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1. Preliminary
The study of quantum calculus (g-calculus) and its results provided the widest scope in approximation theory after the
year 1995 {see [2],[3],[7],12]}. Several results through several generalizations for several operators were obtained. Further
there arise an extension of g-calculus to post-quantum calculus i.e. (p, g)-calculus [1], [4]. Several results are obtained for
these types of operators [8]-[11]. Now we propose new variant, “Q-variant” the reverse order of g in g-calculus. It was
firstly introduced by Garg [6] for Q-Baskakov Durrmeyer operators and Basic notations are mentioned in this paper. For
convenience to the readers, we mention here too:

[n]g = %, neN
[n]lg = Q" [n]1/q neN
nlg! = H[k]Q, n=1 [0]g'=1
k=1
ny [n]Q!
[kl = [Klgl [n — klg!” <"
pof0 =KD k0 & 0of @ = 10

(x @ y)g = (x +y)(Qx + y)(Q*x +y).... (A" 'x + ),
(x @M = (x = M(Qx = y)(Q*x —y).....( Q" 'x —y),

/A
n m-1
Bp(m,n) = Q2 x—d X, m,neN
Q J (1®x)6+n Q
(Q© 1y
FQ(n+1)=H=[n]Q!, 0<Q<1

Preposition 1: The Q-derivative of the product is defined as-

IJNRD2402203 International Journal of Novel Research and Development (www.ijnrd.org) cla



http://www.ijrti.org/

2024 1JNRD | Volume 9, Issue 2 February 2024 | ISSN: 2456-4184 | IINRD.ORG

Do(f(x)g(x)) = f(Qx)Dqg(x) + g(x)Dof (x)
Do(f(x)g(x)) = g(Qx)Dqf (x) + f(x)Dof (x)

Preposition 2: The Q-integration by parts is defined as-

b
f g(x)Doh(x)dex = g(b)h(b) — g(a)h(a) - f h(x)Dgg(x)dox

a

In the present paper, we propose the Q-analogue of genuine Baskakov operators using beta function of second kind and
estimate its some approximation properties including asymptotic formula and convergence in terms of modulus of
continuity.

In 2023, S. Garg [6] introduced a new type of variant Q-analogue of genuine Baskakov-Durrmeyer operators for [0, oo )
and discussed some of its approximation properties. Now in this paper we propose the Q-variant of g-Beta functions of
second kind and consider some of its approximation properties. We also establish a relation between the generalized beta
and gamma functions using some identities. As an application, we also propose the Q-Baskakov Durrmeyer operators and
get estimates of their moments and some results for weighted approximation and quantitative approximation.

2. Q -Beta functions of second kind

Let us define Q -Beta functions of second kind as

3 1
x™m-

famm =] T oo
0

d@x, m,n €N

Theorem: The relation between Q -Beta and Q -Gamma functions can be defined as-

(m+1) T [
_m(m+) [ (m) g ()

Bo(m.n) = Q Tg(m +n)

Proof: We know that

5 < 1 >= —~Q[n]
o0y e ey
-1

Ul OO then we have:

Also if we choose f(x) & g(x) suchthat f(x) = x™ & g(x) =
m

BQ(m +1,n) = min+1 de
bf 1 QX)Q

—Q_ ° " 1
JQX) DQ(lea )m+n QX

[oe]

Dox™ ——————=dox
m+an Q (1EBx)m+"
0

Q_m 1 m]
[m +n]q f (1 EB Qx)m+n

m-—1

_ ~mlg x
@m [+ nly) &5

dQX

_ Q'm]q
= mBQ(m, n).

IJNRD2402203 International Journal of Novel Research and Development (www.ijnrd.org) cl5



http://www.ijrti.org/

2024 1JNRD | Volume 9, Issue 2 February 2024 | ISSN: 2456-4184 | IINRD.ORG

[oe]

'B(ln)—j;dx— 1 fD ! dx—;
Tl aee)y Y Qnlg) Ta@0; T Qlnlg

Q' [m—1lg
QM m+n—1]g

Q7 '[m—1]q Q7 '[m —2]q

Bo(m,n) = Bo(m —1,n)

T Q ImAn-— 1lo Q™ 2[m +n — 2]g Bo(m=2,n)
__Qm-1lg  Q@7'm-2]g Q™
= Qm—l[m + n— 1]@ Qm—z [m + n— Z]Q Q[n—_l_l]QBQ(l, n)
__Q[m-1]g Q m - 2] Q! 1
QM 1l[m+n— 1]@ Q" 2[m+n— Z]Q et O+ 1]Q . Q[n]Q
_ _W To(m)Ip(n)
[o(m +n)

3. Q —Baskakov Durrmeyer Operators

The Q-analogue of Baskakov operators for x € [0,00) & 0 < Q < 1 can be defined as:

N Qn—l[v]
Q _ Q Q
BE(f,x) = vzzopn,v(x)f <—[n]@ ) G
where
Q _[nt+v—-1 v+n(n— x”
pn,v(x) = [ ' ] Q (n-1)/2 (1 3 x)&"’” (3.2)

In case Q = 1, we get the well-known Baskakov operators and Baskakov Basis function from (3.1) and (3.2) respectively.
Also, from here we can easily compute the following results:

n—-1

g il
e (e

Now, using Q-Beta function of second kind, we can propose the Q-analogue of Baskakov Durrmeyer operators for x €
[0,0) &0<Q <1,as

B2(1,x) =1, BY(t,x) = x, BY(t%,x) = x* +

[oe]

(17+1)(17+2)f n+uv— 1] t¥

wa(Qvt)th (33)

MICF,0) = [n - 1]@2 P ()0

0

where pv, (x) is defined as above.

4. Auxiliary Results
In this section, we give some Lemmas to get main results.

Lemma:1l For x € [0,0) & 0 < Q < 1, we have

Q _ Q _ 1 [2]
My(1,x) =1, My (t,x) = P—2lg + —<[n 2Q + QZ)
[2] (@1 +2Q) + D3]y Q51 +2Q) + 1]
Qrp2 — Q Q
M () = gl —31g T | @l —2lgn—3le T @ n- 2l
@+Q+1 | Blg (@Ble+RaBl) 1],
@Tl+9[n Z]Q Qn+10[n 3]@ Qn+12[n _ 2]@[ ]Q QZTL+7 x
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Proof: From (3.3), we have

MILx0) = [n - 1] Qanv(x)@

[oe]

(v+1)(v+2)f [n +v— 1] tv

@ g

(v+1)(v+2) [n +

[n—lQanv(x)(@ v—l] Bov+1,n—1)
v=0

=BY(1,x) =1

Now using identity [n + 1] = 1 + Q[n]q

o]

(v+1)(v+2) _ tvtiQY
Q 2 : Qo z n+v—1
M (t X)— n—1Q pnv(x f [ ]deazt

(w+1)(w+2) +v—-1
[n - 1]@anv(x e e [P @B an-2)

v

1] Z (V+1)2(V+2) [n+v—1]p! QUQ- D32 T +2).Te(n —2)
lo ) Pryx (V]! [n — 1]! To(n +v)

= [v+1]
— E Q -2 Q
v=0 pn'v(x)(@ [n - Z]Q

1 (o)
= mz Py () {1 + Qvlg}
v=0

=—— B, x) + —————B2(t,x) = ———— + — +Q?%|x
W20 " T -2 Y T @21, T \m—2l T ©
Now, using identity [n + 2] = 1+ Q + Q*[n ]Q we have the required result. Proceeding it:

Mf ptv=1] £vr2Q2y
+
(1@ QL™

M) = [n - 1]Q2pnv(x)@ ot

(v+1)(v+2) _
[n—l]Qan,,(x 2 [n+z 1] Q*Bo(v +3,n —3)
v=0

— Z p?,,(x)@ml)zﬂ [n+v—1]p! QI Q-2 Tp(v + 3).Tg(n — 3)

i [v]g![n —1]g! To(n +v)

- [v+ 2]g[v + 1]
_ E Q -5 Q Q

{1+Q+Q2 v]Q}{1+Q o}
§ -5

{Q3 “ (Q[ lo + Qz)[V]Q + [Z]Q}
5
ZPnu(x)Q = Zlgn =31

_ zpnv( @ vl @7 (1210 + @)
(@ 1g)Q " + 2]

B Q_7 2"[ nly’ Q.2 Q3 ([2lg + Q)[nlg g [2]q
= [n—Z]Q[n—s]QBn )t e g3l o M 2y =30

B2(1,x)
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QU { Q™ ix } Q- "([2]q + Q)fnlg 2lq
"2l -3 " g Tt T zgln—3l, T n=2lgin -3y

__ [Py, {@-3-"([2](@ +Qnlg Q7 nlg” @”-1}
Q—7—2n[n]Q2 Qn 5
+{[n 2l -3l (1 ¥ [n]Q>x

[n—Z]Q[n_3]Q [n_Z]Q[n—3]Q [n_Z]Q[n_3]Q [n]Q

_ [2]q N {Q°(1+2Q) + 1}[3]q , @°(1 +2Q) + 1]
[n —2]g[n —3lg Qé[n — 2]g[n - 3]q Q"*3[n —2]q
Q*+Q+1 [Ble (Q"*%[3]q Q) L,
Qn+9[n — Z]Q Qn+10[n — 3]@ Qn+12[n — Z]Q[n — 3] Q2n+7 X

Hence the proof of the lemma by using identity [n + 3]g = 1 + Q + Q* + Q*[n]e.

5. Main Results

In this section, we consider some approximation results, weighted approximation and gquantitative approximation
results.

5.1 Weighted Approximation

To prove the weighted approximation theorem, we have first need of a class of functions on the interval [0, o), defined
as:
Let H,2[0, ) be the set of all functions f defined on [0, ) satisfying the condition |f (x)| < Mg(1 + x?2), where

Mg is a constant depending only on f. By C +2[0,00), we denote the subspace of all continuous functions belonging to
f(x)

x2

x2[0,0). Also, let C>[0, ) be the subspace of all functions f € C,2[0, ), for which hm is finite. The norm on

x—)OO

Cr2[0,00) s [Ifllyz = su el

1+x2
Theorem 1: Let Q = Q,, satisfying 0 < Q < 1 and for sufficiently large n, Q,, » 1 and Q}; — 1. For each f € C [0, o),
we have
lim [[M2" (£ (0, %) = f @) .. = 0
Proof: From previous study, we have noted that using several operators for this theorem, it is sufficient to verify the
following three conditions:

lim [| My (£™, %) — x™]|, =0, m = 0,1,2.
n—oo
ence for the condition m = 0, the proof of theorem is obvious for all n. Considering form = 1 and n > 2, we get:
H for th diti 0, th f of th is obvious for all n. Considering f 1 and 2
1 1 1 [2]
Q Qn 2
M, (t,x) —x { + < +Q —1>x}
” I "o 1+ 22 Q- 2lg, Q@ \In—2lg, "
<—. su T4 —1]). su
an [Tl - Z]Qn XE[OEO) 1+ x2 Qn <[ ]Qn @ xE[O,rc:o) 1+ x?
= Am”Mﬁ?n(a x) — x||x2 =
Similarly, form = 2 and n > 3, we get:
Qnp2 2 [Z]Qn 1
M>"(t%, x) — <
1M 22, 0) = 222 [n— 2lg,[n — 3lg, xelon) 1 + X2
N {Q,.°(1+2Q,) + 1}[3]q, s Q,°(1+2Q,) + 1] sup
Qne[n - Z]Qn [n - 3]Qn an+3[n - Z]Qn X€[0,00) 1+x?
[ Q@'+ Qu+1 Blo, . ]
| an+9[n Z]Qn an+10[7’l 3 | xz
[(@nn“ .+ 121,[31p,) 1 1 J xe[o oo) 1+ x2
an+12 [Tl _ Z]Qn [Tl _ S]Qn Qn2n+7
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= lim ||Mg"(t2,x) - x2||x2 =0
n—-oo
Hence our theorem is true for all the functions of the type f(t) = t™. In addition to generalize the theorem for all
fe Cx*z[O, ), it is necessary to show that:

My (f(©,2) = f@)] _

b M2 (f(t = i
i 1M (0,0 = f (] 2 = Jim, sup o 22
Therefore, we consider a fixed point 0 < x, < oo in the interval [0, co) such that:
M2 (F(0,2) = fG)| _ |M%wa)fun IM%wa)f@N
[0 ) 1+ x? x<x0 1+ x? x>x0 1+ x2
M (1 + ¢2, )] F )
< | . + sup S
C2 [0.x0) x2x, 1+ x? x2x, 1+ x?

The first term on RHS tends to zero from well-known Korovkin’s theorem for all n. Taking any fixed x, > 0 and from
above, it is easy to show that the second term also vanishes as n — oo, and now for the last part, we can choose x, > 0 too
large to make it small enough to vanish. Thus, we get the desired.

5.2 Quantitative Approximation
Let Cg[0, o), denote the space of all real valued continuous and bounded functions on f € Cg[0, ). In this space
we consider the norm

Ifllcgro,0) = sup |f ()
X€[0,00)

Also, the modulus of continuity [5] of first as well as second order are defined as:

wi(f,8) = sup |f(x+w) —f(x +v)|

lu-v|<é
w,(f,6) = supolf(x +2u) - 2f(x+u+v)+ f(x + 2v)|, 6§>0
xX,U,v=
lu—v|<é
Now the Steklov mean function for f € C5[0, ) is:
h/2 h/2
4
falx) = ﬁf f 2f(x+u+v)—f(x+2(u+v))]dudv ..(6.1)

0 0

Obviously f;, € Cg[0, ), we can write
h/2 h/2

fh(x)—f(x)=%f f[2f(x+u+v)—f(x+2(u+v))—f(x)]dudv
0 0

Obviously, we see that:
|fn () — f()] < w2 (f, h)
= Ifn(x) = FOOllp < w2 (f, ) - (6.2)

If f is continuous, f;," € C5[0, ) and

h/2 h/2
f,{=%l f 2f x+v+ ) flx+v) v——f {2f(x +2v+h) — f(x +v)}dv
Thus, we have
Ifllcalo,00) < %ah(f. h) ..(6.3)
Similarly, f,," € Cg[0, ) and
i llcpiozn < 75 @af. 1) - (6)
Theorem 2. If Q € (0,1] and the operators (3.3) maps space Cg into Cy then

M2l < 1l
Proof: From operators (3.3) for Q € (0,1], we have:

(v+ 1)(v+2) J‘ t?

|MR(f,%)| < [n— 1]@229%;(96) [n - 1] (A ® Q" If(Q"8)|dqt
v=0
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(””)(””)f [n +v- 1] t dot

< sup [f(x)l n—lQZan(x)Q QW Q

X€[0,00)

< sup |[f(x)|ME(1,x) = Ifllc,

X€[0,0)
Hence the proof is completed.

Theorem 3. Let Q € (0,1] and the operators (3.3) maps space Cy into Cy then

n-2
|M;?(f, x) —f(x)| < 5w, (f, ! >{Q * 2l + ( 1_ — 1) [n— Z]Qx}

JIn=2ly/ lQn/In—2], \Q"?
[ [2]q N {{QS(l +2Q) + 133l 2Q™' -Q°(1+2Q) - 1}x'
[ =3 Q°[n—3lq Q'+
9 1 Q2+ (1-2Q9)[2]g  (Q™*2 +[2]g)[3]
+2(U2<f; ] ) ( R + T =31, Q. \ 2
Q + X
< Q2n+7 Qn+9 +1 [3]Q[n _ 2] }
k( Q2n+7 + Q"*+10[n — 3] ) [n - 2] J
Proof: Using Steklov mean function f;, defined above (6.1) for x > 0 & n € N, we have:
M (f, ) = FO| < MPU = f) (@1 %) + My (o (©) = fnG), 0] + Ifa () = ()
By relation (6.2) and Theorem 6.1, we can write:
MR ((f = f)(OL20) < MR (¢ = )@, 2, S NIf = fulle, < w2(f,h)
MS2 being a linear positive operator, gives Taylor’s theorem expansion:
My (0 = (0, )] < If GOIM (8 = x,20) + iy GO IMy (¢ — )2, %)
= M (0 = 00, )| < I (Ol ey Myt (& = 2, %) + 1y llcy M (£ = %)%, %)
By Lemma 1 and relations (6.3) & (6.4), we get:
"z 42 1 9
|M;(lz(fh fh(x) X)| wl(f h) {Q [ [ ]](f + (Qn—Z = 1) } 2h2 (‘)Z(f h)MQ((t " x)Z X)

where f;, = f,(t) and

M2((t — x)2,x) = M2(t2,x) — 2xM(t, x) + x2M2(1, x)

_ [2]q N {Q°(1+2Q) +1}[3]q , Q°(1 +2Q) + 1]
[n_Z]Q[n_ 3]@ Qé[n - Z]Q[n—3]@ Q™t3[n — 2]@
Q®+Q+1 [3]q (@Blo+[2leBBly) , 1 |,
QM -2l | @0 —3]y Q" 2[n— 2] [n A Q2n+7 {

_ 1 [ 2) ] 22

o -2 Q+@n<[n— 2 T ¢

_ [2]q 4 {Q°(1+2Q) +1}[3]p  Q°(1+2Q) +1 B 2 ]
[Tl—Z]Q[Tl— 3]@ @6[71—2]Q[n—3]@ Qn+3[n—2]Q Qz[n—Z]Q

[ @®+Q+1 + [3lq + (Qn+2[3](@ + [Z]QB]Q)]
Q™ -2l | Q™0 —3]g ' Q*2[n—2]gln—3lg

1 _i [Z]Q 2)
l + Q2n+7 Qn <[Tl — 2]@ + Q t1 J

+ 2
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1

/[n—Z]Q

Setting h =

> 0 for x > 0, we get the desired result.

Conclusion

By this paper we have introduced a new type of analogue of linear positive operators. This new study will give a new
direction in the study of summation integral type operators in approximation theory. These operators also can be used for
several type of statistical distribution functions and other functions such as Szasz, Baskakov, Beta, Gamma, and several
exponential functions. Furthermore, interesting results can be obtained by new researchers in different areas.

Data Availability Statement: All data generated or analysed during this study are included in the current article and its
supplementary information.
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