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Abstract—The market for mobile phones in india is 

highly competitive, with new models being introduced 
frequently. Consumers are always looking for the latest 

technology and features, and they are willing to pay a 
premium price for it. In this paper, we propose a machine 
learning-based approach to predict the price of mobile 

phones based on various features such as brand, model, 
screen type, camera quality, and battery life. A dataset of 
mobile phones are collected with their corresponding 

features and prices from various online retailers. The data 
is processed and then different machine learning 
algorithms are applied such as linear regression, decision 

trees, and random forests to predict the price of mobile 
phones. The performance of the algorithms are evaluated 
using metrics such as root mean squared error, R-squared 

value and mean absolute error. Finally a model is selected 
based on the performance. The proposed system will help 
rural Indians in purchasing phones within their budget 

and with optimal specifications. 

 

Keywords— preprocessing, machine learning, metrics, 

regression, prediction 

I.INTRODUCTION 

Mobile phones have become an integral part of our daily 
lives, providing us with a wide range of functionalities such 
as communication, entertainment, and information access. 
With the rapid advancement of technology, mobile phones are 
now equipped with advanced features such as high-quality 
cameras, powerful processors, and long battery life. As a 
result, the market for mobile phones has become highly 
competitive, with numerous brands and models available in 
the market. Consumers are always looking for the latest 
technology and features, and they are willing to pay a 
premium price for it. Therefore, it is essential for 
manufacturers to price their products competitively to stay 
ahead of the competition. Accurately predicting the price of 
mobile phones can help manufacturers make informed 
decisions about pricing and marketing strategies. Similarly, 
consumers can benefit from accurate price predictions to 
make informed decisions when purchasing a mobile phone.  

II.LITERATURE SURVEY 

[6] stated that considering only strong attributes in the 

dataset gives more accurate results in random forest. [11] 

showed comparison between random forest and linear 

regression and concluded random forest as the best algorithm 

. [10] highlighted the significance of regression analysis in 

building ML models and its potential in practical 

applications. By providing a comprehensive overview of the 

main concepts and techniques used in regression analysis, 

this research has contributed to the development of the field 

and provided a foundation for further research in this area. 

[7] contributed to the existing literature on modelling the 

non-linear complex behavior of suspended sediment 

responses to rainfall, water depth, and discharge in small 

catchment areas. The study highlights the importance of 

selecting the appropriate model and number of independent 

variables for suspended sediment discharge prediction. 

Overall, this paper demonstrates the potential of MLRg, MLP 

(LM, SCG, and BFGS), and RBF models in predicting 

suspended sediment discharge and emphasizes the 

importance of careful model selection and data preparation to 

achieve accurate results. The research contributes to the 

development of the field of environmental modelling and 

provides a foundation for further research in this area.[9] 

explores the use of correlation and linear regression 

techniques to test the relationship between two variables. 

Correlation measures the strength of the linear relationship 

between a pair of variables, while linear regression expresses 

the relationship in the form of an equation. Using simple 

examples and software tools such as SPSS and Excel, the 

article provides an overview of linear regression analysis and 

encourages readers to apply these techniques to their own 

data. The study highlights the importance of selecting the 

appropriate statistical technique based on the research 

question and type of data being analyzed. [4] emphasizes the 

importance of selecting the appropriate regression method 

based on the research question and data type. It highlights the 

advantages and limitations of each method and provides a 

valuable resource for researchers and data analysts. 

[13] presents a new approach for solving the issue of high 

dependency among explanatory variables in regression 

analysis. The proposed approach is based on a ridge 

estimator, which is applied to study the relationship between 

macroeconomic variables and stock market movement. The 

results obtained from the proposed method are compared with 

those obtained from the ordinary least squares (OLS) method 

and it is observed that both methods provide similar results. 

The study concludes that the proposed method of estimation 

is capable of producing consistent results in the presence of 

multicollinearity in the data. [5] supports the effectiveness of 

random forests as a powerful and versatile tool for prediction 

in a variety of applications    
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   III. PROPOSED SYSTEM 

In the present market to buy a mobile we have to see either 
youtube reviews or reviews from different websites. There is 
no such system which predicts the price of phone based on 
their specifications. This model will predict the price of the 
phone based on its specifications. The proposed system will 
help rural Indians in purchasing phones within their budget 
and with optimal specifications. 

 

 

A. Creating the dataset 

As the required dataset is not available anywhere, the 

dataset is manually populated by taking the price and 

different specifications of a particular mobile. This dataset 

contains different mobile specifications like brand, processor 

brand, processor model, screen type, battery, RAM, front 

camera. By considering all the specifications the price of the 

mobile is predicted. 

B. Pre-processing the dataset 

After taking all the specifications the dataset is pre-

processed such that all the string and the large numerical 

values are changed to small numerical values by using the 

normalization  and  

C. Applying the different algorithms 

After preprocessing the dataset different regression 

techniques are applied over the dataset for the prediction of 

the price. These different algorithms are trained over the 

dataset and the best among them is taken out. 

D. Evaluating the best algorithm  

After applying the different algorithms the best algorithm 

has to be taken out. For that process different regression 

evaluating methods like mse, mae, r square are used. By using 

these methods the best algorithm has been taken out. 

 

Regression technique is used to find the price of the 

phone. Different regression techniques are used to find the 

price. All those techniques are evaluated by means of finding 

their metrics. Among all those techniques one technique is 

finalized based on its metrics. Different techniques used here 

are 

 Linear Regression 

 Multiple Linear Regression 

 Polynomial Regression 

 Support Vector Regressor 

 Decision Tree 

 Random Forest 

 Lasso Regression 

 Ridge Regression1 

 Bayesian Ridge 

 PLS Regression 

 Elastic Net Regression 

 

Among all these techniques one technique selected based on 
their performances. 

1. Linear Regression   

Linear regression is a statistical method used to model the 
relationship between a dependent variable and one or more 

independent variables. In simple linear regression, there is 
only one independent variable, and the goal is to fit a straight 
line (referred to as the "regression line") that best predicts the 
dependent variable based on this independent variable. The 
regression line is represented mathematically as an equation, 
and the coefficients in this equation are estimated from the 
data using a technique such as least squares. Simple linear 
regression can be used for both continuous and binary 
dependent variables. 

The simple linear regression formula is given by 

y = b0 + b1 * x 

y is the dependent variable (the one being predicted) 

x is the independent variable (the one used to make 
predictions) 

b0 is the y-intercept (the value of y when x = 0) 

b1 is the slope (the change in y corresponding to a change 
of 1 unit in x)Where TWg and KWg are the time constant and 
gain constants of wind turbine generator respectively.  

 

2. Multiple Linear Regression 

     Multiple linear regression is a machine learning method 

used to model the relationship between a dependent variable 

(y) and multiple independent variables (x1, x2, ..., xn). The 

formula for multiple linear regression is: 

y = b0 + b1 * x1 + b2 * x2 + ... + bn * xn 

where y is the dependent variable (the one being predicted). 

x1, x2, ..., xn are the independent variables (the ones used to 

make predictions) 

b0 is the y-intercept (the value of y when all independent 

variables are equal to 0). b1, b2, ..., bn are the coefficients 

representing the effect of each independent variable on the 

dependent variable. These coefficients must be estimated 

from the data. 

3. Polynomial Regression 

     Polynomial Regression is a form of regression analysis in 

which the relationship between the independent variable x 

and the dependent variable y is modeled as an nth degree 

polynomial. It is a form of linear regression, but instead of 

fitting a straight line to the data, we fit a polynomial curve of 

degree n. The equation of the polynomial curve can be 

represented as: 

y = β0 + β1x + β2x^2 + ... + βnx^n 

where β0, β1, β2, ..., βn are the coefficients of the 

polynomial, and n is the degree of the polynomial. The 

coefficients can be estimated using optimization algorithms 

such as gradient descent or least squares. 

http://www.ijrti.org/
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4. Support Vector Regressor 

     Support Vector Regression (SVR) is a type of supervised 

machine learning algorithm that is used for regression tasks 

(predicting a continuous outcome variable). It is a 

modification of the Support Vector Machine (SVM) 

algorithm, which is primarily used for classification tasks. 

SVR aims to find the optimal line or hyperplane that best 

separates the data points in the feature space, so as to 

minimize the error in prediction. The algorithm uses a kernel 

function to map the input data into a higher-dimensional 

space, making it possible to handle non-linear relationships 

between the independent and dependent variables. SVR has 

been used in a wide range of applications, including financial 

forecasting, sales forecasting, and engineering design. 

f(x)=β_0+ Σ_{i=1}^n α_iy_i K(x_i, x)   

f(x) is the predicted output for a given input x 

β_0 is the bias term 

α_i are the weights or coefficients that determine the 
influence of each training example on the prediction. y_i are 
the target values for each training example. x_i are the input 
feature values for each training example 

K(x_i, x) is a kernel function that maps the input data into 
a higher-dimensional space 

 5. Decision Tree 

     A Decision Tree is a tree-based model used in decision 

analysis, machine learning and statistics to predict a target 

variable by learning simple decision rules inferred from the 

data features. At each node of the tree, a decision rule is 

formed to split the data based on the value of a feature that 

results in the largest reduction in impurity (e.g. Gini impurity, 

entropy) of the target variable. This process continues 

recursively for each resulting subgroup of the data until a 

stopping criteria is met (e.g. minimum sample size, maximum 

tree depth). 

 

6. Random Forest 

     Random Forest is a machine learning algorithm that is used 

for classification and regression. It is a collection of multiple 

decision trees, where each tree is trained on a random subset 

of the data and outputs a prediction. The final prediction of a 

Random Forest is determined by taking the average (for 

regression) or majority vote (for classification) of the 

predictions from individual trees. This combination of 

multiple trees makes the algorithm more robust to overfitting 

compared to a single decision tree. 

 

7. Lasso Regression 

Lasso Regression is a type of regularized linear regression 
algorithm that uses L1 regularization. Lasso stands for Least 
Absolute Shrinkage and Selection Operator. 

The formula for Lasso Regression is as follows: 

y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ + ε 

where: 

y is the target/dependent variable 

x₁, x₂, ..., xₙ are the independent/predictor variables 

β₀, β₁, β₂, ..., βₙ are the regression coefficients 

ε is the error term (representing the difference between the 
actual and predicted values) 

8. Ridge Regression 

Ridge Regression is a type of linear regression that is 
regularized using the L2 norm of the coefficients. It is used to 
prevent overfitting in linear regression models by adding a 
penalty term to the loss function that discourages large 
coefficients.The regularization term in Ridge Regression is 
the sum of the squared coefficients, multiplied by a 
regularization strength or hyperparameter, alpha. The larger 
the value of alpha, the stronger the regularization and the 
smaller the magnitude of the coefficients. 

y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ + ε 

where: 

y is the target/dependent variable 

x₁, x₂, ..., xₙ are the independent/predictor variables 

β₀, β₁, β₂, ..., βₙ are the regression coefficients 

ε is the error term (representing the difference between the 
actual and predicted values) 

9.Bayesian Ridge 

In Bayesian Ridge Regression, the coefficients are 
estimated as the maximum a posteriori (MAP) estimates, 
which are the values of the coefficients that maximize the 
posterior distribution given the data and prior knowledge. The 
MAP estimates are found by using an optimization algorithm, 
such as gradient descent, to minimize the negative log-
posterior probability of the coefficients. 

p(β | X, y) = p(y | X, β) * p(β) / p(y | X) 

where: 

β is the vector of coefficients 

X is the matrix of predictors 

y is the target variable 

p(y | X, β) is the likelihood function that models the 
relationship between the predictors and the target variable 

p(β) is the prior distribution on the coefficients, which 
represents prior knowledge about the relationships between 
the predictors and the target variable 

p(y | X) is the marginal likelihood or evidence, which is 
the normalizing constant for the posterior distribution 

Once the MAP estimates have been found, the prediction 
for a new observation can be expressed as: 

y_pred = X_new * β_map 

 

10. Elastic Net Regression 

ElasticNet is a regularization technique in machine 
learning, which combines the L1 (Lasso) and L2 (Ridge) 
regularization methods to balance the strength of the penalties 
imposed on the coefficients of the model.In Lasso 
regularization, the absolute values of the coefficients are 
penalized, leading to sparse solutions with many coefficients 
set to zero. In Ridge regularization, the squared values of the 
coefficients are penalized, leading to solutions with smaller, 
non-zero coefficients. ElasticNet combines these two 
regularization methods by adding both L1 and L2 penalties to 
the loss function. The combination of L1 and L2 
regularization in ElasticNet allows for a trade-off between 
sparsity and shrinkage, providing a solution that is more 
flexible and less likely to overfit the data compared to either 
Lasso or Ridge regularization alone. The amount of L1 and 
L2 regularization can be controlled through a mixing 
parameter, which determines the relative strength of each 
penalty. 

http://www.ijrti.org/
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Loss = (1/n) * SUM(y - y_pred)^2 + α * (ρ * L1_penalty 
+ (1 - ρ) * L2_penalty) 

where: 

n is the number of observations 

y is the true target value 

y_pred is the predicted target value 

α is the regularization strength or hyperparameter that 
controls the overall magnitude of the penalties 

ρ is the mixing parameter that determines the relative 
strength of the L1 and L2 penalties 

L1_penalty = SUM(|β|) is the absolute sum of the 
coefficients 

L2_penalty = SUM(β^2) is the squared sum of the 
coefficients 

y_pred is the predicted target value 

α is the regularization strength or hyperparameter that 
controls the overall magnitude of the penalties 

ρ is the mixing parameter that determines the relative 
strength of the L1 and L2 penalties 

L1_penalty = SUM(|β|) is the absolute sum of the 
coefficients 

L2_penalty = SUM(β^2) is the squared sum of the 
coefficients 

11.PLS Regression 

PLSR stands for Partial Least Squares Regression, which 
is a statistical technique used for modelling the relationship 
between a set of independent variables and a set of dependent 
variables. It is a type of regression analysis that helps to 
reduce the dimensionality of the data while maintaining the 
maximum amount of information PLSR is commonly used in 
fields such as chemometrics and genomics, where the number 
of predictor variables is large compared to the number of 
observations. The formula for PLSR involves a series of 
regression equations, which are used to estimate the weights 
or loadings for each independent variable, as well as the 
regression coefficients for the dependent variables. 

Mathematically, PLSR can be expressed as follows: 

X = TP' + E, where X is the matrix of independent 
variables, T is the matrix of scores (weights), P is the matrix 
of loadings (regression coefficients), and E is the residual 
matrix. 

Y = UQ' + F, where Y is the matrix of dependent variables, 
U is the matrix of scores (weights), Q is the matrix of loadings 
(regression coefficients), and F is the residual matrix. 

The scores and loadings are estimated by iteratively 
minimizing the residuals in both X and Y. The final regression 
equation can then be expressed as Y = XB + E, where B is the 
matrix of regression coefficients. 

IV. EXPERIMENTAL RESULTS 

At this stage the metric for the different algorithms are 
found. Based on those metrics the best algorithm is evaluated 
for the prediction of the price. For the calculation of the metric 
the used methods are 

 R Square  

 Mean Absolute Error 

 Mean Square Error 

a. R Square Method 

R-squared (R²) is a statistical measure that represents the 
proportion of the variance in the dependent variable that is 

predictable from the independent variable(s) in a regression 
model. 

Formula: R² = 1 - (sum of squares of residuals) / (sum of 
squares of total variance in the dependent variable) 

Where the residuals are the differences between the actual 
values of the dependent variable and the predicted values from 
the regression model. The total variance in the dependent 
variable is calculated as the sum of squares of the differences 
between the actual values and the mean of the dependent 
variable. 

R² is a value between 0 and 1, where 0 indicates that the 
model does not explain any variance in the dependent 
variable, and 1 indicates that the model explains all the 
variance in the dependent variable. 

 

 

 

TABLE.I.PERFORMANCE OF DIFFERENT TECHNIQUES BY R2 SCORE 

Regression Technique R2 Score 

Simple Linear Regression 0.358 
 

Multiple Linear Regression 0.358 

Support Vector Regressor 0.254 

Polynomial  0.0712 

Decision tree 0.369 

Random forest 0.6157 

Lasso Regression 0.5786 

Ridge Regression 0.5786 
 

Bayesian ridge 0.5147 

Elastic Net Regression 0.5783 

PLS Regression 0.5789 
 

 

Fig. 1.Graph of R2 Score 
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b. Mean Absolute Error 

Mean Absolute Error (MAE) is a measure of the difference 
between the actual and predicted values in regression 
problems. It is the average absolute difference between the 
predictions and actual values. 

Formula: MAE = (1/n) * Σ|actual_i - predicted_i| 

Where n is the number of samples, actual_i is the actual 
value of the i-th sample, and predicted_i is the predicted value 
of the i-th sample. 

MAE is a robust measure of error that is not sensitive to 
extreme values, unlike Mean Squared Error (MSE). It 
provides a more interpretable output as the error values are 
expressed in the same unit as the target variable, making it 
easier to understand the magnitude of the error. 

 

TABLE. II.PERFORMANCE OF DIFFERENT TECHNIQUES BY MEAN ABSOLUTE 

ERROR 

Regression Technique Mean Absolute Error 

Simple Linear Regression 6794.223789 
 

Multiple Linear Regression 6146.553891 

Support Vector Regressor 7702.347107 

Polynomial  5780.311673 

Decision tree 6602.753981 

Random forest 4189.89461 

Lasso Regression 5704.342123 

Ridge Regression 5114.130304 
 

Bayesian ridge 6935.785901 

Elastic Net Regression 4788.073986 

PLS Regression 5780.542138 
 

 

Fig. 2 .Graph of Mean Absolute Error 

c. Mean Square Error 

Mean Squared Error (MSE) is a commonly used measure 
of the difference between the predicted values and the true 
values. It represents the average of the squared differences 
between the predictions and the actual values. 

The formula for MSE is: 

MSE = (1/n) * Σ(predicted value - actual value)^2 

Where n is the number of observations and Σ is the sum 
across all observations. 

 

TABLE. III.PERFORMANCE  OF DIFFERENT TECHNIQUES BY MEAN SQUARE 
ERROR 

Regression Technique Mean Absolute Error 

Simple Linear Regression 88822517.85 
 

Multiple Linear Regression 54940977.41 

Support Vector Regressor 106822909.53 

Polynomial  54675831.03 
Decision tree 128835471.94 

Random forest 37772002.96 

Lasso Regression 54364202.25 

Ridge Regression 52890319.96 
 

Bayesian ridge 76832984.03 

Elastic Net Regression 40451989.88 

PLS Regression 54680414.67 

 

 

Fig. 3.Graph of Mean Square Error 

 

 

VI.CONCLUSION 

This research paper reflects the metric evaluation of 
different regression techniques on the same dataset. 
Among all those different regression techniques Random 
Forest came as the best technique. By this metric 
evaluation the conclusion is that the Random Forest is best 
suitable for the prediction of the price. After taking the 
Random Forest as the best, based on the metrics. Then 
using the streamlit, interface is created which is based on  
the random forest. The  price is predicted based on the 
specification. 
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