayesian model in this study 

lacked a comprehensive systematic analysis of classifier performance. Specifically, there was a gap in assessing the significance of 

characteristics and hyperparameter optimization across various machine learning classifiers to ensure the attainment of the most 

reliable detection rates. This underscores the need for further exploration and refinement in the methodology to enhance the overall 

effectiveness of Android malware detection. 

 

[6] In the cited paper the author introduced a lightweight framework for Android malware detection. The methodology involved 

the utilization of the non-negative matrix factorization method to select vulnerable features, resulting in the extraction of 50 lower-

dimensional features from an initial set of 209 features. To facilitate static analysis, mapping techniques were employed to associate 

each API call with specific features. Subsequently, all these features were aggregated, enabling the counting of the frequency of 

each feature. This approach showcases a streamlined yet effective strategy for Android malware detection by focusing on a reduced 

set of crucial features and their frequency in static analysis. 

 

[7] In the referenced paper the author introduced a novel approach termed "artificial malware-based detection" to address the 

challenges posed by obfuscation techniques employed by attackers. The proposed method involved the extraction of features and 

the generation of artificial malicious patterns using an evolutionary genetic algorithm. By incorporating both the original features 

and artificially generated malicious features, the proposed model demonstrated the capability to detect new variants of malware. 

This innovative method represents a robust strategy for enhancing the detection capabilities of malware, especially in the face of 

evolving obfuscation techniques utilized by attackers. 

 

[8] In the paper denoted as [12], the author focused on feature weight mapping and joint optimization of selected features, aiming 

to enhance the performance of the AMD (Android Malware Detection) model. The framework presented in the study involves a 

calculation of the weight assigned to each feature within an application. Subsequently, a joint parameter optimization method, 

specifically the differential evolution algorithm, was employed to elevate the overall accuracy of the model. This approach signifies 

a concerted effort to fine-tune the AMD model by assigning appropriate weights to features and optimizing parameters jointly for 

improved detection. 

 

[9] The Android Malware Buster (AMB) is a cutting-edge malware detection application designed for Android devices. Developed 

by Areen Eltaher, Dania Abu-juma'a, Dania Hashem, and Heba Alawneh, AMB employs a machine learning classifier trained on a 

diverse set of Adware, Scareware, and Ransomware apps. With an impressive 93% accuracy rate, the AMB classifier excels in 

identifying ongoing malicious behavior through network traffic analysis. Real-time testing further validates AMB's effectiveness, 

making it a crucial tool to safeguard user privacy amidst the escalating threat of malware on smartphones. 

 

[10] In the realm of cybersecurity, efficient malware identification is crucial for safeguarding system resources and data privacy, 

especially with the proliferation of Android smartphones facing an increasing array of malware attacks. This paper introduces a 

novel approach, XAI-AMD-DL (Explainable Artificial Intelligence Android Malware Detection System using Deep Learning), 

which leverages a hybrid Convolutional Neural Network (CNN) and Bi-Gated Recurrent Unit (Bi-GRU) model. Unlike existing 

methods that lack interpretability, the proposed model emphasizes Explainable Artificial Intelligence (XAI), allowing a clear 

understanding of each feature's contribution to the detection system. Evaluation on the CICAndMal2019 android malware dataset 

demonstrates impressive performance, with the XAI-AMD-DL model achieving 97.98% accuracy, surpassing existing deep 

learning models in precision, recall, and f1score with values of 97.75%, 97.76%, and 97.75%, respectively. This innovative 

approach addresses the critical challenge of designing an interpretable and effective Android malware detection system amidst the 

evolving landscape of AI-enabled malware attacks. 

 

 
 

 

 

 

 

________________________________________________________________________________________________________ 
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6. PROPOSED METHODOLOGY: 

 

 
Figure 1. Block Diagram of proposed methodology 

 

The proposed methodology for Android malware detection encompasses the collection of a dataset with both benign and malicious 

applications, followed by meticulous data preprocessing to handle missing and null values. Employing static analysis techniques, 

relevant features are extracted from APK files, including API Calls, Intents, Permissions, and Command signatures. Feature selection 

is performed using Particle Swarm Optimization (PSO), Cross Entropy, and KL Divergence to optimize the feature set. The selected 

features are combined into a feature vector, and a train-test split is executed for model evaluation. Machine learning classifiers, 

namely XGBoost, Random Forest, CatBoost, and Naive Bayes, undergo hyperparameter tuning via an Adaptive Genetic Algorithm 

(AGA). The trained models are then ensembled, leveraging their collective strengths. Evaluation on the test dataset yields results in 

terms of accuracy, precision, recall, and F-score, showcasing the effectiveness of the holistic approach in robust Android malware 

detection. 

 

6.1 DATA COLLECTION & PREPROCESSING: 

In the "Data Collection" phase, our research effort has successfully accumulated an extensive Android dataset, surpassing 17,341 

samples sourced from reputable outlets. We take pride in introducing a novel Android Malware dataset, named CICMalDroid 2020, 

distinguished by four key properties. 

In the subsequent "Data Preprocessing" stage, meticulous attention has been dedicated to ensuring the quality and reliability of our 

dataset. This involves a thorough examination and adept handling of missing values and null values inherent in the collected data. 

The objective is to establish a pristine dataset that serves as a robust foundation for subsequent analyses, model training, and 

evaluations. By addressing missing and null values, we aim to enhance the integrity of the dataset, mitigating potential biases and 

discrepancies. This commitment to data preprocessing underscores our dedication to producing credible and high-quality results in 

the realm of Android malware detection. 

 

6.2 FEATURE EXTRACTION 

In the "Feature Extraction from APK using Static Analysis" phase, our investigation extends to two crucial types of files, namely 

small files and AndroidManifest.xml, to comprehensively capture the nuances of Android applications. Small files are generated 

through the decomplication of classes.dex, providing insights into the low-level implementation details of the app. Simultaneously, 

the AndroidManifest.xml file, in XML format, contains essential properties and metadata defining the application's characteristics. 

Our approach involves extracting features from both the source code and program levels to ensure a thorough analysis. At the source 

code level, we employ reverse engineering techniques to obtain the actual source code of Android applications from APK files. This 

process allows us to delve into the intricacies of the codebase, revealing details such as API calls, function invocations, and structural 

elements that contribute to the app's behavior. By combining these source code and program-level analyses, our feature extraction 

process provides a comprehensive representation of the Android app's behavior, encompassing not only high-level functionalities 

and permissions but also delving into the intricacies of the code implementation. This multifaceted approach enhances the depth and 

accuracy of our feature set, contributing to a robust foundation for subsequent stages in our Android malware detection methodology. 
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Figure 2- feature extraction block diagram. 

6.2 FEATURE SELECTION 

In the feature selection phase, our objective is to enhance the efficiency and accuracy of Android malware detection by reducing the 

dimensionality of the dataset, originally comprising 9504 features. To achieve this, we employ a sophisticated approach involving 

the Particle Swarm Optimization (PSO) algorithm, Cross Entropy (CE), and Kullback–Leibler (KL) Divergence techniques. 

The PSO algorithm iteratively navigates the vast solution space, identifying a subset of features that demonstrates a high correlation 

with the types of Android applications targeted for classification. This iterative process ensures that the selected features are not only 

relevant but also contribute significantly to the accurate prediction of app types. The strategic inclusion of CE and KL Divergence 

further refines the feature selection criteria, considering the dissimilarity between probability distributions and enriching the selection 

process with additional evaluation metrics. 

The combined utilization of these techniques facilitates the removal of redundant and unnecessary features, refining the dataset to 

include only those attributes critical for robust classification. The PSO algorithm, with its adaptive balance between exploration and 

exploitation, ensures the identification of an optimal feature subset that is both representative and impactful. This meticulous feature 

selection methodology is pivotal for improving the accuracy of subsequent machine learning models while expediting the analysis of 

results in Android malware detection. By focusing on the most informative features and excluding irrelevant ones, the model is 

equipped to make more efficient and targeted predictions, aligning with the overarching goal of enhancing the efficacy of Android 

security measures. Below figure shows the extracting and selecting best feature flow diagram. 

 

Figure 3- Flow diagram of PSO & KL 

6.2.1 PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 

Particle Swarm Optimization (PSO) is an optimization algorithm developed by Kennedy and Eberhart in 1995. It draws inspiration 

from the collective behavior of flocks of birds and schools of fish. The fundamental concept of PSO involves simulating the 

collaborative movement of particles in a multidimensional search space with the goal of finding optimal solutions to a given problem. 

In PSO, a population of potential solutions, represented as particles, traverses the solution space. Each particle adjusts its position 

and velocity iteratively based on its own experience and the collective knowledge of the swarm. The algorithm is particularly effective 

for solving optimization problems and has found applications in various fields, including machine learning, data mining, and 

engineering. 
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The PSO algorithm begins with a randomly generated population of particles in the solution space. These particles explore the space, 

and in each iteration, their positions and velocities are updated according to specific formulas. The update is influenced by the 

particle's historical best position (individual experience) and the best position of any particle in the entire swarm (collective 

knowledge). 

The three key behaviors in PSO, as defined by [13] Del-Valle and co-authors, are separation, alignment, and cohesion. Separation 

encourages particles to avoid crowded areas in the solution space, alignment guides them to move in the general direction of local 

mates, and cohesion steers them toward the median position of nearby particles. 

The PSO algorithm's mathematical representation includes formulas that govern the update of particle positions and velocities. These 

formulas incorporate constants and random values, influencing the balance between individual exploration and collective exploitation 

of the search space. 

The formulas for updating the position and velocity vectors in the PSO algorithm are given as follows: 

 
These formulas govern how the particles' positions and velocities are updated in each iteration of the PSO algorithm. 

 
Figure 4- (a) A separation behavior in which particles try to avoid meeting one another. (b) Alignment. behavior, where particles 

move themselves with the leader of their local flock while keeping their relative velocities constant. (c) Cohesion. behavior, where 

particles tend to move to where their neighbors in the flock are. 

 

Moreover, the initial phase of the process involves employing the PSO algorithm to establish the population. Subsequently, in the 

second step, each particle's fitness values are determined, leading to updates in both global and individual bests. Following this, the 

positions and velocities of the particles are adjusted. This iterative process persists until the termination condition is met, at which 

point steps two through four are reiterated. The evolution of the PSO algorithm over multiple iterations is depicted in Figure 5. During 

the first iteration, all particles disperse, emphasizing exploration, and each particle undergoes assessment. Optimal solutions are 

identified based on the configuration of the swarm members' neighborhood, prompting updates to their individual and collective best 

particles. The convergence is achieved by orchestrating movements of all particles toward the one with the most favorable solution 

[14]. 

 
Figure 6- Over iterations, particle swarm optimization tends toward global optimums. 

 

In summary, PSO is a heuristic optimization technique that mimics the social behavior of natural systems. Its ability to efficiently 

explore complex solution spaces has led to its widespread use in various fields, making it a valuable tool for finding optimal solutions 

in diverse problem domains. 

 

6.3 FEATURE VECTOR COMBINATION GENERATION & TEST-TRAIN SPLIT 

http://www.ijrti.org/


                      © 2023 IJNRD | Volume8, issue 11 November 2023 | ISSN: 2456-4184 | IJNRD.ORG  

 

IJNRD2311196 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 
b757 

In the context of our research, we employed a feature vector representation to depict mobile applications within the 

CICMalDroid2020 dataset. This feature vector encapsulates crucial attributes such as API call names and permissions, and each 

application is defined by a binary feature vector of identical length. A binary value of 1 indicates the presence of a specific feature, 

while 0 denotes its absence. 

Two distinctive feature sets were explored during our experiments:  

 Combined Features (225 features): This comprehensive set integrates 113 permissions, 75 API calls, 27 intents, and 10 

commands. The binary feature vector assigned to each application captures the presence or absence of these features. 

 Permission Feature: In this set, binary combinations of the 113 permissions were generated, resulting in nC2 combinations. 

The binary feature vector representing each application is derived from these combinations, signaling the presence or 

absence of specific pairs of permissions.  

To create these feature sets, we implemented two algorithms:  

 

Algorithm 1: Feature Vector Generation Algorithm This algorithm delineates the process of constructing the combined feature 

set. It involves iterating through distinct components such as permissions, API calls, intents, and commands, marking their presence 

or absence in the feature vector.  

 
Algorithm 2: Feature Vector Permission Combination Generation Algorithm This algorithm elucidates the steps for generating 

the permission feature set. It likely includes creating binary combinations of the 113 permissions to form pairs (nC2), and each 

application is represented by a feature vector indicating the presence or absence of these permission pairs.  

 
Following feature generation, the dataset underwent a crucial feature selection process, reducing the initial 9883 features to a refined 

set of 423 features. This selection aimed to spotlight characteristics of malware instances by family and category. In conclusion, these 

methodologies and feature sets form a foundational aspect of our research, enabling the representation of mobile applications in a 

binary feature space. The subsequent feature selection process on the CICMalDroid2020 dataset distilled these features to 423, 

elucidating distinctive traits of malware by family and category. Lastly, the data is split into training (60%) and testing (40%) sets for 

evaluation purposes. 

6.3 CLASSIFICATION METHODS 

In the pursuit of robust Android malware detection, an ensemble of diverse machine learning algorithms, including Random Forest 

(RF), Naive Bayes (NB), CatBoost, and XGBoost, is strategically employed. Each algorithm plays a unique role in enhancing the 

ensemble's ability to discern nuanced patterns indicative of Android malware. 

 

 Random Forest (RF): Random Forest, a versatile ensemble learning method, contributes significantly to the ensemble's 

strength in Android malware detection. By constructing multiple decision trees, each trained on a random subset of the 

feature vector, RF introduces diversity to capture various facets of malware behavior. Its ensemble voting mechanism 

consolidates these individual predictions, collectively enhancing the ensemble's understanding. RF's robustness to 

overfitting and suitability for large datasets make it a cornerstone in the collaborative effort to discern complex patterns 

indicative of Android malware. 

 

  Naive Bayes (NB): In the ensemble, Naive Bayes plays a pivotal role with its probabilistic modeling approach. Modeling 

the probability distribution of features given the class, NB offers a different lens through which to analyze Android malware 

characteristics. Its outputs, grounded in probability, are seamlessly integrated into the ensemble through weighted voting. 
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NB's computational efficiency and robustness in the presence of irrelevant features make it an effective component, 

providing a probabilistic perspective on uncertain relationships within Android malware detection.  

 
 

 CatBoost: CatBoost's specialized strength lies in efficiently handling categorical features, making it a valuable asset in 

Android malware detection. Its adeptness in decoding categorical attributes adds a layer of understanding to the ensemble's 

feature representation. As an integral part of the collaborative effort, CatBoost enhances the ensemble's ability to discern 

malware patterns by addressing the challenges posed by categorical features. Its built-in regularization further ensures the 

ensemble's resilience to overfitting, contributing to a more robust detection system. 

 

  XGBoost: XGBoost, an optimized gradient boosting algorithm, is a cornerstone in the ensemble's pursuit of high predictive 

power and efficiency. With boosting techniques and regularization, XGBoost sequentially refines the model, making it a 

valuable contributor to the ensemble. Outputs from XGBoost are seamlessly integrated through model stacking, enhancing 

the overall decision-making process. Its ability to work efficiently and quickly, especially with large datasets, positions 

XGBoost as a key player in Android malware detection, optimizing the ensemble for structured tabular data scenarios. 

 
 

6.4 HYPERPARAMETERS TUNING USING ADAPTIVE GENETIC ALGORITHM (AGA) 

The adaptive genetic algorithm (AGA) is a powerful optimization tool inspired by natural selection principles to address complex 

problems [15]. Introduced by Holland in 1975, the GA mimics biological evolution through crossover and mutation processes, 

creating optimized solutions. In nature, genes partially crossover and mutate, leading to the development of new genes that differ 

from existing ones, adapting to the environment. GAs excel in selecting optimal combinations and exploring vast search spaces, 

making them suitable for solving NP-hard problems like feature selection [16].  

A standard GA commences with randomly generated gene populations, evaluated for fitness according to D. Whitley's approach. 

Genes meeting specific criteria are given more chances for reproduction, and a selection process identifies those meeting 

requirements. These selected genes are then recombined in various ways to generate new genes. Crossovers and mutations, guided 

by specific probabilities, can create novel genes. This iterative process continues until the termination criteria are met, as illustrated 

in Figure 7 [17]. 

 
Figure 7- A schematic diagram to present the pattern of how the “genetic algorithm” progresses 

 

The Adaptive Genetic Algorithm (AGA) enhances the effectiveness by dynamically adjusting the crossover and mutation rates based 

on fitness. The AGA employs coding, fitness computation, selection, reproduction, crossover, mutation, and decoding processes. The 

adaptive crossover and mutation probability in AGA dynamically adjusts between the population's average fitness and the highest 

fitness level at each individual's fitness level [18]. This adjustment is expressed in the below equations. 
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Here, Pc represents the crossover probability, which determines the likelihood of crossover occurring in the genetic algorithm. The 

calculation of Pc is conditionally defined based on the fitness (f) of an individual in the population compared to the average fitness 

(favg) and the maximum fitness (fmax). 

 If the fitness (f) of an individual is greater than or equal to the average fitness (favg), then the crossover probability (Pc) is 

dynamically adjusted using the formula k1 = (fmax-f)/ (fmax-favg). 

 If the fitness (f) is less than the average fitness (favg), the crossover probability  Pc) is set to a predefined value k3. 

 

 
Here, Pm represents the mutation probability, determining the likelihood of mutation occurring in the genetic algorithm. The 

calculation of Pm is conditionally defined based on the fitness (f) of an individual in the population compared to the average fitness 

(favg) and the maximum fitness (fmax). 

 If the fitness (f) of an individual is greater than or equal to the average fitness (favg), then the mutation  (Pm) is dynamically 

adjusted using the formula k1 = (fmax-f)/ (fmax-favg). 

 If the fitness (f) is less than the average fitness (favg), the mutation probability Pm) is set to a predefined value k3. 

 

These equations showcase the adaptive nature of the AGA, where the probabilities of crossover and mutation dynamically change 

based on the individual's fitness, promoting more optimal results in the evolutionary process. The constants K1, K2, K3, K4 parameters 

that determine the adaptation speed and influence the adjustment of crossover and mutation probabilities. 

 

In our proposed method for improving algorithm results, the Adaptive Genetic Algorithm fine-tunes hyperparameters using the 

AdaptiveGeneticSelectionCV method for machine learning classifiers (RF, NB, CatBoost and XGBoost). The method's parameters 

are carefully selected, ensuring optimal results, as demonstrated in the implementation and performance measurement of the 

classifiers. While various versions of AGAs aim to enhance techniques, the AGA's adaptive nature, weighted by fitness, enhances its 

ability to discover optimal solutions. By dynamically adjusting crossover and mutation probabilities, AGAs seek broader 

applicability, offering a more adaptive approach to problem-solving. The iterative AGA-based procedures, driven by fitness values, 

contribute to obtaining refined solutions. 

 

6.4 RESULTS AND EVALUATION 

 

A. Experiment Environment 

All the models in the experiment were trained using TensorFlow, a powerful Python-based deep learning toolkit. TensorFlow is 

known for its capability to perform efficient mathematical operations on GPUs, which significantly enhances computational 

performance. In this particular project, the training simulations were executed on a system equipped with a Core i7 CPU, an NVIDIA 

RTX3060 graphics card, and 128 GB of RAM.The utilization of a GPU in the training process played a crucial role in accelerating 

the computations. This hardware acceleration, especially with the NVIDIA RTX3060 graphics card, resulted in a tenfold reduction 

in training time compared to using only the CPU. While the focus of the project may not have been primarily on speed 

considerations, the use of a GPU undoubtedly contributed to the efficiency and speed of the model training process. 

B. Evaluation Metrics 

Performance metrics are indispensable in assessing the success and efficiency of systems. In the realm of Android malware detection, 

these metrics play a crucial role in monitoring progress, identifying areas for improvement, and aiding decision-making in the ongoing 

pursuit of effective intrusion detection and prevention. The study emphasizes the significance of applying performance metrics to 

gauge the fulfillment and effectiveness of the machine learning-based approach. 

Several standard performance metrics are employed to evaluate the classification models utilized in the study: 

1. Accuracy: Measures the proportion of correctly classified models among all predictions, providing an overall assessment 

of model correctness. The accuracy (ACC) is calculated as the total number of two correct predictions divided by the total 

number of a dataset. 

 
2. Precision (Positive Predictive Value): Evaluates the accuracy of positive predictions, answering the question of how 

many instances predicted as positive were correct. Particularly relevant when the cost of false positives is high. The 

precision (PRE) is the ability of a model to find all the predicted positive cases are correctly classified. 
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3. Recall (Sensitivity or True Positive Rate): Gauges the model's ability to capture all relevant instances of the positive 

class by assessing how many actual positive instances were correctly predicted. The recall or true positive rate (TPR) is 

the proportion of the correctly identified positive cases. 

 
4. F1 Score: A comprehensive metric that combines precision and recall, balancing the trade-off between the two. 

Particularly useful when dealing with an uneven class distribution. The F1-score is a measure of positive class, which 

combines the precision and recall of a classifier into a single metric by taking their harmonic mean. 

 
In summary, accuracy offers a comprehensive perspective on a model's correctness, whereas precision and recall concentrate on 

distinct aspects related to positive predictions. The F1 Score, which integrates these metrics, provides a well-rounded evaluation, 

particularly beneficial in scenarios marked by an imbalance between positive and negative classes. Each metric serves a distinctive 

role in evaluating various facets of a classification model's performance. 

 

 

 

C. Experimental Results on CICMalDroid2020 Dataset 

Introducing CICMalDroid 2020, a cutting-edge Android Malware dataset designed with four distinctive attributes. Boasting over 

17,341 samples, this dataset is both extensive and recent, encapsulating sophisticated Android malware scenarios up to 2018. 

Noteworthy for its diversity, CICMalDroid 2020 spans five categories: Adware, Banking malware, SMS malware, Riskware, and 

Benign, providing a comprehensive representation of Android threats. The dataset's strength lies in its comprehensive feature set, 

capturing the most extensive static and dynamic features compared to publicly available datasets. Data collection sourced samples 

from reputable entities like VirusTotal, Contagio, AMD, and MalDozer, ensuring credibility. Employing CopperDroid for dynamic 

analysis, we successfully ran 13,077 samples, revealing valuable insights into runtime behaviors. The resultant dataset, meticulously 

categorized with 11,598 samples after balancing, sets the stage for robust AI-based analysis, offering a nuanced understanding of 

Android malware for cybersecurity research. 

 

Figure 8 illustrates the distribution of benign and malware classes, offering a visual representation of the dataset's composition. The 

chart provides insights into the relative proportions of benign and malicious samples within the dataset. 

 

 
Figure 8-Distribution of benign and malware classes 

 

TABLE I: Attribution for CICMalDroid2020 dataset  

No. Category of Samples Of Samples 

1 Adware 1514 

2 Banking 2777 

3 Benign 4033 
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4 Riskware 3890 

5 SMS 4802 

 

Figure 9 shows Gini Index for CICMalDroid2020 serves as a quantitative measure, assessing the dataset's diversity and distribution 

of malware classes. This index offers insights into the balance and variability within the dataset, aiding in the evaluation of its 

representativeness for robust analysis. 

 
Fig. 9: CICMalDroid2020 Gini Index 

 

In the comprehensive training and validation of our model encompassing all classes within the dataset, we conducted an extensive 

analysis over 150 epochs. The rigorous evaluation resulted in an impressive accuracy rate of 97.62%. This outcome signifies the 

model's robust learning and discriminative capabilities across diverse classes, highlighting its efficacy in accurately classifying 

instances within the dataset. The extended training duration allowed for a thorough exploration of the model's capacity to generalize 

and make accurate predictions across a wide array of scenarios, contributing to its overall reliability in handling various classes 

present in the dataset. 

Figure 10-CICMalDroid2020 training and validation result. 

 

In the training and validation process utilizing Adaptive Genetic Algorithm (ADA) on the dataset, our model demonstrated 

exceptional performance over 100 epochs, achieving an impressive accuracy rate of 98.97%. This outcome underscores the efficacy 

of incorporating adaptive genetic algorithms in the model's optimization, leading to heightened precision and robustness in handling 

the dataset. The utilization of ADA for feature selection and hyperparameter tuning has evidently contributed to the model's enhanced 

accuracy, showcasing its effectiveness in addressing the complexities present in the dataset and improving overall predictive 

performance. 
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Figure 11-CICMalDroid2020 training and validation result using ADA. 

 

D. Final Results 

In our study, we achieved a significant reduction in the number of features, downsizing from 9883 to 423. The experimental outcomes 

demonstrate that all classifiers exhibit robust performance in accurately classifying malware. Particularly noteworthy is the hybrid 

feature set, incorporating PSO and KL divergence, coupled with hyperparameter tuning using ADA, which not only attains the highest 

accuracy but also yields an impressive F1-Score of 99.054. The detailed results showcase exceptional precision at 99.14, recall at 

98.979, and an overall accuracy of 99.175. These findings underscore the efficacy of our proposed model in achieving both high 

accuracy and precision in the classification of malware. 

 
 

Figure 12 - Learning curves: the mean training loss and evaluation metrics measured over each epoch with (a)two and (b)five 

target classes. 

 

The confusion matrix is a powerful tool for evaluating the performance of our model, particularly when dealing with two target 

classes and an expanded scenario with five target classes. In the binary classification setting, the matrix provides insights into true 

positives, true negatives, false positives, and false negatives, enabling a comprehensive assessment of the model's precision, recall, 

and accuracy. As we extend our analysis to five target classes, the confusion matrix becomes instrumental in understanding the 

model's ability to discern between diverse categories, shedding light on potential areas for improvement. By scrutinizing these 

matrices, we gain a nuanced understanding of our model's performance, which is crucial for refining and optimizing its classification 

capabilities. 
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Figure 13- Confusion matrix of our model with (a)two and (b)five target classes 

 

 
Figure 14 Accuracy, F1-score, Recall compared with other models. 

 

________________________________________________________________________________________________________ 

7. CONCLUSION 

In this study, we addressed the critical challenge of Android malware detection by presenting a comprehensive solution that 

integrates static analysis of Android APKs with advanced machine learning techniques. Leveraging the CICMalDroid 2020 dataset, 

our approach focuses on robust feature extraction, including API Calls, Intents, Permissions, and Command signatures. Through a 

two-step methodology involving feature selection using Particle Swarm Optimization (PSO) and hyperparameter optimization with 

an Adaptive Genetic Algorithm (AGA), we achieved exceptional results. Our experiments demonstrated a significant reduction in 

feature dimensionality, from 9883 to 423, showcasing the effectiveness of the proposed feature selection methods. The ensemble 

of machine learning classifiers, particularly XGBoost and CatBoost, exhibited robust performance, with an outstanding accuracy 

of 99.175% and an impressive F1-Score of 99.054. The hybrid feature set, incorporating PSO, KL divergence, and ADA-based 

hyperparameter tuning, emerged as a key contributor to this success. Noteworthy precision at 99.14 and recall at 98.979 underscored 

a harmonious balance in the model's ability to accurately identify positive instances while capturing the majority of actual positive 

cases. The achieved F1-Score of 99.054 emphasized a balanced trade-off between precision and recall, crucial for real-world 

scenarios where both false positives and false negatives carry significant consequences. The consistent accuracy across classifiers 

and hybrid feature sets, combined with the model's general applicability, positions our solution as a promising candidate for real-

world deployment. In conclusion, our hybrid approach, seamlessly integrating static analysis with ensembled machine learning 

models and adaptive genetic algorithms, significantly enhances the capability of Android devices to defend against evolving and 

sophisticated malware threats. This research contributes to the advancement of Android security, providing a foundation for targeted 

defenses and proactive measures in the dynamic landscape of Android malware. 

 

 

________________________________________________________________________________________________________ 
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