IJNRD.ORG

ISSN: 2456-4184

INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) | IJNRD.ORG

An International Open Access, Peer-reviewed, Refereed Journal

SYNTHESIS, EVALUATION OF MUTUAL PRODRUG AND ANALYTICAL METHOD DEVELOPMENT FOR SIMULTANEOUS ESTIMATION OF PARACETAMOL AND ACECLOFENAC

Sheetal R Darade^{1*,} Swati J Shinde^{2,} Archana V Rajdeo^{3,} Nisha S Mhaske⁴

¹⁻²Dep. Of Pharm. Chemistry, Yashwantrao Chavan College of Pharmacy, Ahmednagar
 ³Dep. Of Quality Assurance, Institute of Pharmacy, Loni, Ahmednagar
 ⁴Dep. Of Pharmaceutics, Pravara Rural Education Society College of Pharmacy, Nashik

Abstract

Aceclofenac and paracetamol have shown effective simultaneous separation using the RP-HPLC method. In order to develop the method, multiple preliminary trial runs were conducted on the pre-validated RP-HPLC system using varying mobile concentrations and solvents containing different ratios of methanol to phosphate buffer (85:15). Inertsil C18 (4.6 x 250mm, 5µm) was used for chromatographic separation. Prior to usage, the produced mobile phase was degassed using ultrasonication and filtered through a 0.45 µm membrane filter using a vacuum pump. The injection volume was 20 µl, the column temperature was ambient, the flow rate was 1.0 mL/min, and a UV detector was used for detection at 276 nm. Aceclofenac had a retention time of 5.768 minutes and paracetamol 3.719 minutes, respectively, were found. In present study, this simultaneous method was validated according to ICH guidelines Q2 (R1). The above developed method was validated by using validation parameters viz, linearity, accuracy, precision and robustness. Straight line calibration graph were obtained in the concentration range 200-1000 µg/ml and correlation coefficient (r 2) for proposed method was found to be 0.999 for Paracetamol and 50-250 µg/ml with r2 value of 0.9992 for Aceclofenac. Both, system as well as method precision showed the developed method is precise with respect to RSD, tailing factor, and number of theoretical plats were calculated for both solutions, all the results are within limits.

Keywords: Paracetamol, Aceclofenac, RP-HPLC Method, Linearity, Accuracy.

Introduction

The term Prodrug was introduced by Albert who used "prodrug" or "proagent" to refer to a pharmacologically inactive compound that is transformed by the mammalian system into an active substance by either chemical or

© 2023 IJNRD | Volume 8, issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

metabolic means. Another term drug latentiation, which implies a time lag element or component, was coined by Harper. Later, the concept of prodrug and latentiated drug for solving various problems was attempted and the definition of drug latentiation was extended to include non-enzymatic regeneration of parent compounds5. The prodrug approach has emerged as a tool in overcoming various obstacles to drug formulation and targeting such as chemical instability, poor aqueous solubility, inadequate brain penetration, insufficient oral absorption, local irritation and toxicity. It is justified by the fact that once the barrier to the use of parent compound has been overcome, these temporary forms can be converted to the free parent compound that can exert its pharmacological activity. A prodrug is thus defined as a biologically inactive derivative of a parent drug molecule that usually requires a chemical or enzymatic transformation within the body to release the active drug, and possess improved delivery properties over the parent molecule. Most of the limitations can be overcome by prodrug approach, but after overcoming the various barriers, the prodrug should rapidly convert into active moiety after reaching the target site. The awareness that the onset, intensity and duration of drug action are greatly affected by the physicochemical properties of drug has promoted the emergence of various theoretical and predictive models for drug design and evaluation. The design of an efficient, stable, safe, acceptable and aesthetic way to target a drug to its site of action while overcoming various physical, chemical and social barriers is certainly an area where the utilization of the prodrug approach holds great potential.

Classification of Prodrugs

Prodrugs are categorized into four classes. They are given as follows; Carrier Linked Prodrugs

- > Tripartite Prodrugs
- Mutual Prodrugs

Polymeric Prodrugs

Carrier linked prodrugs:

Various adverse physicochemical properties of drug can be tailored and side effects can be minimized by attaching a non- toxic carrier group or promoiety to form a new compound i.e., prodrug, from which the parent drug is regenerated *in vivo*. Common example is dipivally ester of epinephrine, which enhances the corneal absorption and inhibits the rapid metabolic destruction of epinephrine. In addition prodrug produces less cardiovascular side effects.

Tripartite Prodrugs:

Structures of most prodrugs are bipartite in nature in which parent drug is attached directly to promoiety. However in some cases bipartite prodrug may be unstable due to inherent nature of the drug-promoiety bond. This can be overcome by designing a tripartite prodrug, utilizing a spacer or connector group between the drug and promoiety. The spacer or connector group must be designed in such a way that the initial activation is followed by spontaneous cleavage of remaining drug spacer bond under physiological condition to release parent drug e.g. a model tripartite prodrug P–(N–(tert-butyloxy carbonyl) lysyl) amido) benzyloxy carbonyl)–P–nitro aniline has been designed in which N–tert butyloxy carbomyl lysine group is promoiety, P–amido benzyloxy carbonyl group is spacer group

and P-nitro aniline is the drug.

Mutual Prodrugs:

Mutual prodrugs are defined as two pharmacologically active agents joined together so that each acts as a promoiety for the other and vice versa. Benorylate is a common example of this category which is a prodrug of acetyl salicylic acid and paracetamol. Major advantage associated with this prodrug is in treatment of chronic inflammation at decreased dose and reduced risk of irritation.

Polymeric Prodrugs:

In this type, which is also known as macromolecular prodrug, the drug is dispersed or incorporated into the polymer (both naturally occurring and synthetically prepared) system without formation of covalent bond between drug and polymer. Example is p-phenylene diamine mustard is covalently attached to polyamine polymer backbone polyglutamic acid.

Functional Groups Amenable to Prodrug Design

Ideally, the design of an appropriate prodrug structure should be considered at the early stages of preclinical development, bearing in mind that prodrugs might alter the tissue distribution, efficacy and the toxicity of the parent drug.

Parent and prodrug: the absorption, distribution, metabolism, excretion (ADME) and pharmacokinetic properties need to be comprehensively understood.

Some of the most common functional groups that are amenable to prodrug design include carboxylic, hydroxyl, amine, phosphate/phosphonate and carbonyl groups. Prodrugs typically produced via the modification of these groups include esters, carbonates, carbamates, amides, phosphates and oximes.

However, other uncommon functional groups have also been investigated as potentially useful structures in prodrug design. For example, thiols react in a similar manner to alcohols and can be derivatized to thioethers and thioesters. Amines may be derivatized into imines and N-Mannich bases.

Paracetamol

н

At a standard dose, paracetamol only slightly decreases body temperature; it is inferior to ibuprofen in that respect, and the benefits of its use for fever are unclear. Paracetamol may relieve pain in acute mild migraine but only slightly in episodic tension headache. However, the aspirin/paracetamol/caffeine combination helps with both conditions where the pain is mild and is recommended as a first-line treatment for them.

Fig. No. 2 Structure of Aceclofenac

Aceclofenac is a Nonsteroidal anti-inflammatory drug (NSAID) analog of diclofenac. It is used for the relief of pain and inflammation in rheumatoid arthritis, osteoarthritis and ankylosing spondylitis.

Materials & Methods:

Materials

Sr. No.	Name of Materials
1	Aceclofenac
2	Paracetamol
3	HPLC Grade Water
4	Potassium Dihydrogen phosphate
5	Di-potassium Hydrogen Phosphate
6	Methanol

Methods

Synthesis of Mutual Prodrug of Aceclofenac and Paracetamol

Aceclofenac (0.850 g, 4 mmol) and paracetamol (0.605 g, 4 mmol) were dissolved separately in dry pyridine (5 mL). The two solutions were mixed together under ice-cold conditions followed by dropwise addition of phosphorous oxychloride (0.5 mL). The contents were stirred for 4 h while maintaining the temperature below 5 °C. The reac- tion mixture was then decomposed by adding ice-cold water. A solid mass separated out which was filtered, washed with plenty of water and crystallized from metha- nol to give fine grey colored needles of AC-PR.

Research Through Innovation

Figure 3: Scheme for Synthesis of Mutual prodrug of Aceclofenac and Paracetamol

Results and Discussion

Evaluation of synthesized Aceclofenac Paracetamol Mutual Prodrug Melting Point Determination

Melting point was determined by the use of digital melting point apparatus. The melting point of Aceclofenac Paracetamol Mutual Prodrug was found to be 138°C as showed in as showed in figure 3.

Transform Infrared Spectroscopy (FT-IR)

Name of Drug	Observed IR	Functional group Present
	Frequencies	
	3225.14	N-H Primary and Secondary Amine and Amide
	3080.02	C-H, Alkane
Aceclofenac	1638.10	C=O, amide
Paracetamol	1308.30	C–O, ester
Mutual Prodrug	850.47	C-Cl
	745.62	C–N

Table 3: Observed Group Frequencies by FT-IR

Uv Method Development and Validation Aceclofenac and Paracetamol

Spectral Characteristics of Paracetamol and Aceclofenac

Absorbance maxima of Paracetamol and Aceclofenac were found to be on 243 nm and 273 nm respectively. The calibration curve of both the drugs was developed by using these maxima as fixed wavelength.

Figure 5: UV Spectrum of Paracetamol and Aceclofenac

Determination of Beer's law range for Paracetamol

The calibration curve of Paracetamol was performed and graph plotted concentration vs. absorbance. The absorbance values of different concentration were noted. The regression equation was found to be y = 0.0095x+0.0559, with R² value of 0.9992. The graph was found to be linear.

a134

Sr No.	Concentration (ppm)	Absorbance
1.	20	0.241
2.	40	0.434
3.	60	0.638
4.	80	0.823
5.	100	0.998

 Table 4: Concentration range and respective absorbance of Paracetamol

Figure 6: Standard Curve for Paracetamol

Determination of Beer's law range for Aceclofenac

Table 5: (Concentration range	and respe	ctive absorban	ce of Aceclofenac
I uble ci v	concentration range	und respe		ce of ficecioienae

S	r No.	Concentration (ppm)	Absorbance
1		5	0.191
2	,	10	0.356
3		15	0.554
4		20	0.716
5		25	0.886

Research Through Innovation

Limit of Detection (LOD) and Limit of Quantitation (LOQ)

Form the results it was found that LOD & LOQ are in the sub-microgram level, which indicates the sensitivity of the method. (Table 6)

Table 6: Evaluation data for LOD & LOQ of Paracetamol & Aceclofenac

Accuracy

Accuracy of the proposed UV method for Paracetamol and Aceclofenac was verified by conducting the recovery studies by using standard addition method. Standard drug concentration at three different percent levels was added to known amount of Paracetamol and Aceclofenac. The percent recovery of added standards was calculated (Table 7). The results showed better % mean recovery for respective percent levels. The % mean recovery values are closer to 100% showed high accuracy of the proposed UV analytical method.

	Paracetam	ol			
entration (%)	rigin	levelmount	%	Mean	%
	(µg/ml)	added	Recovery	Recovery	% RSD
		(µg/ml)			
80	20	16	99.76		
80	20	16	100.45	100.28	0.457
80	20	16	100.63		
100	60 📏	60	101.27		
100	60	60	100.67	100.60	0.698
100	60	60	99.87		
120	100	120	100.57		
120	100	120	100.89	100.71	0.162
120	100	120	100.67		
	Aceclofena	c			
entration (%)	rigin	level.mount	%	Mean	%
	(µg/ml)	added	Recovery	Recovery	% RSD
	rerua	(µg/ml)	Re/e	earch i	onual
80	5	4	100.84		
80	5	4	100.96	100.55	0.594
80	5	4	99.87		
100	15	15	100.79		
100	15	15	101.98	101.08	0776
100	15	15	100.49	Innov	ation
120	25	30	100.98		
120	25	30	101.47	100.19	0.948
120	25	30	99.14		

Table 7: Evaluation da	ta of Accuracy	study of Paracetamo	& Aceclofenac
------------------------	----------------	---------------------	---------------

IJNRD2312021

a137

Precision

Intra-day and inter-day precision study of drug were evaluated for the 20 μ g/ml, 60 μ g/ml and 100 μ g/ml for Paracetamol and 5 μ g/ml, 15 μ g/ml and 25 μ g/ml for Aceclofenac.. Absorbance mean, percent assay and percent RSD were calculated for the intra-day as well as inter-day precision study.

Intra-day	Mornin	g		Afterno	oon		Evenin	g	
Concentration	Mean	%	% RSD	Mean	%	% RSD	Mean	%	%
Range (µg/ml)		Assay			Assay			Assay	RSD
20	0.241	99.57		0. <mark>247</mark>	100.52		0.248	101.57	
60	0.636	100.27		0.640	10 <mark>0</mark> .05		0.638	100.37	7
100	0.995	100.45	-	0.990	9 <mark>9</mark> .67		0. <mark>9</mark> 89	100.21	
				0					
Inter-day	Day 1			Day 2			Day 3		
Concentration	Mean	%	% RSD	Mean	%	% RSD	Mean	%	%
Range		Assay			Assay			Assay	RSD
(µg/ml)	6								
5	0.191	99.57		0.190	100.67				
15	0.556	100.24		0.558	100.89				
25	0.880	100.76	ion	0.883	100.67	are		Urn	

Table 8: Evaluation data for Intra-day and Inter-day study of Paracetamol

Table 9: Evaluation data for Intra-day and Inter-day study of Aceclofenac

Intra-day	<mark>M</mark> ornin	ıg		Afterno	oon		Evenin	g	
Concentration	Mean	%	% RSI) Mean	%	% RSD	Mean	%	%
Range		Assay			Assa <mark>y</mark>			Assay	RSD
(µg/ml)	D.		an la l	1.0	lu o b			line	
20	0.245	100.20	0.367	0.247	101.57	0.346	0.241	100.23	0.349
60	0.638	10048	0.846	0.640	100.63	0.796	0.647	100.57	0.785
100	0.987	100.94	0.756	0.990	99.67	0.763	0.991	100.96	0.719
Inter-day	Day 1			Day 2			Day 3		
IJNRD2312021		Internatior	nal Journal d	of Novel Re	search and I	Developmen	t (www.ij	nrd.org)	a

a138

Concentration	Mean	%	% RSD	Mean	%	% RSD	Mean	%	%
Range		Assay			Assay			Assay	RSD
(µg/ml)									
5	0.190	99.67	0.489	0.191	100.37	0.463	0.195	100.27	0.472
15	0.554	100.37	0.637	0.556	100.64	0.574	0.554	100.61	0.637
25	0.883	100.91	0.351	0.881	101.79	0.384	0.889	101.97	0.397

Ruggedness and Robustness

Ruggedness study of drug was carried out at the three different temperature levels. From the results it was found that the method was rugged showing the % RSD value less than 2% (Table 10).

Table 10: Evaluation data for Ruggedness of Paracetamol & Aceclofenac

Paracetamol			
Concentration	Temperature	Absorbance	% RSD
(µg/ml)	(° C)		
50	25	0.639	0.467
60	37	0.64 <mark>0</mark>	0.438
60	60	0.639	0.410
Aceclofenac			
Concentration	Temperature	Absorbance	% RSD
(µg/ml)	(° C)	NCYCU	
15	25	0.556	0.518
15	37	0.554	0.541
15	60	0.550	0.589

Research Through Innovation

Robustness

Robustness study was evaluated by using three different solvent. The method was found to be robust as indicated by the % RSD values which are less than 2% (Table 11).

Table 11: Evaluation data for Robustness of Paracetamol & Aceclofenac

Paracetamol							
Concentration (µg/ml)	Solvents	Absorbance	% RSD				
60	Ethanol	0.634	0.479				
60	Methanol	0.638	0.524				
Aceclofenac							
Concentration (µg/ml)	Solvents	Absorbance	% RSD				
15	Ethanol	0.551	0.847				
15	Methanol	0.553	0.961				

HPLC Method Development and Validation

Table 12: Optimized condition for HPLC Method for Paracetamol & Aceclofenac

Sr. No.	Parameter	Optimized condition
1	Chromatograph	SHIMADZU L <mark>C 2010</mark> AHT-HPLC
2	Column	Hypersil C ₁₈ -ODS column (150mm x 4.6 mm)
3.	Mobile phase	Methanol: Buffer (85:15)
4.	Flow rate	1 ml/min
5.	Detection	UV at 276 nm
6.	Injection volume	20µl
7.	Temperature	Ambient

Figure 8: Standard Chromatogram of Paracetamol & Aceclofenac

Linearity Data of Paracetamol and Aceclofenac

<mark>S. N</mark> o.	Conc. in mcg/ml	Peak Area
1	200	3482.17
2	400	6845.18
3	600	9545.64
4	800	12812.24
5	1000	15629.54

S. No.	Conc. in mcg/ml	Peak Area		
1	50	1625.25		
2	100	3256.78		
3	150	4724.54		
4	200	6235.98		
5	250	7968.31		

Figure 10: Chromatogram of Paracetamol and Aceclofenac standard mixture (1)

Figure 11: Chromatogram of Paracetamol and Aceclofenac standard mixture (2)

Figure 12: Chromatogram of Paracetamol and Aceclofenac standard mixture (3)

a143

Figure 13: Chromatogram of Paracetamol and Aceclofenac standard mixture (4)

Figure 14: Chromatogram of Paracetamol and Aceclofenac standard mixture (5)

Limit of Detection (LOD) and Limit of Quantitation (LOQ)

For Paracetamol LOD and LOQ were found to be 0.294μ g/ml and 0.178μ g/ml respectively. For Aceclofenac LOD and LOQ were found to be 0.0213μ g/ml and 0.052μ g/ml respectively. These values indicate that the method is suitable for the determination of the lower concentration and confirms that proposed method is sensitive for the determination.

Precision

a) System Precision

The system precision was performed by measuring the peak response for standard drugs solutions in six replicates. Peak responses, mean, standard deviation and % relative standard deviation (%RSD) for Paracetamol & Aceclofenac was found to be 0.495 and 0.520 %. The results are shown in table 15 and were found well within the acceptable criteria.

Peak areas of	Peak areas of				
Paracetamol	Aceclofenac				
3482.45	1630.67				
6837.34	3251.89				
9541.61	4728.45				
12815.41	6242.57				
15631.32	7971.23				
9661.62	4764.96				
4789.48	2478.81				
0.495	0.520				
% RSD should not be more than 2					
	Peak areas of Paracetamol 3482.45 6837.34 9541.61 12815.41 15631.32 9661.62 4789.48 0.495 % RSD should not				

Table 15: System Precision Data of Paracetamol & Aceclofenac

b) Method Precision

The method precision was performed by measuring the peak response for sample solutions in six replicates. The % assay for Paracetamol and Aceclofenac in six samples was calculated. The results of % assay and % RSD are shown in table 16. The chromatograms for the method precision are shown in fig ure16-21.

Table 16: Method Precision	n Data of Paracetamol	& Aceclofenac
----------------------------	-----------------------	---------------

mple No.	% Assay of Paracetamol	% Assay of Aceclofenac (w/w)			
	(w/w)				
1.	100.57	99.67			
2.	99.65	100.20			
3.	99.37	101.48			
4.	100.41	101.42			
5.	101.24	99.74			
6.	100.48	100.55			
Mean	100.28	100.55			

SD (±)	0.676	0.795
RSD (%)	0.674	0.791
cceptan ce	% RSD should not be more that	in 2
criteria		

Figure 15: Chromatogram of Method precision 1

IJNRD2312021

Paracetamol			
Precision	Area		
Precision-1	15630		
Precision -2	15645		
Precision -3	15634		
Precision -4	15684		
Precision -5	15603		
Precision -6	15628		
Mean	15637.33 26.710 0.170		
Standard Deviation (SD)			
%RSD			
Ac <mark>ecl</mark> ofenac			
Precision	Area		
Precision-1	7965		
Precision -2	7935		
Precision -3	<mark>79</mark> 21		
Precision -4	<mark>79</mark> 37		
Precision -5	7962		
Precision -6	7947		
Mean 🦲	7944.50		
Standard Deviation (SD)	16.920		

 Table 17: Precision data of Paracetamol & Aceclofenac

c) Intraday and Inter-day Precision

The % RSD in intraday precision for Paracetamol (200, 600, 1000 μ g/ml) was found to be 0.881, 0.318, 0.183% and for Aceclofenac (50, 150, 250 μ g/ml) was found to be 1.684, 0.452, 0.216 % respectively. In inter-day precision % RSD for Paracetamol (200, 600, 1000 μ g/ml) was found to be 0.834, 0.141, 0.220% and for Aceclofenac (50, 150, 250 μ g/ml) was found to be 1.933, 0.804, 0.251% respectively. % RSD in intraday and inter-day studies were found well within the acceptable limits. The results obtained are mentioned in the table 18, 19.

	Paracetamol						Aceclofenac				
Sr.	Conc.		nean peak			Conc.		anpeak area			
no.	(µg/ml)	Area	area	SD(±)	%RS	(µg/ml)	Area		SD(±)	%RSD	
					D						
		3482					1625				
	200	3426	3461.33	30.746	0.881	50	1627	1642	27.730	1.684	
1		3476					1674			,	
		9545					4724				
2	600	9524	<mark>95</mark> 51	30.446	0.318	150	4763	4738.31	21.455	0.452	
		9584	0				4728				
		15629					7968				
3	1000	15634	15648	28.687	0.183	250	7934	7952.64	17.243	0.216	
		15681	loros	line		De	7956		1000		

Table 18: Intraday Precision data of Paracetamol & Aceclofenac

		Paracetamol Aceclofena						iac			
Sr.	Day	Conc.	Peak Area	Mea <mark>n Pe</mark> ak	SD(±)	%RSD	Conc.	Peak Area	Mean Peak	SD(±)	%RSD
no.		(µg/ml)		Area			(µg/ml)		Area		
	Day 1		3480					1698	-		
1	Day 2	-	3429			0.834	50	1637			1.933
	Day 3	200	3478	346 <mark>2.36</mark>	2 <mark>8.88</mark> 4			1650	1661.64	32.129	
	Day 1		9548					4721			
2	Day 2		9560	9547		0.141	150	4783	4765	38.314	0.804
	Day 3	600	9533		13.527			4791			
	Day 1		156 <mark>47</mark>					7965			
3	Day 2	-	15632			0.220	250	7983	-		0.251
	Day 3	1000	15698	15659	34.597	De		7943	7963.62	20.033	

Table 19: Inter-day Precision data of Paracetamol & Aceclofenac

nternational Kesearen sournal

IJNRD2312021

International Journal of Novel Research and Development (www.ijnrd.org)

Accuracy (Recovery Study)

The accuracy of the assay method was evaluated by standard addition method in triplicate at 100% level of the labeled claim and the percentage recovery was calculated. The mean % recovery was found to be 100.31 % & 100.35 % for Paracetamol & Aceclofenac respectively.

Ruggedness

The ruggedness parameter was determined by analyzing the different concentration at different temperature. The results were showed in table.

Change i	in <mark>Are</mark> a o	ofMean	SD	%RSD
Parameters	Standard			
25°C	9566			
	9547	9 <mark>538</mark> .67	32.316	0. <mark>3</mark> 38
	950 <mark>3</mark>			
37°C	9514			
	9532	9529	13.747	0.144
	9541			
60 °C	9501			
	9523	9512	11	0.115
	9512	Dag	-	h la
Aceclofenac		NC30	SUIC	
Change i	in Area o	ofMean	SD	%RSD
Parameters	Standard			
	Standar a			
	4766		F	
25°C	4766 4728	4739	23.515	0.496
25°C	4766 4728 4723	4739	23.515	0.496
25°C	4766 4728 4723 4765	4739	23.515	0.496
25°C 37°C	4766 4728 4723 4765 4743	4739 4754.62	23.515	0.496
25°C 37°C	4766 4728 4723 4765 4743 4756	4739	23.515	0.496
25°C 37°C	4766 4728 4723 4765 4743 4756 4726	4739	23.515	0.496
25°C 37°C 60 °C	4766 4728 4723 4765 4743 4756 4726 4703	4739 4754.62 4717	23.515 11.060 12.288	0.496

 Table 21: Data of Ruggedness for Paracetamol & Aceclofenac

Conclusion

The suggested methods are easy to use, quick to complete, verified, and effective for routine simultaneous estimate of Aceclofenac and Paracetamol. The ICH guidelines were followed in the validation of the approach. The two approaches' respective capabilities compliment one another. Therefore, they can be thought of as straightforward, accurate, and sensitive techniques for estimating the combined dosage forms of Aceclofenac and Paracetamol. The accuracy, precision, robustness, ruggedness, and percentage RSD values fall between 0.8 and 2.

References

- 1. Warden SJ. "Prophylactic Use of NSAIDs by Athletes: A Risk/Benefit Assessment". The Physician and Sports Medicine, 2010,38 (1): 132–138.
- Hinz B, Cheremina O, Brune K. "Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man.". The FASEB journal : official publication of the Federation of American Societies for Experimental Biology ,2008,22 (2): 383–390
- 3. Clive P. Page, Michael J. Curtis, Morley Sutter, Michael Walker, Brian Hoffman. Farmacología integrada (in Spanish). Published by Elsevier España, 1998. ISBN 84-8174-340-
- 4. Simone Rossi, ed. Australian medicines handbook 2006. Adelaide: Australian Medicines Handbook Pty Ltd. ISBN 0-9757919-2-3.
- 5. Green GA. "Understanding NSAIDs: from aspirin to COX-2". Clinical cornerstone, 2001, 3 (5): 50–60.
- Bayer HealthCare Pharmaceuticals Inc. "CIPRO (ciprofloxacin hydrochloride) TABLETS CIPRO, (ciprofloxacin*) ORAL SUSPENSION" (PDF). USA: FDA. Retrieved 31 August 2009.
- Royal Pharmaceutical Society of Great Britain."5Infections". British National Formulary (BNF 57). BMJ Group and RPS Publishing.2009, ISBN 978-0-85369-845-6.
- 8. http://orthoinfo.aaos.org/fact/thr_report.cfm
- Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kvien TK, Schnitzer TJ. "Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis". New England Journal of Medicine, 2000, 343 (21): 1520–8.
- Baron JA, Sandler RS, Bresalier RS, Lanas A, Morton DG, Riddell R, Iverson ER, Demets DL. "Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial". Lancet, 2008,372 (9651): 1756–64.
- 11. Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C . "Do selective cyclo-

oxygenase-2 inhibitors and traditional nonsteroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials" . BMJ (Clinical research ed.), 2006,332 (7553): 1302–8.

- Trelle S, Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger PM, Egger M, Jüni P. "Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis.".
 BMJ (Clinical research ed.), 2011,342 (11)(1):70-86.
- Schjerning Olsen AM, Fosbøl EL, Lindhardsen J, Folke F, Charlot M, Selmer C, Lamberts M, Bjerring Olesen J, Køber L, Hansen PR, Torp-Pedersen C, Gislason GH

 "Duration of Treatment With Nonsteroidal Anti-Inflammatory Drugs and Impact on Risk of Death and Recurrent Myocardial Infarction in Patients With Prior Myocardial Infarction: A Nationwide Cohort Study.". Circulation, 2011,123 (20): 2226–35.
- 14. Bhala N, Emberson J, Merhi A, Abramson S, Arber N, Baron JA, Bombardier C, Wilson K, Wittes J, Baigent C . "Vascular and upper gastrointestinal effects of non- steroidal antiinflammatory drugs: meta-analyses of individual participant data from randomised trials.". Lancet, 2013,382 (9894): 769–79.
- 15. Higuchi K, Umegaki E, Watanabe T, Yoda Y, Morita E, Murano M, Tokioka S, Arakawa T.
 "Present status and strategy of NSAIDs-induced small bowel injury". Journal of Gastroenterology, 2009,44 (9): 879–888.
- 16. Thomas MC . "Diuretics, ACE inhibitors and NSAIDs—the triple whammy". The Medical journal of Australia 2000,172 (4): 184–5.
- 17. De Broe ME, Elseviers MM (February. "Analgesic nephropathy". New England Journal of Medicine, 1998,338 (7): 446–52.
- U.S. Food and Drug Administration Guidance for Industry, ICH Q3A, Impurities in New Drug Substances, 2003.
- 19. U.S. Food and Drug Administration Guidance for Industry, ICH Q3C, Impurities: Residual Solvents, 1997.
- 20. U.S. Food and Drug Administration Guidance for Industry, ICH Q6A, Specifications:Test Procedure and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances, 1999.
- 21. Arup KB, Andre SR, Ali HAH, Scott F, Nashed IS, Devinder SG, Hasmukh BP et al.,—Pharmaceutical Impurities: Regulatory Perspective for Abbreviated New Drug Applications Adv Drug Deli, 2007, (59): 64-72..
- 22. ICH, Stability testing of new Drug substances and products, International Conference on Harmonisation, IFPMA, Geneva, 1993.