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Abstract  

The aim of the study is to use the creation and annihilation operators in understanding the mathematical 

structure of the quantum field theory and the process of quantizing the quantum field. It also aims to find 

mathematical formulas for the wave function space when these operators are repeated. with a particular 

focus on their application to the Dirac delta function relations and the quantization of a scalar field. The 

study involves the derivation and analysis of differential equations representing the evolution of quantum 

states, leading to the establishment of mathematical formulas for creation and annihilation operators. The 

significance of these operators is underscored by their integral role in describing the quantum nature of 

scalar fields. Results, to construct the quantization process in the quantum field using the  creation and 

annihilation  operations in a simplified mathematical way in order to simplify the mathematical 

understanding of the of the quantum field theory. The study also obtained to find a mathematical formula for 

the future of the wave function space when the effects of creation and annihilation are repeated. 
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1. Introduction  

Creation and annihilation operators are mathematical entities widely utilized in quantum mechanics, 

particularly in examining quantum harmonic oscillators and many-particle systems. An annihilation 

operator, typically represented as 'a,' reduces the particle count in a specific state by one [1]. On the other 

hand, a creation operator, (usually denoted 𝑎+) raises the particle count in a given state by one, serving as 

the adjoint of the annihilation operator [2]. In certain branches of physics and chemistry, the substitution of 

these operators for wavefunctions is termed second quantization [3, 4]. 

Creation and annihilation operators are applicable to states of diverse particle types. In quantum chemistry 

and many-body theory, these operators are frequently applied to electron states. Additionally, they can be 

specifically associated with the ladder operators for the quantum harmonic oscillator [5, 6]. In this context, 

the raising operator is construed as a creation operator, introducing a quantum of energy to the oscillator 

system (similarly for the lowering operator) [7]. These operators can also be employed to depict phonons 

[8]. The mathematical formulation for bosonic creation and annihilation operators mirrors that of the ladder 

operators in the quantum harmonic oscillator [9]. Specifically, the commutator of the creation and 

annihilation operators linked to the same bosonic state equals one, while all other commutators become zero 
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[10]. Conversely, for fermions, the mathematical treatment is distinct, involving anti-commutators instead of 

commutators [11, 12].  

2. Dirac delta function (relations) 

We will present some relations of Dirac, which is called the Dirac delta function. We will use in the 

quantization of quantum field process later [13,14]. 

  

1)  𝛿𝑎    (𝑥) = Lim   
1

𝑎√𝜋
 𝑒

−𝑥2

2  

 2 ) 𝛿 (𝑥 − 𝑎 ) =  
1

2𝜋
   ∫ 𝑒𝑖𝑝(𝑥−𝑎 )   𝑑𝑝 

3) 𝛿 (𝑥 + 𝑎 ) =   ∫ 𝐹(𝑥)𝛿 (𝑥 − 𝑎 ) = 𝐹 (𝑎)
∞

∞
 

4) 𝛿 (𝜁 − 𝜂 ) =  ∫ 𝛿 (𝜁 − 𝜂)𝛿 (𝑥 − 𝜂)
∞

∞
𝑑𝑥 

5) 𝛿 (𝛼 𝑥) =  |𝛼 |
−𝑛

𝛿 ( 𝑥)  

𝛿∖ (−𝑥)  =  − 𝛿∖ (𝑥) 

𝑥 𝛿∖  (𝑥) =  − 𝛿∖ (𝑥)  

3. Quantization of scalar field 

Consider the particle (boson has spin = 0) [15, 16]. In historical in quantum mechanics 

         [𝑞𝑗 𝑝𝑗] =  𝛿𝑖𝑗                                                                                  (1) 

        [𝑝𝑗 ,𝑝𝑗]  =  0 , [𝑞𝑖 ,𝑞𝑗]  =  0                                                          (2) 

Now we transfer this idea to use in constructing the quantum field (Q . F). 

𝑞𝑗  →  𝜑 (𝑥)    𝑝𝑗  →  𝜋 (𝑥)  

Such that  

[𝜑(𝑥) , 𝜋 (𝑥) ] = 𝑖, 𝛿3 (𝑥 − 𝑥∖)                                               (3)   

where 𝛿3 (𝑥 − 𝑥∖) is Dirac delta function  

When performing the quantization process must be calculation spectrum field. By generating the state using 

oscillator harmonic: 

Start for Fourier transform  

                ∅ (𝑥, 𝑡) =  ∫
𝑑3𝑝

(2𝜋)3 
𝑒𝑖𝑝𝑖𝑥 ∅ (𝑝, 𝑡)                                                    (4)   

And from solar field equation                       

                  [𝐻𝑆𝐻𝑂   , 𝑎
+ ] =  −  𝜔 𝑎+                                                                          (5)  

                 | 𝑛〉 =  (𝑎+)𝑛|𝑜〉                                                                        (6)   

To build the quantization process for the quantum field, we now use the same method, namely, the creation 

and annihilation operators. 

Use this is scalar field equation. 

We how that (⊡2+ 𝑚2) ∅ (𝑡, 𝑥) = 𝑜 

And it is not harmonic oscillator, must make fore this clearly harmonic oscillator and – spectrum [2].           

 (⊡2+ 𝑚2) ∅ (𝑡, 𝑥) = ∫
𝑑3

(2𝜋)3
 [(⊡2+ 𝑚2) ∅ (𝑡, 𝑥)[𝑒𝑖𝑝𝑖𝑥∅ (𝑝, 𝑡)]   
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= ∫
𝑑3𝑝

(2𝜋 )3
  [

𝑑2

𝑑𝑥2
  | 𝑝|2 + 𝑚2]  ∅ (𝑝, 𝑡) = 0 

= [
𝑑2

𝑑𝑥2 
 +  ⌈|𝑝|2⌉ + 𝑚2] ∅(𝑝, 𝑡) = 0                                                                  (7) 

This is harmonic oscillator fore Klein Gordon equation  

𝜔𝑝 = √𝑝𝑛 + 𝑚𝑛 

Now we can write Harmonic oscillator for structure of Quantum Field [3]. 

We use  
𝑑3𝑝

(2𝜋)3 
 ×   

1

√2𝜔𝑝 
  lorentes inverient  

Element in group field theory (GFT) scalar field [4]. 

         ∅(𝑥) = ∫
𝑑3𝑝

(2𝜋)3 

1

√2𝜔𝑝 
  [𝑎𝑝𝑒

𝑖𝑝𝑖𝑥   +  𝑎+ 𝑒−𝑖𝑝𝑖𝑥   ]
𝑑3𝑝

(2𝜋)3 
                                     (8)                                               

         𝜋 [𝑥] = ∫
𝑑3𝑝

(2𝜋)3 
(−1) ∫√

𝜔𝑝

2
[𝑎𝑝𝑒𝑖𝑝𝑖𝑥  −  𝑎+ 𝑒−𝑖𝑝𝑖𝑥   ]                                      (9)            

And use  

(
𝑑2

𝑑𝑡2
 +  𝑝2 + 𝑚2)∅(𝑝, 𝑡) = 0                                            (10) 

  Using  [∅ (𝑥), 𝜋 (𝑥)] = 𝑖𝛿3 (𝑥 − 𝑥∖)  

⇒ [∅ (𝑥), 𝜋(𝑥)] =   ∫
𝑑3𝑝 𝑑

𝑝∖    
3

(𝑧𝜋)6
 × − 

𝑖

2
 ∫

𝜔∖

𝑤𝑝
− [𝑎𝑝 , 𝑎−𝑝∖

+ ] 𝑒i[𝑝𝑥+ 𝑝∖ 𝑥∖] 

= 𝑖𝛿3 (𝑥 − 𝑥1)                                                                                                             (11) 

Using the equations (10) ,  (11)  and 2,3 from Dirac delta functions  

[𝑎𝑝 , 𝑎−𝑝∖
+ ]    =  2𝜋2  𝛿3 (𝑝 − 𝑝∖)             

Commutation relation for creation and scalar field  

Using equation (11) 

  ℋ = ∫𝑑3 𝑥 ℋ = ∫𝑑3 𝑥 [ −
1

2
𝜋2 + 

1

2
 ( m∅)2 + 

1

2
 ( ∇∅)2                             (12) 

ℋ = ∫𝑑3 𝑥  ∫
𝑑3𝑝 𝑑

𝑝∖    
3

(𝑧𝜋)6
 ×   𝑒i[𝑝+ 𝑝∖ ] x

[
 
 
 

−

√𝜔𝑝𝜔𝑝
∖

4

]
 
 
 

                                      (13) 

[𝑎𝑝 , − 𝑎
−𝑝∖
+ ] [𝑎𝑝∖ , − 𝑎

𝑝∖
+ ] +

   −𝑝𝑝∖ + 𝑚2   

4√𝜔𝑝𝜔𝑝
∖

[𝑎𝑝 , + 𝑎
−𝑝∖
+ ] [𝑎−𝑝∖ , + 𝑎

𝑝∖
+ ]          (14) 

 = (2𝜋)3 ∫
𝑑3𝑝 𝑑

𝑝∖    

3

(𝑧𝜋)6
 × 𝛿(𝑝 + 𝑝∖)[−

√𝜔𝑝𝜔𝑝
∖

−1
[𝑎𝑝 , − 𝑎𝑝

+] [𝑎𝑝 , + 𝑎
−𝑝∖
+ ]

   −𝑝𝑝∖+𝑚2   

√𝜔𝑝𝜔𝑝
∖

[𝑎𝑝 , − 𝑎−𝑝
+ ] [𝑎𝑝 , − 𝑎

𝑝∖
+ ] =

∫
𝑑3𝑝 𝑑

𝑝∖    

3

(𝑧𝜋)6
  

−𝜔𝑝

4
[𝑎𝑝 , − 𝑎−𝑝

+ ] [𝑎−𝑝 , − 𝑎
−𝑝∖
+ ]       (15) 
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ℋ = ∫
𝑑3𝑝 

(𝑧𝜋)3
  𝜔𝑝[ 𝑎 𝑝𝑎𝑝

+ +
1

2
[𝑎 𝑝, 𝑎𝑝

+]                                    (16) 

Such that  
1

2
[𝑎 𝑝, 𝑎𝑝

+]  is vacuum state  

[𝑎 𝑝, 𝑎𝑝
+] = 𝐼𝛿3(0)                                                                                            (17) 

[ℋ,𝑎+] = 𝜔𝑝𝑎𝑝
+ creation of particles  [ quantize ]  

[ℋ,𝑎] = −𝜔𝑝𝑎𝑝                                                                                            (18) 

In equations (17) and (18) we obtained to quantize of quantum field  

Proposition (1): 

If 𝜑 is an eigenvector for 𝑎 𝑎+ with eigenvalue 𝜆, then... 

𝑎+𝑎(𝑎𝜑) = (𝜆 − 1)𝑎𝜑                                                                          (19) 

𝑎+𝑎 (𝑎+𝜑) = (𝜆 + 1)𝑎+𝜑                                                                  (20) 

Hence, either 𝑎𝜑 is zero, or 𝑎𝜑 is an eigenvector for 𝑎+𝑎 with an eigenvalue 𝜆 − 1. Similarly, either 𝑎+𝜑 is 

zero, or 𝑎+𝜑 is an eigenvector for 𝑎+𝜑 with an eigenvalue 𝜆 − 1. In other words, the operators 𝑎∗  and 𝑎 

raise and lower the eigenvalues of  𝑎∗𝑎, respectively [10]. 

Proof 

Using the commutation relation (19)  we find that  

𝑎+𝑎(𝑎𝜑) = 𝑎 (𝑎+𝑎) − 𝑎)𝜑 = (𝜆 − 1)𝑎𝜑 

A similar calculation applies to 𝑎+𝜑, using (2.30)               . 

If  𝜑 is an  eigenvector for 𝑎+𝑎 with eigenvalue λ, then  

λ〈𝜑, 𝜑〉 = 〈𝜑, 𝑎+𝑎𝜑〉 = 〈𝑎𝜑, 𝑎𝜑〉 ≥ 0 

which means that λ ≥ 0. Let us assume that 𝑎+𝑎 has at least one eigenvector𝜑, with eigenvalue λ, which we 

expect since 𝑎∗𝑎 is self-adjoint. Since a lowers the eigenvalue of 𝑎+𝑎, if we apply a repeatedly to 𝜑, we 

must eventually get zero. After all, if an 𝜑  were always nonzero, these vectors would be, for large n, 

eigenvectors for 𝑎∗𝑎with negative eigenvalue, which we have seen is impossible.  

It follows that there exists some N ≥ 0 such that 𝑎𝑁𝜑 ≠ 0 but 𝑎𝑁+1𝜑 =0. If we define  𝜑° by 

𝜑° = 𝑎𝑁                                                                       (21) 

then a𝜑° = 0, which means that 𝑎∗𝑎𝜑° = 0. Thus, 𝜑°  is an eigenvector for 𝑎∗𝑎 with eigenvalue 0. (It follows 

that the original eigenvalue λ must have been equal to the non-negative integer N.) The conclusion is this: 

Provided that 𝑎∗𝑎  has at least one eigenvector 𝜑,  we can find a nonzero vector 𝜑°  such that 

a𝜑° = 𝑎+𝑎𝜑° = 0 

Since 𝑎∗𝑎 cannot have negative eigenvalues, we may call 𝜑°a “ground state” for 𝑎∗𝑎, that is, an eigenvector 

with lowest possible eigenvalue.We may then apply the raising operator 𝑎∗ repeatedly to 𝜑° to obtain 

eigenvectors for 𝑎∗𝑎 with positive eigenvalues.   

Theorem (1):  If𝜑° is a unit vector with the property that a𝜑° = 0, then the vectors 

   𝜑𝑛 = (𝑎+)𝑛𝜑°,           n  ≥  0  
Satisfy the following relations for all n, m ≥ 0: 

𝑎+ = 𝜑𝑛+1                                                                                             (22) 

𝑎+𝑎𝜑𝑛 = 𝑛𝜑𝑛                                                                                              (23) 
〈𝜑𝑛 , 𝜑𝑚〉 = n! 𝒮𝑚,𝑛                                 

𝑎𝜑𝑛+1 = (n + 1)𝜑𝑛                                                                     (24) 
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Let us think for a moment about what this is saying. We have an orthogonal “chain” of eigenvectors for 𝑎∗𝑎 

with eigenvalues 0, 1, 2, . . . ., with the norm of 𝜑𝑛equal to √n!. The raising operator 𝑎+shifts us up the 

chain, while the lowering operator a shifts us down the chain (up to a constant). In particular, the “ground 

state” 𝜑° is annihilated by a. Thus, we have a complete understanding of how a and 𝑎+ act on this chain of 

eigenvectors for 𝑎+a. 

Proof. 

The first result is the definition of 𝜑𝑛+1 and the second follows from Proposition 1.1and the fact that 𝑎+𝑎𝜑° 

= 0. For the third result, if n = m, we use the general result that eigenvectors for a self-adjoint operator (in 

our case, 𝑎+𝑎) with distinct eigenvalues are orthogonal. (This result actually applies to operators that are 

only symmetric.)If n = m, we work by induction. For n = 0, 〈𝜑°, 𝜑°〉= 1 is assumed. If we assume 

 〈𝜑𝑛, 𝜑𝑚〉 = n! , we compute that 

〈𝜑𝑛+1, 𝜑𝑛+1〉 = 〈𝑎+𝜑𝑛 , 𝑎+𝜑𝑛〉 = 〈𝜑𝑛 , 𝑎𝑎+𝜑𝑛〉    
= 〈𝜑𝑛 , 𝑎+𝑎 + 1)𝜑𝑛〉 
 =  (n +  1) 〈𝜑𝑛 , 𝜑𝑛〉 

         =  (𝑛 + 1)! 
Finally, we compute that  

a𝜑𝑛+1 = 𝑎𝑎+𝜑𝑛 = (𝑎𝑎+ + 1)𝜑𝑛 = (n + 1)𝜑𝑛                                                              (25) 

A calculation gives the following simple expressions for the raising and lowering operators: 

𝑎 =
1

√2
(�̃� +

𝑑

𝑑�̌�
)            

 

𝑎+ =
1

√2
(�̃� −

𝑑

𝑑�̌�
)                                                                             (26) 

Note that the constants m, ω, and ℏ have conveniently disappeared from the formulas. 

Given the expression in (26), we can easily solve the (first-order, linear) equation 𝑎𝜑𝑛= 0 as 

 

𝜑°(�̌�) = 𝐶𝑒
−�̌�

2⁄                                                                                            (27) 

If we take C to be positive, then our normalization condition determines its value to be √π/D,  

Obtain, then, 

𝜑°(𝑥) = √
𝜋𝑚𝜔

ℏ
𝑒𝑥𝑝 {− 

𝑚𝜔

ℏ
𝑥2}                                                           (28) 

It remains only to apply 𝑎∗repeatedly to  𝜑° to get the “excited states” 𝜑𝑛 

Theorem 2:  The ground state  𝜑° of the harmonic oscillator is given by (27). The excited states 𝜑𝑛 are 

given by  

 𝜑𝑛 = 𝐻𝑛 𝜑°                                                                                             (29) 

Where 𝐻𝑛 is a polynomial of degree n given inductively by the formulas?  

 𝐻°(�̌�)  = 1   

 𝐻𝑛+1(�̌�) =
1

√2
(2�̌� 𝐻𝑛(�̌�) −

𝑑 𝐻𝑛(�̌�) 

  d  �̌�
)  

Here, �̌� is the normalized position variable given by (24) [13]. 

Proof.  

When n = 0, by (24), reduces to 𝜑°= 𝜑°.  Assuming that (30) holds for some n, we compute    𝜑𝑛+1 as  

   𝜑𝑛+1 = 𝑎+  𝜑𝑛 =
1

√2
(�̌� 𝐻𝑛(�̌�)𝐶𝑒−

�̌�2

2 −
𝑑

𝑑�̌�
[ 𝐻𝑛(�̌�)(�̌�)C 𝑒−

�̌�2

2 ]                    (30)  

=
1

√2
(�̌� 𝐻𝑛(�̌�) −

𝑑 𝐻𝑛

𝑑�̌�
) 𝐶𝑒−

�̌�2

2 =  𝐻𝑛+1(�̌�)𝜑°(�̌�)               (31) 

Now we can describe the occupation of particles on the lattice as a [ket] of form: 

⃒… . , 𝑛−1 , 𝑛0 , 𝑛1, … ..       ⟩. It represents the juxtaposition (or conjunction, or tensor product) of the number 

states,  …..,  ⃒𝑛−1⟩⃒,𝑛0⟩, ⃒𝑛1⟩,…… located at the individual sites of the lattice [2]. Recall 
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𝑎⃒𝑛⟩ = √𝑛⃓𝑛 − 1⟩ 

𝑎+ ⃒𝑛⟩ = √𝑛 + 1⃓𝑛 + 1⟩,           for all n ≥  0                                                    (32) 
 

While    [𝑎,𝑎+]  =1  

Therefore, it is possible to rely on the previous construction of the effects of creation and annihilation to find 

formulas that predict the quantum states of the generated particles 

Now define  𝑎𝑖 so that it applies  𝑎 to,⃒𝑛𝑖⟩ . Correspondingly, define 𝑎𝑖
+as applying 𝑎+ to ⃒𝑛𝑖⟩.  

𝜕𝑡⃓𝑛1⟩ = −𝛼 ∑(2 𝑎𝑖
+𝑎𝑖 − 𝑎𝑖−1

∗ 𝑎𝑖 − 𝑎𝑖+1
+ 𝑎𝑖)⃓𝜑⟩ 

= − 𝛼 ∑(𝑎𝑖
+ − 𝑎𝑖−1

+ )(𝑎𝑖 − 𝑎𝑖−1
+ )⃓𝜑⟩                                                 (33) 

where number state n is replaced by number state n-2 at site i at a certain rate. 

thus the state evolves by  

𝜕𝑡⃓𝜑⟩ = −𝛼 ∑(𝑎𝑖
+ − 𝑎𝑖−1

+ )(𝑎𝑖 − 𝑎𝑖−1)⃓𝜑⟩ + 𝜆 ∑(𝑎𝑖
2 − 𝑎𝑖

+2𝑎𝑖
2)⃓𝜑⟩          (34) 

We denoted by ∅ the vector space of families ∅ = (∅𝑖)𝑖∈𝐼 such that ∅𝑖 ∈ 𝐸𝑖, consider  ∅(x) = ∑ ⟨𝜑𝑖|𝜋𝑖⟩𝑖𝑖  this 

is implies that  for all 𝜑𝑖, 𝜋𝑖 ∈ E, the family of numbers ∑ ⟨𝜑𝑖|𝜋𝑖⟩𝑖𝑖  is  

Now from above conception we can make the following generalization: 

𝜕𝑡⃓𝜑⟩𝑗 = −𝛼 ∑(𝑎𝑖
+ − 𝑎𝑖−1

+ )(𝑎𝑖 − 𝑎𝑖−1)⃓𝜑⟩𝑗 + 𝜆 ∑(𝑎𝑖
2 − 𝑎𝑖

+2𝑎𝑖
2)⃓𝜑⟩𝑗       (35) 

𝜕𝑡⃓𝜑°⟩𝑗 = −𝛼 ∑(𝑎𝑖
+ − 𝑎𝑖−1

+ )(𝑎𝑖 − 𝑎𝑖−1)⃓𝜑°⟩𝑗 + 𝜆 ∑(𝑎𝑖
2 − 𝑎𝑖

+2𝑎𝑖
2)⃓𝜑°⟩𝑗    (36) 

𝜕𝑡⃓𝑎𝑖
+𝑛

𝜑⟩
𝑗
= −𝛼𝑖

𝑛 ∑ (𝑎𝑖
𝑗

𝑛

𝑖,𝑗=1

− 𝑎𝑖−1
𝑗−1

)(𝑎𝑖
+)2 − 𝑎∗

𝑖−1
𝑗−1

)⃓𝑎𝑗𝜑⟩
𝑗
+ 𝜆𝑗 ∑(𝑎𝑖

+ )𝑗)2 − (𝑎𝑖
+ 𝑗)2𝑎𝑖

𝑗2
)⃓𝑎+𝑛

𝜑⟩
𝑗
   (37) 

The equations   (35)   , (36) and (37) are  a mathematical formulas  that represents the future of wave 

function space when repeating creation and annihilation operators. 

Results 

The numerical implementation of the derived mathematical formulas for creation and 

annihilation operators yields insightful results regarding the quantum dynamics of scalar 

fields. The Dirac delta function relations, integral to the formalism, are elucidated through 

the evolution of quantum states. The quantization of the scalar field is demonstrated, 

revealing the discrete nature of energy levels inherent in the quantum system. Visualization 

of the results through illustrates the temporal evolution of quantum states and provides a 

quantitative understanding of the system's behavior. The numerical simulations not only 

validate the theoretical framework but also offer a deeper comprehension of the interplay 

between creation and annihilation operators in the context of scalar field quantization. 

 

Conclusion 

This study delves into the intricate world of creation and annihilation operators, unraveling 

their mathematical formulations and shedding light on their role in describing quantum 

phenomena. The Dirac delta function relations, central to quantum mechanics, are rigorously 

examined, and the quantization of scalar fields is demonstrated through the lens of these 

operators. The obtained results corroborate the theoretical predictions, providing a 

quantitative basis for understanding the dynamic evolution of quantum states. The 

implications of this research extend to the broader field of quantum mechanics, offering 

insights into the fundamental nature of scalar fields and the quantized behavior of energy 

levels. This work contributes to the ongoing discourse on quantum systems and lays the 

groundwork for further investigations into the mathematical intricacies of creation and 

annihilation operators. 
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