

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c683

Code clone detection: An approach based on

statement level features

1Dr Sudhamani M and 2Lalitha Rangarajan
1 Department of Computer Science, MMK & SDM MMV Mysuru, 2Department of Studies in Computer Science, University of

Mysore, Mysore - 570006, Karnataka, INDIA

Abstract

Software systems are gradually evolving with the addition of new features, functions or modification of the

existing modules. Code clones are copied or near-copied portions of other code segments. Duplicate codes

weaken the software quality and results in complexities, such as, software maintenance, readability, and

understand ability. In this paper, we make an attempt to detect code clones, both at syntactic and semantic

levels, by proposing an approach that exploits program statement level features. For example, type of

statement, operators and operands, and their counts. For corroboration of the efficacy of the proposed

approach, we conducted experiments on standard C projects of Bellon’s benchmarking and student lab

program (SLP) datasets. Moreover, we compared the performance of the proposed approach with the

NICAD (Accurate Detection of Near-Miss Intentional Clones), CLAN and clone manager tools, also.

Extensive experiments demonstrate the promising findings, which can be used in future investigations.

Keywords: Software systems, Code clones, Program statements, Duplicate code, Program fragments,

Software quality, Program syntactic and semantics.

1. Introduction

Due to the constant modification and frequent copy-paste/duplication of code fragments viz. code clones in

software systems, manual inspection cannot be done. Over the years, an enormous amount of research has

been carried out for automating the identification/detection of code clones [1–4]. However, a full-fledged

automatic identification system is still a distant dream due to the challenges being posed by constant

development of software systems. As a matter of fact, detection of code clones are indispensable for many

software engineering tasks, such as, program understanding, refactoring, optimization, code searching, and

bug detection [1, 5–8], etc. Hence, identification of code clones carries an utmost importance in software

engineering and has been widely studied.

 Two major issues concerning the detection of code clones is the large size and complexity of software

systems. These issues have made identification of code clones as an indispensable task for software

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c684

maintenance [9], and has led to the development of many automated tools[10, 11]. Furthermore, it has been

found that code fragments are not copied as it is, so their detection process must ignore this

discrepancy/inconsistency. And, concentrate on similarities for duplicate detection. As stated, to eliminate

defects/bugs and extend their functionalities software systems are undergoing continuous modification, and

maintenance. While performing these activities intentionally or unintentionally code fragments get

copied/duplicated. Moreover, various studies revealed that about 5% to 20% of a software may contain

code clones [12]. Therefore, we need to deal with this situation so that to prevent problems that might

appear when software tries to adapt the changes that are imminent in a real-world systems.

 In literature, depending upon the level of similarity, code clones are divided into four broad categories

[12]. Type-I: identical code fragments except for variations in whitespace, layouts, and comments. Type-II:

structurally and syntactically identical fragments except for variations in identifiers, literals and function

names. Type-III: copied fragments with modifications, e.g. statements added or removed. Type-IV: code

fragments which perform the identical functions, but implemented using different syntactic variants, also

referred as semantic clones. There exist various approaches for Type-I, Type-II, and Type-III code clones

[13, 14]. However, presence of syntactic and semantic flexibility in the source code make Type-IV a complex

process. In other words, both syntax, and structure/relationships between code fragments need to be taken

into account. For this reason, there are various unresolved issues in this type.

From literature, we found that many approaches try to use syntax and semantics based information

separately to represent source code. Like, for instance, abstract syntax tree (AST) [15, 16], program

dependence graph (PDG) [17, 18], text [19, 20], and token based [21, 22], etc. However, these approaches on

one hand, represent one aspect but on the other, lack the capability of representing other important aspect.

For example, AST represents syntax tree but incapable to represent control flow statements. Similarly,

approaches based on PDG are computationally extensive (NP-hard). With this motivation, in this paper, we

present a metric based approach to identify Type-IV code clones i.e., detection of similar functional

statements. Broadly speaking, our approach falls in machine learning paradigm which have achieved

substantial performance in number of studies. The basic idea of our approach is to extract statement level

features such as type of operators, operands and their counts, from functional statements present in a

program. Thereafter, a dissimilarity matrix is constructed and finally, after matching, code clones are

detected. In brief the main contributions of this study are: ()i Detects functionally similar code clones, ()ii

identifies structurally identical code fragments, and ()iii detects syntactic and semantically identical code

fragments also. The remainder of this paper is organized as follows. Detailed related work about code clone

detection is described in section 2. Section 3 explains the proposed approach. Experimental results and their

performance, comparative analysis is carried in section.4. Finally, conclusion and future work is drawn in

section 5.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c685

2. Related works

A number of researchers have attempted to detect the code clones. As reuse of existing code is key factor in

software development. Moreover, if it is not detected, it downgrades the design, structure, quality,

readability, changeability, and maintainability of software systems [23] . The earlier attempts mainly differ in

representation and approach used.

2.1. String based

String based approaches perform comparison based on source code characters. Comparison of two strings is

usually done with calculating some form of edit distance [5, 24]. Baker's Dup tool fixates duplication or near-

duplication in a large software system. And, transforms program text into sequence of tokens. Later, line based

string matching algorithm is used to detect duplicates[5]. Dup identifies parameterized matches and it

emphasizes results in the form of both report and scatter plots. This tool does not support exploration and

navigation in the duplicated code. The tool fails to detect code written in different styles. Johnson used

incremental hash function combined with sliding window method to find clones of different lengths and Karp-

Rabin fingerprint algorithm is applied to detect duplicate code [9, 24].

Latent Semantic Indexing (LSI) is an information retrieval technique used to find semantic similarities in

source code [25]. Dynamic pattern matching (DPM) is applied on normalized source lines to compare strings [6].

Nearest-neighbor (NN) algorithm is used to detect near miss clones in similar data detection (SDD) [26]. Cordy

et al. [27], used an island grammar to find near miss clones in HTML web pages. String based approach are

unable to detect variable rename and reorder statements. It does not perform any syntactic or semantic analysis

on source code. This method can detect Type-I clones.

2.2. Token based

Source lines are transformed into sequence of token streams using respective scanner or lexer [6, 28]. Later,

these sequence of tokens are scanned to detect code clones. Afterwards, these token sequences are compared

by following either suffix tree algorithm (STA) or hashing algorithm (HA) [29]. This technique is slightly

slower than text based method, because of the tokenization process. And, is capable to detect both Type-I

and Type-II clones. Tools based on token based technique are CCFinder, CPminer, JPlag, and CPD11 [9,

30].

Brenda et al., [5] developed an effective token-based clone detection tool referred as Dup. In Dup, lexer

is used to tokenize the source code. Thereafter, these token sequences are compared using STA. CCFinder, CP-

Miner, Gemini, and RTF are prominent token based tools. Kamiya et al.[31] used source normalization in

CCFinder. Gemini et al., [32] visualizes near miss clones using scatter plots and RTF tokenization after using

STA. Furthermore, frequent subsequence data mining technique is adopted in CP-Miner to find similar stream of

tokens [33]. Winnowing, JPlag and SIM [30, 34] are familiar token based plagiarism detection tools. However,

CCFinder and Dup are unreliable to handle reordered statements but CP-Miner handles this situation efficiently.

Compared to text-based approaches token-based approaches are usually resistant against code changes such as

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c686

formatting, spacing, and variable renaming. Token based approaches are capable to detect Type-1 and Type-2

clones but finds it difficult to detect near miss clones.

2.3. Tree based

Source code is transformed into AST with appropriate parser. Then, tree matching technique is used to

search similar sub-ASTs [30]. The parse tree/AST contains the complete information about the source code.

When any match is found corresponding source code of the similar sub trees are reported as clone pairs. The

results drawn by tree comparison are reasonably efficient but difficult and complex to generate, thanks to

transformation into AST and their poor scalability. AST-based approaches can identify exact, near miss, and

gap clones. However, disregards the information about variable rename. AST does not show the data flow

information, therefore, it cannot handle statement reorder and control replacement.

CloneDR is the prime AST based tool developed by Baxter et al [35]. A compiler generator is used to

generate an annotated parse tree and compares its sub-trees by characterization metrics based on a hash function

through tree matching to detect gapped clones and reordered statements. Ccdiml tool fails to handle variable rename

whereas CloneDR does. In Bauhaus [36], the ASTs are represented in IML (Intermediate Language) and

comparison is done on IMLs rather than ASTs. Yang [37] proposed a similar approach to find the syntactic

differences between two versions of the same programs by generating a variant of parse tree for both the versions

and then applied dynamic programming approach to search similar sub-trees. Wahler et al.[38] found exact and

parameterized clones by transforming AST of a program to an XML representation and then a data mining

frequent item set technique is applied to the XML representation to detect clones. Finally, we also come across

Evans et al.[39], method that identifies exact and near miss clones with gaps.

2.4. Program dependence graph (PDG) based

Source code is transformed into graph called Program dependency graph (PDG). Which contains the control

and data flow information of a program and hence carries semantic information [18]. Then isomorphic sub-

graph matching is applied to find similar sub graphs that are reported as clones. PDG based approaches are

robust in detecting functional similarities. Like, for example in [30], source code is represented with high

abstraction. PDG-based approaches, on one hand, can effectively deal with reordered statements, insertion and

deletion of code, intertwined code, and non-contiguous code, but, on the other hand, not scalable to large size

programs (due to finding isomorphic sub-graphs that is with NP-hard complexity [30, 40, 41]).

One of the leading PDG-based clone detection approaches presented is Komondoor et al [42]. And, finds

isomorphic PDG sub-graphs using program slicing. Krinke et al. [43] used k-length patch matching iterative

approach for detecting maximal similar sub-graphs [43]. GPLAG [44] is a PDG-based plagiarism detection tool.

Chen at al.[45], proposed a PDG-based technique for code compaction taking into account syntactic structure

and data flow.

2.5. Metric based

Metric-based approaches gather different metrics for code fragments and compares metric values to check

similarity between two code fragments [46]. Source code is represented as intermediate representation

language (IRL) and metrics are calculated from names, layout, expression and control flow of functions. A

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c687

clone is characterized only as a pair of whole function bodies that have similar metric values. This approach

detects function based clones but are in capable to detect segment-based copy-paste clones. However, is

scalable and straight forward.

Mayrand et al.[47], calculated metrics, like the number of lines of source, number of function calls

contained, and number of control flow graph (CFG) edges etc., for each function unit of a program.

Function units with similar metric values are identified as code clones. Patenaude et al. [48] proposed a

method to find method-level similarity by comparing metrics such as number of calls from a method,

number of statements, McCabe's cyclomatic complexity, number of global and local variables. They define

these metrics for Java language and extend the IBM Datrix tool to support Java in software quality

assessment [49].

Kontogiannis et al. [50], design an abstract pattern matching tool to identify probable matches using

markov models (MM) to compute similarity between programs. They proposed two ways to detect clones,

first, is direct comparison of metrics computed from AST and computes the ratio of input / output variable

to the fan-out (number of function calls), McCabe cyclomatic complexity, modified Albercht's function

point metric and modified Henry-Kafaura's information flow quality metric). The cecond method, uses a

dynamic programming (DP) technique at statement level. In dynamic programming (DP) approach, the

distance between the pair of segments is measured by the least expensive sequence of insert, delete and edit

steps required to make one segment similar to the other [47]. Metric-based approach is also used to find

duplicated web pages. Di Ducca et al.[46] proposed a method to identify similar static HTML pages by

comparing the Levenshtein distances between items in web pages and calculating their degree of similarity.

Lanubile et al.[51] proposed a semi-automated method to detect clone script functions, using eMetrics tool

to retrieve the potential function clones. Davey et al. [52], detects exact, parameterized and near-miss clones

by using neural networks on features retrieved.

2.6. Hybrid-based approach

Hybrid techniques are combination of other techniques. There are various alternative code clone techniques

that use a hybrid approach. These techniques integrate syntactic and semantic characteristics. New

languages can be added by the specification of their syntaxes. It is also possible to explore other language

features by including new specialized comparison functions.

Leitao et al [25], provides a hybrid approach that combines syntactic techniques based on AST metrics

and semantic techniques using call graph method in combination with specialized comparison functions

[52]. In the approach by Koschke et al.[47], the tokens of the AST-nodes are compared using a STA

algorithm. Hence, clones are detected in linear time compared to AST based approach [35]. A function-level

clone detection technique is proposed for the Microsoft's new Phoenix framework using AST and STA.

Greenan et al.,[48], proposed an algorithm to find method level clones on transformed AST using sequence

matching algorithm. Jiang et al.[30] proposed a new method to find similar trees by comparing the structural

information of AST in Euclidean space and Locality sensitive HA was used to cluster the clones.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c688

Overall, from the literature we observe that each technique comes with its pros and cons. Further from

the different artificial intelligence and machine learning fields, we observe that efficient feature

representation is an important aspect for object characterization/detection. Therefore, in this paper, we

extracted program statement level features from source code. We observe from the literature there are few

attempts in this direction. Which is striking as the program flow is governed by entirely these statements.

3. Proposed Method

The proposed approach for code clone detection extracts the features from functional statements in the source

code. Figure 1 illustrates the different steps/stages of the proposed methodology.

.

Figure 1. Illustration of proposed approach

3.1. Preprocessing

At the outset, we followed state-of-the-art pre-processing steps [53, 54], to the input programs in the

database. That ranges from trimming (removing extra spaces, comments, and un-executable statements) to

normalization.

3.2. Feature computation and Dissimilarity matrix construction

We extracted statement level features from the following: ()i Declarative statements (DS), ()ii Function

definition statements (FDS), ()iii Assignment statements (AS), ()iv Input statements (IS), ()v Output

statements (OS), ()vi Loop statements (LS) ()vii Conditional statements (CS),

Program Database

(Bellons benchmarking and

Student lab programs)

Pre-processing

 Trimming

 Normalization

Statement Level Features from

Functional statements

Declarative, Functional, Assignment,

Input/Output, loop, conditional, Functional

statements

Dissimilarity Matrix

Computation
Similarity Value

Computation
City block distance

Output

Clone Files

Statement Feature Table (SFT)

Feature Extraction

Matching

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c689

and ()viii Function call statements (FC). For the sake of understanding, consider two versions of a sorting

program (Figure 2) after extraction, features are stored in separate tables referred as statement feature tables

(SFTs) and are shown in Table 1 and Table 2, respectively. Thereafter, dissimilarity matrix (DM) is

constructed from both the SFTs. Corresponding to each statement, a row of program-I is compared with each

row of program-II. Note, we have used city block distance [55], for comparison. For example, distance between

12th statement (‘for’ loop from Table 1) and 13th statement (‘while’ loop from Table 2) of program-I and

program-II (see Figure 2) is computed from corresponding rows in SFTs as: |0-0| + |1-1| + |0-0| + |1-0|+ |0-0| +

|0-0| + |0-0| + |0-0| + |0-0| + |1-1| + |0-0| +|0-0| |0-0| + |0-0| + |0-0| + |1-1|+|0-0| + |0-0| + |0-0| + |4-3|+|0-0| + |1-0| =

3 and is stored in DM (12th row and 13th column), as shown in Figure 3. Note that, presence of zero indicates that

program statements are similar. Table 3 shows the numbers of probable similar statements between two

programs.

3.3. Similarity value computation

Similarity between two programs is computed using Equation 1.

1 2

1 2

(r r)

(1)

n if

S n
Otherwise

r r




 
 

Here ' 'n is the number of zero’s (i.e. number of similar statements),
1r and

2r are number of executable

statements of corresponding programs/versions, upon computation, which equals to 39 / (|19-21|) = 19.5 (see

Figure 3). Table 3 is used to find similar code segments, for instance, consecutive statements of program-(a) (13

to 16) and program-(b) (14 to 17) are in successive rows(27 to 30) in Table 3. Further, these statements are inside

conditional blocks in both the programs, therefore, are similar blocks. As a result, statements 1 to 11 are similar

blocks/segments of two programs and these entries appear at different rows of the Table 3. It may be noted that,

any rear-

rangement of the Table 3 shall indicate similar blocks. However, Table 3 is also used to find overall similarity

between two versions of a program. Each step shown in Figure 1 is repeated for each time whenever we have to

establish similarity between two programs or we have to detect code clones between any two programs.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c690

1.# .

2. () {

3.int , , , [25], ;

("\ ");

5. ("% ",& n);

("\ ");

7. (1; ;)

include stdio h

Void main

n i j a temp

4.printf n Enter the range

scanf d

6.printf n Enter the numbers

for j j n j

8.scanf ("%d", &a[i]);

9.printf (" \n Numbers before so

 

   

);

10. (1; ;)

. (i 1;i ;i)

13.{

14. (1; ;)

15.{

16. ([] [j] 1)

17.{

18. [];

19. [] [1];

20. [1] ;

21.}

22.}

23.}

("

rt"

for j j n j

11.Printf ("%d", a[i]);

12 for n

for j j n j

if a j a

temp a j

a j a j

a j temp

24. printf The sorted array

   

   

   

 



 

 

");

25. (0; ;)

("% ", []);

27.}

is

for i i n i

26.printf d a i

   

1.# .

2. () {

3.int , , , [25], ;

("\ ");

5. ("% ",& n);

("\ ");

7. (1; ;)

include stdio h

Void main

n i j a temp

4.printf n Enter the range

scanf d

6.printf n Enter the numbers

for j j n j

8.scanf ("%d", &a[i]);

9.printf (" \n Numbers before so

 

   

);

10. (i 1;i ;i)

. (1; ;)

13.{

14. 1;

15 ()

16.{

17. ([] [j] 1)

18.{

19. [];

20. [] [1];

21. [1] ;

22.}

23.}

24. ;

25.}

("

rt"

for n

11.Printf ("%d", a[i]);

12 for j j n j

j

while j n

if a j a

temp a j

a j a j

a j temp

j

26. printf The sort

   

   





 



 

 

 

");

27. (0; ;)

("% ", []);

29.}

ed array is

for i i n i

28.printf d a i

   

 ()ii

Figure 2. Two versions of sorting. ()i Program-I ()ii Program-II

()i

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c691

Table 1. Statement feature table (SFT) for program-I in Figure. 2

Line

no
No

Statement

type

Control lines Assignment and Arithmetic operators Relational operators
Logical

operators
Operands

L C OC = + - * / mod ++ -- == != < > <= >= && ||
varia

bles

const

ants

1 (FDS) 5 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

2 (DS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1

3 (OS) 0

4 (IS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

5 (OS) 0

6 (LS) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4 1

7 (IS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

8 (OS) 0

9 (LS) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4 1

10 (OS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

11 (LS) 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4 1

12 (LS) 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4 1

13 (CS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 1

14 (AS) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

15 (AS) 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1

16 (AS) 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

17 (OS) 0

18 (LS) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4 1

19 (OS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c692

Table 2. Statement feature table (SFT) for program-II in Figure. 2

Line

no

No

Statement

type

Control lines Assignment and Arithmetic operators Relational operators
Logical

operators
Operands

L C OC = + - * / mod ++ -- == != < > <= >= && ||
varia

bles

Const

ants

1 (FDS) 5 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

2 (DS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1

3 (OS) 0

4 (IS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

5 (OS) 0

6 (LS) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4 1

7 (IS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

8 (OS) 0

9 (LS) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4 1

10 (OS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

11 (LS) 1 1 0 2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 5 1

12 (AS) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

13 (LS) 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3 1

14 (CS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 1

15 (AS) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

16 (AS) 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1

17 (AS) 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

18 (AS) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

19 (OS) 0

20 (LS) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4 1

21 (OS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c693

Figure 3. Distance matrix computed using Table 1 and Table 2

Table 3. Index table (probable similar statements between program-I and program-II)

Sl. No Statement no in Table Statement no in Table

1 1 1

2 2 2

3 3 3

4 5 3

5 8 3

6 17 3

7 4 4

8 7 4

9 3 5

10 5 5

11 8 5

12 17 5

13 6 6

14 9 6

15 18 6

16 4 7

17 7 7

18 3 8

19 5 8

20 8 8

21 17 8

22 6 9

23 9 9

24 18 9

25 10 10

26 19 10

27 13 14

28 14 15

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c694

29 15 16

30 16 17

31 3 19

32 5 19

33 17 19

34 6 20

35 9 20

36 18 20

37 10 21

38 19 21

39 11 11

4. Experimentation

4.1 . Experimental results

We conducted experiments on fifteen (15) versions of five programs of the Bellon’s benchmarking [56],

dataset and student lab programs dataset created in our lab comprising of 93 programs designed by students.

We can observe from Table 5 each program shows highest similarity with its version as compared to other

programs. The Figure 4 shows the similarity values, for example, Figure 4a shows the similarity value of

version 1 of program-1 (P1V1) with other program versions. Figure 4f shows the total similarity values.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c695

Table 5. Obtained similarity values

P1V1 P1V2 P1V3 P1V4 P2V1 P2V2 P2V3 P3V1 P3V2 P3V3 P4V1 P4V2 P5V1 P5V2 P5V3

P1V1 554 318.5 44.583 42.5 3.2647 1.631 2.4117 0.525 0.6315 0.6315 14.467 14.75 22.153 22.154 22.154

P1V2 318.5 890 45.646 43.571 3.9375 1.611 2.7187 0 0.1388 0.1388 18.1562 18.3620 19.066 19.066 19.066

P1V3 44.583 45.643 650 625 3.1521 1.8 2.3043 0.9230 1.06 1.06 20.12 21.1590 390 390 390

P1V4 42.5 43.571 625 618 3.0652 1.82 2.2608 0.9423 1.08 1.08 19.5 20.523 386 386 386

P2V1 3.2647 3.937 3.1524 3.0652 42 7 25 2.6666 4.5 4.5 2.2812 2.2555 2.1702 2.1702 2.1702

P2V2 1.6315 1.6111 1.8 1.82 7 26 5.25 8 16 16 1.2 1.2128 1.45098 1.4509 1.4509

P2V3 2.412 2.7187 2.3043 2.2609 25 5.25 34 1.8333 2.75 2.75 1.5416 1.5444 1.4042 1.4042 1.4042

P3V1 0.525 0 0.9231 0.9423 2.6666 8 1.8333 26 12 12 0.4803 0.5104 1.3585 1.3584 1.3585

P3V2 0.6315 0.1388 1.06 1.08 4.5 16 2.75 12 28 28 0.55 0.5638 1.4313 1.4313 1.4314

P3V3 0.6315 0.1388 1.06 1.08 4.5 16 2.75 12 28 28 0.55 0.5638 1.4313 1.4313 1.4314

P4V1 14.467 18.156 20.12 19.5 2.2812 1.2 1.54166 0.4803 0.55 0.55 1830 281 11.877 11.877 11.877

P4V2 14.75 18.362 21.159 20.522 2.2555 1.2126 1.5444 0.5104 0.563 0.563 281 1566 12.67 12.67 12.674

P5V1 22.153 19.066 390 386 2.1702 1.4509 1.4042 1.3584 1.4313 1.4313 11.877 12.674 431 431 431

P5V2 22.153 19.066 390 386 2.1702 1.4509 1.4042 1.3584 1.4313 1.4313 11.877 12.674 431 431 431

P5V3 22.153 19.066 390 386 2.1702 1.4509 1.4042 1.3584 1.4313 1.4313 11.877 12.674 431 431 431

(a) (b)

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c696

(c) (d)

(e) (f)

Figure 4. Illustration of similarity values of a program with its versions.

In order to find whether only two versions of a particular program show higher similarity when

compared to similarities between other programs. K - Means clustering [57], (with 2K =) is performed on

similarity values obtained in Table 5 and the results are shown in Table 6. The rationale for using 2K =

comes from the fact that the either the program is similar or not. Note, clustering is performed on a set of

similarity values corresponding to one version of a program (see column of Table 6).

Table 6. K - Means (with 2K =) clustering on the similarity values obtained in Table 5

P1V

1

P1V

2

P1V

3

P1V

4

P2V

1

P2V

2

P2V

3

P3V

1

P3V

2

P3V

3

P4V

1

P4V

2

P5V

1

P5V

2

P5V

3

P1V

1 2 1 1 2 1 1 1 2 2 1 1 2 1 1 1

P1V

2 2 2 1 2 1 1 1 2 2 1 1 2 1 1 1

P1V

3 1 1 2 1 1 1 1 2 2 1 1 2 2 2 2

P1V

4 1 1 2 1 1 1 1 2 2 1 1 2 2 2 2

P2V

1 1 1 1 2 2 1 2 2 2 1 1 2 1 1 1

P2V

2 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1

P2V

3 1 1 1 2 2 1 2 2 2 1 1 2 1 1 1

P3V

1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c697

P3V

2 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1

P3V

3 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1

P4V

1 1 1 1 2 1 1 1 2 2 1 2 2 1 1 1

P4V

2 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1

P5V

1 1 1 2 1 1 1 1 2 2 1 1 2 2 2 2

P5V

2 1 1 2 1 1 1 1 2 2 1 1 2 2 2 2

P5V

3 1 1 2 1 1 1 1 2 2 1 1 2 2 2 2

We observe that there are some errors in clone detection. For instance, version 3 and version 4 of program 1

are not detected as clones (i.e., false negative). Overall, percentage of accuracy is 86.22 %.

4.2 . Performance Analysis

For the evaluation of the performance of the proposed method. We conducted experiments on the source

code of four (4) Bellons benchmarking dataset, and 93 lab student lab programs (SLP), From Bellons

dataset we used cook, postgresql, snns, and wetlab projects. Complete results of Bellons experimentation

can be found available at https://bauhaus-stuttgart.de/clones/ . However, for coherence, we provided details

of projects used in this paper in Table 7. Table 8 gives the results obtained on used projects.

Table 7. Open source projects used for experimentation

S.No. Project name Details

1 Cook
Cook is a program tool for constructing files. It is given a set files to create, and

instructions in detail how to create them.

2 PostgreSQL It is a database that runs on many different operating systems.

3 Weltab It is a vote tabulation system.

4 SNNS
Stuttgart Neural Network Simulator is a neural network simulator originally developed at

the university of Stuttgart.

5 SLP Student Lab Programs (collection of different versions of programs)

http://www.ijrti.org/
https://bauhaus-stuttgart.de/clones/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c698

Table 8. Performance analysis

S.N Projects Precision Recall F-measure Accuracy

1 Cook 0.9153 0,85421 0.8837 0.96137

2 Postgresql 0.8965 0.9134 0.90487 0.9746

3 Snns 0.9261 0.9408 0.9334 0.989

4 Weltab 0.9386 0.80183 0.82595 0.9665

5 SLP 0.7164 0.81993 0.73811 0.96703

4.3. Comparative Analysis

Proposed approach is compared with the results obtained with existing tools namely CLAN, NICAD and

Clone Manager. Accuracy is calculated for each column and later average accuracy is reported shown in

Table 9.

Table 9. Comparative analysis with the existing tools

Projects CLAN NICAD
Clone

Manager
proposed

Cook 0.825 0.675 0.9525 0.96137

Postsql 0.62 0.585 0.97 0.9746

Snns 0.5753 0.932 0.9392 0.989

Weltab 0.469 1 0.980 0.9664

4.4. Time complexity

Let
1SL and

2SL be the lines of code in any two programs. Table 10 shows the major steps for the

computation and their corresponding complexities.

Table 10. Time complexity

Steps Complexities

Preprocessing () ()1 2 SL SLq q+

SF () ()1 2 SL SLq q+

DSFT ()1 2x SL SLq

Similarity computation ()1 2x SL SLq

Hence total number of steps is:

 1 2 1 2 ((() ()) (() () 1 x 2 1) (() x 2()) (() ())SL SL SL SL SL SL SL SLq q q q q q q q+ + + + +

This is ()1 2 .О SL SL+ Therefore, proposed approach is polynomial time complexity.

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c699

5. Conclusion and Future work

In general, the syntactic representation and semantics of a program is extremely difficult to establish and, in

particular, for code clone detection. There exist a number of studies for detection of code clones. In this

paper, we attempted to capture both the representation and semantics by extracting statement level features

from program statements. As we know the flow of any program depends on these statements, such as,

control, conditional, iterative, and computational statements. Extensive experimentation have been

performed on standard benchmarking dataset (C projects of Bellon’s dataset) and Student Lab Programs

(SLP). Afterwards, comparison is performed with the results obtained using NICAD, CLAN, and Clone

Manager tools. We observe that, performance of proposed approach is far better than CLAN, marginally

better than Clone Manager and NICAD except for weltab project. In contrast to previous studies, proposed

approach extracts features in one scan after pre-processing. More importantly, time complexity of the

proposed approach is polynomial that too without any transformation of code. That is, without any usage of

lexer/scanner or AST/PDG generators. Although, from the experimentation, proposed approach has

demonstrated high performance, however, current framework is limited to C - programs only. There seems

to be room for exploring the proposed approach for other programing languages as well i.e., to make it

generalize.

References

1. Mens T, Demeyer S (2008) Identifying and Removing Software Clones. Softw Evol 1–347.

https://doi.org/10.1007/978-3-540-76440-3

2. Sheneamer A, Roy S, Kalita J (2018) A detection framework for semantic code clones and

obfuscated code. Expert Syst Appl 97:405–420. https://doi.org/10.1016/j.eswa.2017.12.040

3. Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Blasco J (2014) Dendroid: A text mining approach to

analyzing and classifying code structures in Android malware families. Expert Syst Appl 41:1104–

1117. https://doi.org/10.1016/j.eswa.2013.07.106

4. Sudhamani M, Rangarajan L (2019) Code similarity detection through control statement and program

features. Expert Syst Appl 132:63–75. https://doi.org/10.1016/j.eswa.2019.04.045

5. Baker BS (1992) A Program for Identifying Duplicated Code. Comput Sci Stat 24:49–57

6. Koschke R, Falke R, Frenzel P (2006) Clone detection using abstract syntax suffix trees. Proc - Work

Conf Reverse Eng WCRE 253–262. https://doi.org/10.1109/WCRE.2006.18

7. Ducasse S, Rieger M, Demeyer S (1999) A Language independent approach for detecting duplicated

code. Conf Softw Maint 109–118. https://doi.org/10.1109/icsm.1999.792593

8. Komondoor R, Horwitz S (2001) Using slicing to identify duplication in source code. Lect Notes

Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2126 LNCS:40–56.

https://doi.org/10.1007/3-540-47764-0_3

9. Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detection techniques

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c700

and tools: A qualitative approach. Sci Comput Program 74:470–495.

https://doi.org/10.1016/j.scico.2009.02.007

10. Dang S, Wani SA (2015) Performance Evaluation of Clone Detection Tools. Int J Sci Res 4:2013–

2016

11. Gautam P, Saini H (2016) Various code clone detection techniques and tools: A comprehensive

survey. Commun Comput Inf Sci 628 CCIS:655–667. https://doi.org/10.1007/978-981-10-3433-6_79

12. Roy CK, Cordy JR (2007) A Survey on Software Clone Detection Research. 541:115

13. Roy CK, Cordy JR (2018) Benchmarks for software clone detection: A ten-year retrospective. 25th

IEEE Int Conf Softw Anal Evol Reengineering, SANER 2018 - Proc 2018–March:26–37.

https://doi.org/10.1109/SANER.2018.8330194

14. Rattan D, Bhatia R, Singh M (2013) Software clone detection: A systematic review. Elsevier B.V.

15. Perez D, Chiba S (2019) Cross-language clone detection by learning over abstract syntax trees

16. Jiang L, Misherghi G, Su Z, Glondu S (2007) DECKARD: Scalable and accurate tree-based detection

of code clones. Proc - Int Conf Softw Eng 96–105. https://doi.org/10.1109/ICSE.2007.30

17. Liu C, Chen C, Han J, Yu PS (2006) GPLAG: Detection of Software Plagiarism by Program

Dependence Graph Analysis. 872. https://doi.org/10.1145/1150402.1150522

18. Krinke J (2001) Identifying similar code with program dependence graphs. Reverse Eng - Work Conf

Proc 301–309. https://doi.org/10.1109/wcre.2001.957835

19. Jia Y, King CS (2007) Clone Detection Using Dependence Analysis and Lexical Analysis

20. Roopam, Singh G (2017) To enhance the code clone detection algorithm by using hybrid approach

for detection of code clones. Proc 2017 Int Conf Intell Comput Control Syst ICICCS 2017 2018–

Janua:192–198. https://doi.org/10.1109/ICCONS.2017.8250708

21. Kamiya T, Kusumoto S, Inoue K (2001) A Token based Code Clone Detection Technique and Its

Evaluation

22. Elkhail AA, Svacina J, Cerny T (2019) Intelligent token-based code clone detection system for large

scale source code. Proc 2019 Res Adapt Converg Syst RACS 2019 256–260.

https://doi.org/10.1145/3338840.3355654

23. Yoshida N, Higo Y, Kusumoto S, Inoue K (2012) An experience report on analyzing industrial

software systems using code clone detection techniques. Proc - Asia-Pacific Softw Eng Conf APSEC

1:310–313. https://doi.org/10.1109/APSEC.2012.98

24. Johnson JH (1994) Substring matching for clone detection and change tracking. Proc - 1994 Int Conf

Softw Maintenance, ICSM 1994 120–126. https://doi.org/10.1109/ICSM.1994.336783

25. Marcus A, Maletic JI (2005) Identification of high-level concept clones in source code. 107–114.

https://doi.org/10.1109/ase.2001.989796

26. Lee S, Jeong I (2005) SDD: High Performance Code Clone Detection System for Large Scale Source

Code. Companion to 20th Annu ACM SIGPLAN Conf Object-oriented Program Syst Lang Appl

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c701

140–141

27. Cordy JR, Dean TR (2004) Practical Language-Independent Detection of Near-Miss Clones

28. Sudhamani M, Rangarajan L (2016) Code clone detection based on order and content of control

statements. Proc 2016 2nd Int Conf Contemp Comput Informatics, IC3I 2016 59–64.

https://doi.org/10.1109/IC3I.2016.7917935

29. Tairas R, Gray J (2006) Phoenix-based clone detection using suffix trees. Proc Annu Southeast Conf

2006:679–684. https://doi.org/10.1145/1185448.1185597

30. Min H, Ping ZL (2019) Survey on software clone detection research. ACM Int Conf Proceeding Ser

9–16. https://doi.org/10.1145/3312662.3312707

31. Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code. 28:3

32. Al-Saffar Z, Sarhan S, Elmougy S (2016) Automatic Detecting and Removal Duplicate Codes

Clones. Int J Intell Comput Inf Sci 16:81–93. https://doi.org/10.21608/ijicis.2016.19841

33. Li Z, Lu S, Myagmar S, Zhou Y (2006) CP-Miner: Finding copy-paste and related bugs in large-scale

software code. IEEE Trans Softw Eng 32:176–192. https://doi.org/10.1109/TSE.2006.28

34. Sadowski C, Levin G (2007) SimHash : Hash-based Similarity Detection. Techreport 1–10

35. Baxter ID, Yahin A, Moura L, et al (1998) Clone detection using abstract syntax trees. Conf Softw

Maint 368–377. https://doi.org/10.1109/icsm.1998.738528

36. Koschke R, Girard JF, Wuerthner M (1998) Intermediate representation for integrating reverse

engineering analyses. Reverse Eng - Work Conf Proc 241–250.

https://doi.org/10.1109/wcre.1998.723194

37. Yang W (1991) Identifying syntactic differences between two programs. Softw Pract Exp 21:739–

755. https://doi.org/10.1002/spe.4380210706

38. Wahler V, Seipel D, Wolff V. Gudenberg J, Fischer G (2004) Clone detection in source code by

frequent itemset techniques. Proc - Fourth IEEE Int Work Source Code Anal Manip 128–135.

https://doi.org/10.1109/SCAM.2004.6

39. Evans WS, Fraser CW, Ma F (2007) Clone detection via structural abstraction. Proc - Work Conf

Reverse Eng WCRE 150–159. https://doi.org/10.1109/WCRE.2007.15

40. Akmaliyah M (2013) Program slicing. J Chem Inf Model 53:1689–1699

41. Bhat MI, Sharada B (2016) Recognition of Handwritten Devanagiri Numerals by Graph

Representation and SVM. Intl Conf Adv Comput Commun Informatics 1930–1935.

https://doi.org/10.1109/ICACCI.2016.7732333

42. Komondoor R, Horwitz S (2000) Semantics-preserving procedure extraction. Conf Rec Annu ACM

Symp Princ Program Lang 155–169. https://doi.org/10.1145/325694.325713

43. Hirschberg DS (1975) A Linear Space Algorithm for Computing Maximal Common Subsequences.

Commun ACM 18:341–343. https://doi.org/10.1145/360825.360861

http://www.ijrti.org/

 © 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2312271 International Journal of Novel Research and Development (www.ijnrd.org)

c702

44. Chen J, Dean TR, Alalfi MH (2014) How Accurate Is Coarse-grained Clone Detection?: Comparision

with Fine-grained Detectors. 63:

45. Chen W, Li B, Gupta R (1390) Code composition of Machine single-entry multiple-exit regions.

 117-99 ص ; 8 شماره

46. Ducasse S, Rieger M, Demeyer S (1999) Language independent approach for detecting duplicated

code. Conf Softw Maint 109–118. https://doi.org/10.1109/icsm.1999.792593

47. Mayrand J, Leblanc C, Merlo EM (1996) Experiment on the automatic detection of function clones in

a software system using metrics. Conf Softw Maint 244–253.

https://doi.org/10.1109/icsm.1996.565012

48. Greenan K (2005) Method-Level Code Clone Detection on Transformed Abstract Syntax Trees Using

Sequence Matching Algorithms. Transformation 1–17

49. Saini V, Sajnani H, Lopes C (2018) Cloned and non-cloned Java methods: a comparative study.

Empir Softw Eng 23:2232–2278. https://doi.org/10.1007/s10664-017-9572-7

50. Kontogiannis KA, Demori R, Merlo E, et al (1996) Pattern matching for clone and concept detection.

Autom Softw Eng 3:77–108. https://doi.org/10.1007/BF00126960

51. Lanubile F, Mallardo T (2002) Tool support for distributed inspection. Proc - IEEE Comput Soc Int

Comput Softw Appl Conf 1071–1076. https://doi.org/10.1109/CMPSAC.2002.1045151

52. Davey N, Barson P, Field S, Frank RJ (1995) The Development of a Software Clone Detector. Int J

Appl Softw Technol 1:219–236

53. Choi E, Yoshida N, Higo Y, Inoue K (2015) Proposing and evaluating clone detection approaches

with preprocessing input source files. IEICE Trans Inf Syst E98D:325–333.

https://doi.org/10.1587/transinf.2014EDP7292

54. Li D, Piao M, Shon HS, et al (2014) One pass preprocessing for token-based source code clone

detection. 2014 IEEE 6th Int Conf Aware Sci Technol iCAST 2014.

https://doi.org/10.1109/ICAwST.2014.6981824

55. Elen A, Avuçlu E (2021) Standardized Variable Distances: A distance-based machine learning

method. Appl Soft Comput 98:106855. https://doi.org/10.1016/j.asoc.2020.106855

56. Bellon S, Koschke R, Antoniol G, et al (2007) Comparison and evaluation of clone detection tools.

IEEE Trans Softw Eng 33:577–591. https://doi.org/10.1109/TSE.2007.70725

57. Jain, Anil K. RCD (2000) Algorithms for Clustering Data

http://www.ijrti.org/

