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Abstract— Multi-modal medical image fusion may be a well-

known area of picture fusion research. Image fusion is the 

technique of creating one image from the pertinent data from 

several images taken of the same scene. The resulting merged 

image is more comprehensive and useful than any of the input 

images. Diagnostic accuracy depends on imaging technology. 

Medical image fusion research has gained popularity since the 

little information offered by single mode medical images cannot 

satisfy the demand for clinical diagnosis, which necessitates a 

substantial amount of information. Single-mode fusion and 

multimodal fusion are subcategories of medical picture fusion. 

The advantages and disadvantages of each medical technique, 

such as X-rays, CT scans, MRIs, nuclear medicine, and others, 

used to check the body's organs, vary. Then, a Non Subsampled 

Contourlet Transform (NSCT)-based fusion algorithm is used 

to fuse the Magnetic Resonance Imaging (MRI) and computed 

tomography (CT) scan images. Additionally, In order to 

improve the viability of denoising algorithms, In this research, 

a novel one-stage blind real picture method is proposed, using a 

modular architecture to denoising network RIDNet. A residual 

on the residual structure is used by us to Facilitate the flow of 

low-frequency data and use feature attention to take advantage 

of channel dependencies In order to increase the robustness, 

Denoising Convolutional Neural Network (DnCNN) is utilized. 

Keywords — Medical images, Multimodal fusion, Security, 

image denoising, nonsubsampled contourlet transform, RID Net, 

High and Low frequency ,Deep convolutional neural network. 

 

1. INTRODUCTION 

A unique process dubbed "image fusion" joins two or 

more existing images to create a single new image. A 

prominent field of picture fusion study may be multi-modal 

medical image fusion. Image fusion is a method of combining 

relevant data from several combining multiple images of the 

same scene into one. More complete and helpful than any of 

the input images is the final fused image. Object 

identification and recognition, medical diagnosis, satellite 

imaging for remote sensing, civilian and military 

surveillance, and navigation guidance are some of the uses 

for picture fusion. Imaging technology is essential for precise 

medical diagnosis. Additionally, the storage, processing, and 

ongoing availability of data from numerous sources makes 

cloud computing in healthcare a vital solution. The illicit 

copying, alteration, and forging of medical records, however, 

is a serious issue that has to be addressed [2]. Additionally, 

the need for copyright protection and identity theft prevention 

is growing every day [3, 4]. Data integrity must be protected 

from unauthorized users. 

A low-level vision task called image denoising is crucial in a 

number of ways. First off, some noise corruption during 

image acquisition is unavoidable and can significantly lower 

the visual quality; as a result, removing for many computer 

vision and image analysis applications, removing noise from 

the collected image is a crucial step. Second, denoising is a 

special testing environment for comparing picture prior and 

optimization techniques from a Bayesian perspective. 

from a particular angle. Additionally, a lot of activities 

involving picture restoration can be accomplished in the 

unrolled inference through strategies for separating variables 

into smaller denoising processes, It broadens the use of image 

denoising even more. 

 

NSCT is especially advantageous for image fusion since it 

not only has outstanding local properties in the spatial and 

frequency domains but also enjoys multi-scale and translation 

invariance. Non-subsampled directional channel bank 

(NSDFB) and non-subsampled pyramid structure (NSP) are 

taken into account in its structure. 

While NSDFB provides the multi-direction highlight for 

NSCT, NSP provides the multi-scale highlight. The 

arrangement of the image as well as the smoothed shape of 

the source image are described by the low-frequency sub-

band. Even though the decomposition levels are periodically 

limited in this approach, the majority of the sign liveliness 

and a few nuanced elements of the initial picture are available 

in the low-recurrence sub-band. The specific details and 

rough estimates offered in the initial. 

 

Multimodality medical image fusion based on machine 

learning methods cannot produce high-quality images. Deep 

learning fusion techniques are necessary to achieve this goal. 

These deep learning convolution models allow for improved 

characterization of medical pictures, improved handling of 

curved geometries, and improved production of fused details. 

One of the general advantages of deep learning systems is the 

improvement of the visual quality of the photographs and the 

reduction of noise and imperfections. 256*256 is the size of 

each image 

 

 

http://www.ijrti.org/


                              © 2024 IJNRD | Volume 9, Issue 1 January 2024 | ISSN: 2456-4184 | IJNRD.ORG 

 

IJNRD2401034 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 
a319 

 2.RELATED WORKS 

 

    In this section, we present and discuss recent trends in the 

image denoising, image preprocessing and  image fusing 

methods. In 2016 Du et al. introduced union Laplacian 

pyramid to complete the fusion of medical images. Some 

improved versions of DWT such as dual tree complex 

wavelet transform (DT-CWT) (Yu et al., 2016), non-

subsampled rotated complex wavelet transform (NSRCxWT) 

(Chavan et al., 2017), discrete stationary wavelet transform 

(DSWT) (Ganasala and Prasad, 2020a; Chao et al., 2022) 

were presented to complete the fusion of medical images. 

Compared with DWT, these three new versions share both 

the redundancy feature and the shift-invariance property, 

which effectively avoid the Gibbs phenomenon in DWT. 

Similarly, in order to overcome the absence of shift-

invariance in the original contourlet transform and shearlet 

transform, the corresponding improved versions namely non-

subsampled contourlet transform (NSCT) and non-

subsampled shearlet transform (NSST) were proposed 

successively. In comparison to the aforementioned transform 

domain-based methods, NSCT and NSST have both 

manifested competitive fusion performance due to their 

flexible structures. Zhu et al. (2019) combined NSCT, phase 

congruency and local Laplacian energy together to present a 

novel fusion method for multi-modality medical images. Liu 

X. et al. (2017), Liu et al. (2018) proposed two NSST-based 

methods to fuse the CT and MRI images. 

In addition to spatial domain-based methods and 

transform domain-based methods, extensive work has also 

been conducted with soft computing-based methods 

dedicated to multimodal medical image fusion. 

 A great many representative models, including dictionary 

learning model (Zhu et al., 2016; Li et al., 2018), gray wolf 

optimization (Daniel, 2018), fuzzy theory (Yang et al., 2019), 

pulse coupled neural network (Liu X. et al., 2016; Xu et al., 

2016), sparse representation (Liu and Wang, 2015; Liu Y. et 

al., 2016), total variation (Zhao and Lu, 2017), guided filter 

(Li et al., 2019; Zhang et al., 2021), genetic algorithm 

(Kavitha and Thyagharajan, 2017; Arif and Wang, 2020), 

compressed sensing (Ding et al., 2019), structure tensor (Du 

et al., 2020c), local extrema (Du et al., 2020b), Otsu's method 

(Du et al., 2020a) and so on, were successfully used to fuse 

the medical images. 

Since the transform domain-based methods and soft 

computing-based methods have both manifested to be 

promising in the field of medical image fusion, some novel 

hybrid methods have also been presented in recent 

years. Jiang et al. (2018) combined interval type-2 fuzzy sets 

with NSST to complete the fusion task of multi-sensor 

images. Gao et al. (2021) proposed a fusion method based on 

particle swarm optimization optimized fuzzy logic in NSST 

domain. Asha et al. (2019) constructed a novel fusion scheme 

based on NSST and gray wolf optimization. Singh and Anand 

(2020) employed NSST to decompose the source images, and 

then used sparse representation and dictionary learning model 

to fuse the sub-images. Yin et al. (2019) and Zhang et al. 

(2020) each proposed a NSST-PCNN based fusion method 

for medical images. The guided filter was combined with 

NSST to deal with the issue of multi sensor image fusion 

(Ganasala and Prasad, 2020b). Zhu et al. (2022) combined 

the advantages of both spatial domain and transform domain 

methods to construct an efficient hybrid image fusion 

method. Besides, the collective view of the applicability and 

progress of information fusion techniques in medical imaging 

were reviewed respectively. 

Recently, Schmidt et al. [53] introduced a cascade of 

shrinkage fields (CSF) which integrated half-quadratic 

optimization and random-fields. Shrinkage aims to suppress 

smaller values (noise values) and learn mappings 

discriminatively. The CSF assumes the data fidelity term to 

be quadratic and that it has a discrete Fourier transform based 

closed-form solution. 

Currently, due to the popularity of convolutional neural 

networks (CNNs), image denoising algorithms [63, 64, 

39,14, 53, 8] have achieved a performance boost. Notable 

denoising neural networks, DnCNN [63], and IrCNN [64] 

predict the residue present in the image instead of the 

denoised image as the input to the loss function is ground 

truth noise as compared to the original clean image. Both 

networks achieved better results despite having a simple 

architecture where repeated blocks of convolutional, batch 

normalization and Re LU activations are used. Furthermore, 

IrCNN and DnCNN [63] are dependent on blindly predicted 

noise i.e. without taking into account the underlying 

structures and textures of the noisy image. 

The algorithms [64, 63,35] benefitted from the modeling 

capacity of CNNs and have shown the ability to learn a 

single-blind denoising model; however, the denoising 

performance is limited, and the results are not satisfactory on 

real photographs. Generally speaking, real-noisy image 

denoising is a two-step process: the first involves noise 

estimation while the second addresses non-blind denoising. 

Noise clinic (NC) [38] estimates the noise model dependent 

on signal and frequency followed by denoising the image 

using non-local Bayes (NLB). In comparison, Zhang et al. 

[65] proposed a non-blind Gaussian denoising network, 

termed FFDNet that can produce satisfying results on some 

of the real noisy images; however, it requires manual 

intervention to select high noise-level. 

Although the results of TRND are favorable, the model 

requires a significant amount of data to learn the parameters 

and influence functions as well as overall fine-tuning,hyper-

parameter determination, and stage-wise training.Similarly, 

non-local color net (NLNet) [39] was motivated by non-local 

self-similar (NSS) priors which employ non-local self-

similarity coupled with discriminative learning.NLNet 

improved upon the traditional methods; but, it lags in 

performance compared to most of the CNNs [64, 63] due to 

the adaptaton of NSS priors, as it is unable to find the analogs 

for all the patches in the image. 

 

3.PROPOSED WORK 

 

3.1 Medical Image Fusion 

 

Utilizing images from many sources, Multimodal Medical 

Image Fusion (MMIF) X-rays, computed tomography (CT), 

single photon emission computed tomography (SPECT), 

ultrasound, magnetic resonance imaging (MRI), infrared and 

ultraviolet, positron emission tomography, and others like as 

emission tomography (PET). The location, size, and 

appearance of the lesion as well as the morphological and 

structural changes it has caused in nearby tissues can all be 

seen in images from MRI, X-ray, CT, and US. In the medical 

field, each imaging modality provides specific information 

and characteristics. The numerous medical imaging methods 

utilised for disease detection and diagnosis in the human body 

span the whole electromagnetic (EM) spectrum. Each 

imaging technique has unique characteristics and operates at 

http://www.ijrti.org/
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a certain wavelength and frequency. An object scatters, 

reflects, or absorbs EM waves. Multi-modality medical 

picture fusion commonly uses transform domain based 

techniques. In contrast to spatial domain approaches, 

transform domain approaches first transform source images 

into specific coefficients. After combining the coefficients, 

and each combined coefficient is then reverse-transformed to 

produce a combined image. Recent years have seen a 

significant increase in the use of multi-scale transform (MST) 

and sparse representation-based picture fusion techniques. 

In modern health care systems, where clinical imaging is 

essential, computed tomography (CT) and magnetic 

resonance imaging (MRI) are two of the most frequently used 

imaging modalities. Radiologists are now able to study the 

human body and generate a number of patterns that can be 

used for clinical analysis. These images reveal anatomical 

statistics. However, there is still a significant issue with the 

capacity to extract relevant functional information from a 

single image. Multimodal image fusion is necessary in this 

case because it enhances anatomical and functional 

information by fusing the complementary information of 

images from many modalities using simulation. A CT scan 

can show the spatial distribution of a certain physical 

quantity, while an MRI, or magnetic resonance imaging, may 

create a four-dimensional 

 

 

 

                         Fig 3.1.1 flow diagram 

 

3.2 Data preprocessing 

CNN has become a powerful resource for understanding 

medical images. Researchers have successfully applied 

CNNs to a range of medical image interpretation 

applications. Image denoising is a crucial low-level vision 

activity that has various uses. First off, during the capture of 

photos, noise contamination is inevitable and can seriously 

impair visual quality. The elimination of noise from the 

captured image is a vital step for many computer vision and 

image analysis applications. CNN models performed better 

when denoising because to their modelling ability, network 

design, and training. 

 

3.3 CNN Denoiser 

     The input picture was first processed by 24 sequential 

connected convolutional units (SCCU). SCCU is made up of 

complex-valued (CV) BN, complex-valued (CV) ReLU, and 

complex-valued (CV) convolutional layer. A 64-

convolutional kernel was used in the network. The remaining 

block was distributed to the middle 18 units. A 

convolution/deconvolution layer with a stride of 2 was built 

to improve computational efficiency. 

    

  

Fig 3.2.1 flow diagram 

 

3.4 Convolutional layer 

The cornerstone of a convolutional neural network is the 

CONV layer. The K learnable filters (also known as 

"kernels") that make up the CONV layer parameters are all 

almost square and have widths and heights. The depth is the 

number of CNN input channels in the image. The depth for 

volumes further down the network will depend on how many 

filters were employed in the layer before. The width and 

height of the input volume are used to convolve each of the 

K filters. By simply visualising each of our K kernels sliding 

across the input region, computing an element-wise 

multiplication, adding the results, and then doing so, the 

output value may be stored in a two-dimensional activation 

map. 

 

3.4 Batch Normalization 

Instead of using the raw data itself, the batch normalisation 

technique is used to normalise the layers of a neural network. 

Mini-batches are employed in place of the whole data set. 

Learning is facilitated by accelerating training and using 

greater learning rates. are used, as their name suggests, to 

normalise the activations of a particular input volume before 

transferring it to the network layer below. It has been 

demonstrated that utilising batch normalisation significantly 

reduces the number of epochs required to train a neural 

network. Batch normalisation also has the advantage of 

helping to "stabilise" training, allowing for a larger variety of 

learning rates and regularisation strengths. Your life will be 

easier by using batch normalisation to reduce the volatility of 

learning rate and regularisation. 

 

3.5 Decomposition using NSCT 

NSCT is especially advantageous for image fusion since 

it not only has outstanding local properties in the spatial and 

frequency domains but also enjoys multi-scale and translation 

invariance. Non-subsampled directional channel bank 

(NSDFB) and non-subsampled pyramid structure (NSP) are 

taken into account in its structure. 

While NSDFB provides the multi-direction highlight for 

NSCT, NSP provides the multi-scale highlight. The 

arrangement of the image as well as the smoothed shape of 

the source image are described by the low-frequency sub-

band. Even though the decomposition levels are periodically 

limited in this approach, the majority of the sign liveliness 

and a few nuanced elements of the initial picture are available 

http://www.ijrti.org/
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in the low-recurrence sub-band. The specific details and 

rough estimates offered in the initial. 

 

The below equation explains it: 

 

 

Where CA 
L(m,n) represents the source image A's location 

(m,n) in the low-frequency sub-band coefficient. When CB 

L(m,n) at position (m,n) is supplied, similar to source image 

B, it represents the activity of the low-frequency sub-band 

coefficient. 

 

 

 

 

In order to obtain the decision map of fusion, use the 

maximum combination technique, which involves choosing 

the maximum coefficient using the following activity 

measure: 

 
 

Then, using the decision map (df), the low-frequency sub-

band coefficients are described by (CL 
F(m,n)) and 

calculated.  

 

Edges, shapes, and question boundaries are examples of 

high-frequency sub-bands that convey detail information and 

maximum coefficient retrieval. The combination technique 

for high-recurrence sub-bands is most frequently used to find 

the most extreme coefficient with the absolute highest value.  

 

The dth level and Kth directional sub-band coefficient of 

image A at position (m,n) are represented as CA 
d,k(m,n). 

 

Where CB 
d,k (m,n) is used to describe the picture B's dth 

level and Kth directional sub-band coefficient at the area 

(m,n). When choosing the most extreme action coefficient 

plan, the underlying combination choice guide is found. 

 

 

 

 

As mentioned in the low-frequency fusion rule, the final 

fusion decision map (df) is currently being discovered 

through consistency verification. Here, final fusion decision 

map is used to calculate the fused of high-frequency sub-band 

coefficients. 

 

 

 

Fig 3.5.1 CT Image 

 

 

 

Fig 3.5.2 MRI Image 

 

 

3.6 DCNN Fusion 

Multimodality medical image fusion based on 

machine learning methods cannot produce high-quality 

images. Deep learning fusion approaches are needed to 

achieve this goal. These deep learning convolution 

models allow for improved characterization of medical 

pictures, improved handling of curved geometries, and 

improved production of fused details. One of the general 

advantages of deep learning methods is the improvement 

of the visual quality of the photographs and the reduction 

of noise and artefacts. 256*256 is the size of each image. 
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4.DATASET USED 

 

 4.1 Sample Dataset 1: 

 

    CT images were used as the sample dataset 1 in this 

suggested system. The brain's CT scan clearly reveals the 

skull bone and other hard tissues, but the soft tissues, such as 

the membranes that encircle the brain, are less obvious. 

 

 

              
 

              
 

                               
 

Fig 4.1.1 CT Images 

 

 

4.2 Sample Dataset 2: 

 

 

This dataset includes a set of similar MRI pictures in which 

the soft tissue, such as the membranes encasing the brain, can 

be seen clearly but the hard tissue, such as the skull's bones, 

cannot. 

 

 

 

                
 

                

 

 

 

 

 

 

 

 

 

Fig 4.1.2 MRI Images 
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