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Abstract : The objective of this research paper is to examine the volatility of cryptocurrency returns. Specifically, we consider the following 

cryptocurrencies: Bitcoin, Ethereum, Tether, Solana, Ripple, Cardano, Dogecoin, Litecoin, Binance Coin, and Stellar. Special attention will be 

given to Bitcoin and Ethereum due to their significance in terms of key market capitalization and financial performance of cryptocurrencies. The 

results obtained through time-series econometrics covering the period from 04/2013 to 06/2022 show that return volatility is not constant 
(heteroskedastic). Using GARCH modeling, we found that volatility shocks are permanent and significant on conditional variance. The sum of 

ARCH and GARCH terms is close to unity, implying that shocks on the conditional variable have a permanent impact. However, the results of 

the analyses of TARCH and EGARCH models have revealed a leverage effect for three cryptocurrencies (Bitcoin, Dogecoin, and Tether): negative 

economic shocks have a greater impact on future return volatility (amplification effect). For other crypto-assets, the models do not mention 
significant impacts on volatility. 

Keywords: Cryptocurrencies, Volatility, GARCH models 
JEL Classification: C22, G12 

I. INTRODUCTION 

Cryptocurrencies have become hot topics, capturing media attention and sparking debates, even controversies, worldwide. Since 

the creation of Bitcoin in 2009, the first and most famous of crypto-assets, the cryptocurrency landscape has experienced explosive 

growth. Barely a decade later, a single bitcoin is worth well over $30,000. There are over 19,000 cryptocurrencies in circulation, 

and their combined value approaches $1.8 trillion, after surpassing $3 trillion just a few months ago. However, this rise in 

prominence, driven by the decentralized nature and increasing trading volume and market capitalization with the prospect of 

achieving high short-term returns (Kristoufek 2013), is accompanied by significant volatility, making cryptocurrencies an important 

area of study for investors and regulators. 

Volatility, which measures the magnitude of price fluctuations of a financial asset over a given period, is particularly pronounced 

in the cryptocurrency market. This high volatility poses significant risk management challenges for investors and financial 

institutions. Understanding the volatility of an asset is crucial for investors, as it directly influences investment strategies and 

potential outcomes, especially in the dynamic and constantly evolving cryptocurrency market. For central banks, market volatility 

estimates often serve as a gauge of financial market vulnerability and the economy as a whole. 

Numerous theoretical and empirical research studies have focused on analyzing cryptocurrency volatility. Previous studies have 

revealed that the cryptocurrency market is extremely risky, with frequent jumps creating highly volatile outliers (Akhtaruzzaman 

et al., 2022; Trucíos, 2019; Briere et al., 2015). Various explanations have been put forward to explain these volatility patterns, 

ranging from the complexity of determining intrinsic values to uncertainty regarding regulation and susceptibility to speculative 

pressures (Romanchenko et al., 2018; Alam, 2017; Hayes, 2017; Bartos, 2015). Nevertheless, due to the urgency of empirical 

evidence, there is still a strong need to understand and manage cryptocurrency volatility risk, to devise new evidence to quantify 

this risk across a range of cryptocurrencies, and simultaneously to acknowledge gaps in the existing empirical literature. It is 

undeniable that volatility modeling is essential for risk management assessment. Moreover, it is necessary to assess their vo latility 

relative to traditional instruments due to the highly volatile environment. Many volatility models have been developed since Engle's 

(1982) seminal paper, which introduced a class of Autoregressive Conditional Heteroskedasticity (ARCH) models. Bollerslev 

(1986), following Engle's earlier work, generalized the ARCH (Autoregressive Conditional Heteroskedasticity) model and 

introduced the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model. Since then, GARCH models have 

evolved to become the most widely used models for estimating volatility. Therefore, it is essential to find the most appropriate 

technique for estimating cryptocurrency volatility. The question becomes increasingly critical as the cryptocurrency market grows, 

with a growing number of currencies, platforms, and buyers. Our research aims to evaluate the effectiveness of GARCH models in 

modeling cryptocurrency volatility forecasting. This article focuses on modeling the volatility dynamics of the ten largest 

cryptocurrencies in terms of market capitalization, covering the period from 04/2013 to 06/2022. Specifically, we consider the 

following cryptocurrencies: Bitcoin, Ethereum, Tether, Solana, Ripple, Cardano, Dogecoin, Litecoin, Binance Coin, and Stellar. 

Special attention will be given to Bitcoin and Ethereum, due to their significance as key assets in the financial performance of 
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cryptocurrencies and their high appeal among investors. Through this research paper, we seek to provide empirical tools for risk 

management in the cryptocurrency domain while contributing to the growing literature on this subject. Understanding GARCH 

models and their specific application to this context should provide valuable insights for market participants, researchers, and 

regulators grappling with the rapidly evolving and ever-changing financial sector. The remainder of the article is structured as 

follows: we will present an initial step of this research, a literature review on cryptocurrency volatility, is developed. In the second 

step, we present the research methodology and the results obtained. 

 

II. LITERATURE REVIEW 

Several recent studies have focused on examining cryptocurrency volatility and the determinants of their volatility through time 

series modeling. For instance, academic works available primarily concentrate on GARCH modeling of Bitcoin. Bitcoin, the first 

and most popular cryptocurrency (see, Dyhrberg (2016); Katsiampa (2017); Lahmiri and al. (2018); Liu and al. (2017); Trucíos 

(2019)). Christian and al. (2018) sought to identify the determinants of Bitcoin's long-term volatility. Their findings reveal a 

significantly negative impact of the empirical volatility of the S&P 500 index on Bitcoin's long-term volatility. Additionally, the 

authors show that the risk premium of the S&P 500 volatility has a significantly positive impact on Bitcoin's long-term volatility. 

Along similar lines, Baek and al. (2015) analyzed Bitcoin volatility relative to the S&P 500, as well as factors impacting its returns. 

The results show that the Bitcoin market is extremely volatile and speculative, suggesting a high level of risk, and that external 

economic factors have no significant influence on cryptocurrency returns. In fact, this result somewhat contradicts standard 

economic theory, which considers that at financial market equilibrium, the fundamental (real) value of the asset equals its price 

(stock price). Volatility seems to be influenced by buyers and sellers in the market, highlighting the significant role of supply and 

demand dynamics in determining Bitcoin volatility. 

Jeffrey Chu, Stephen Chan, Saralees Nadarajah, and Joerg Osterrieder (2017) sought to evaluate the effectiveness of GARCH 

models in modeling cryptocurrency volatility. The authors tested an entire class of different GARCH models on seven distinct 

cryptocurrencies. The results suggest that GARCH models with a normal distribution law are well-suited for modeling 

cryptocurrency price volatility. Asymmetric models, such as IGARCH (Integrated GARCH) and GJRGARCH (Generalized Joint 

Response GARCH), perform particularly well in this context as they account for asymmetry in price movements, which can be an 

important characteristic of financial markets. 

Katsiampa, P. (2017), on the other hand, analyzed Bitcoin volatility using various GARCH-type models. Her results indicate that 

the AR (1)-CGARCH (1, 1) model is most suitable for estimating Bitcoin return volatility. 

Katsiampa P. (2017) also conducted a comparative analysis of different GARCH models to estimate Bitcoin volatility in a 

speculative context and gain a better understanding of the persistence of volatility in cryptocurrencies. Volatility persistence refers 

to the tendency of a period of high or low volatility to persist over time. The authors suggest that it is crucial to use a model that 

considers both long memory and short memory processes for calculating conditional variance. Long memory implies that past 

volatility shocks continue to influence current volatility, while short memory focuses on more recent variations. Katsiampa P. 

(2017) results indicate that there is no significant cause-and-effect relationship between macroeconomic indicators and the value of 

Bitcoin. This lack of correlation with traditional macroeconomic factors is considered an interesting characteristic (Brière et al. 

(2015)), which could offer opportunities to investors. 

Guesmi, and al. (2016) examined the dynamics and interconnections between the Bitcoin market and other financial markets. The 

idea was to explore how volatility in Bitcoin interacts with or influences the volatility of other financial indicators, and vice versa. 

The results suggest that the dynamic conditional correlation (DCC)-GARCH model is most appropriate for modeling the joint 

dynamics of various financial variables and Bitcoin. Specifically, their research reveals that unexpected changes in the returns of 

different financial indicators have a significant impact on the conditional volatility of Bitcoin returns. Thus, a shock to financial 

variables leads to an increase in Bitcoin return volatility. The study's results also indicate that a short position in the Bitcoin market 

can serve as a hedge to mitigate risk exposure for various financial assets. Indeed, hedging strategies involving gold, oil, stocks 

from emerging markets, and Bitcoin significantly reduce portfolio risk compared to a portfolio composed solely of gold, oil, and 

securities from emerging markets. In other words, introducing Bitcoin into a hedging strategy can contribute to more effective 

portfolio risk management, offering potential benefits to investors. 

In a similar vein, Dyhrberg, A.H. (2016) examined the similarities of Bitcoin with gold and the US dollar. Based on GARCH (1,1) 

and EGARCH models, the author found that Bitcoin exhibited similarities with both gold and the dollar, indicating hedging 

capabilities and advantages as a medium of exchange. 

Many researchers have expressed keen interest in comparing predictive models beyond traditional ARCH (Autoregressive 

Conditional Heteroskedasticity) and GARCH (Generalized Autoregressive Conditional Heteroskedasticity) categories in estimating 

financial market volatility. Pilbeam and Langeland (2014) conducted a study focused on foreign exchange markets, comparing the 

conventional GARCH (1,1) model to two asymmetric GARCH models, namely EGARCH and GJR-GARCH. Their results 

indicated that the implied volatility model outperformed both symmetric and asymmetric GARCH models, a conclusion supported 

by other studies (Poon and Granger, 2003, 2005). In this context, they particularly emphasized that during periods of high volatility, 

the accuracy of all models decreased. 

These research findings underscore the importance of evaluating various predictive models in estimating financial market volatility. 

Moreover, several factors can influence the predictive ability of these models, such as asset type, sample size, data frequency, and 

time interval, among others. However, no approach has thus far demonstrated supreme superiority in anticipating volatility across 

all asset classes (Aalborg et al., 2019). Thus, the predictive capacity of a model remains relative and dependent on the specific 

research context. 

 

III. RESEARCH METHODOLOGY 
Our research aims to evaluate the effectiveness of time series modeling using GARCH models in forecasting cryptocurrency 

volatility. In the following sections, we present the ARIMA and GARCH models. ARIMA, in fact, is essentially a combination of 

two processes, namely Autoregressive (AR) and Moving Average (MA). It is used when the determinants of the variable to be 

forecasted are unknown or when data on these occasional variables are not readily available. In autoregressive models (AR), the 

dependent variable 𝒀𝒕, depends on its own past values. An AR model can be specified as follows:  
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𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ⋯ +  𝛽𝑝𝑌𝑡−𝑝 + 𝑒𝑡 

  Where, 

𝑌𝑡, represents the response variable at time t; 

𝛽0, is the constant mean of the process; 

𝑌𝑡−1, 𝑌𝑡−2, … . , 𝑌𝑡−𝑝, are the lagged variables at time 𝑡 − 1, 𝑡 − 2, …  𝑡 − 𝑝, rrespectively  

β1, β2, … βp  are the coefficients to be estimated, and e_test is the error term at date t. 

Theoretically, if the Partial Autocorrelation Function (PACF) abruptly stops at a certain point, the model is of the AR(p) type. The 

number of peaks before the abrupt halt is equal to the order of the AR model. In Moving Average (MA) models, the dependent 

variable Y_t depends on past error values rather than the variable itself. The MA model can be specified as follows: 

𝑌𝑡 = 𝜔0 −  𝜔1𝑌𝜀𝑡−1 − 𝜔2𝑌𝜀𝑡−2 − ⋯ − 𝜔𝑞𝑌𝜀𝑡−𝑞 + 𝑒𝑡 

𝜔0 , the constant mean of the process, 

𝜀𝑡−1, 𝜀𝑡−2 , … , 𝜀𝑡−𝑝 , the lagged variables at times 𝑡 − 1, 𝑡 − 2, …  𝑡 − 𝑝 respectively.  

𝜔1, 𝜔2, … , 𝜔𝑞 ,  the coefficients to be estimated, 

𝑒𝑡 , the error term at time t. 

 

If the autocorrelation function abruptly stops at a certain point, say after q peaks, then the appropriate model is of the MA(q) type. 

The number of peaks before the halt is designated by q. If neither function abruptly stops but both decline towards zero in some 

manner, then the appropriate model is of the ARMA(p,q) type. For a univariate series, the model is specified as follows:  

𝑌𝑡 = 𝛼0 + ∑ 𝛽𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜔𝑗𝑌𝜀𝑡−𝑗 + 𝑒𝑡

𝑞

𝑗=1

 

Where 𝑒𝑡 , is a white noise process, which is a purely random series of numbers with zero mean, normally and independently 

distributed, and with no correlation between the independent variable and time. 

The ARMA model requires stationary series with a constant mean, constant variance, and constant autocorrelation. The ARMA 

model is extended to the Autoregressive Integrated Moving Average (ARIMA) model when the series is differenced to eliminate 

non-stationarity. A series is stationary when, fundamentally, two consecutive values of the series depend only on the time interval 

that separates them and not on time itself. When differencing is used to make a time series stationary, it is common to designate the 

resulting model as ARIMA(p,d,q). 

 

3.1. GARCH (1,1) Model 

The basic GARCH model was developed by Bollerslev (1986). The GARCH model consists of a mean equation and a variance 

equation. The mean equation is as follows: 

𝑅𝑡 = 𝜋 + 𝜀𝑡 

Where, 𝑅𝑡 epresents the stock returns at time t. 𝜋 is the mean return of the stocks, and 𝜀𝑡, is the return residual. The variance equation 

in the GARCH model is written as follows: 

𝜎𝑡
2 =  𝛼 + 𝜔1𝜀𝑡−1

2 + 𝜆1𝜎𝑡−1
2  

𝛼 > 0 , 𝜔1 ≥ 0, 𝜆1 ≥ 0 

Where, 𝜎𝑡
2, is the conditional variance, and the weighted term that depends on the volatility of the previous period (𝜔1𝜀𝑡−1

2 ) and 

also the conditional variance of the previous period ( 𝜆1𝜎𝑡−1
2 ). Stationarity is achieved when the coefficients of the volatility of the 

previous period and the conditional variance are equal to one. 

 

3.2. EGARCH Model 

EGARCH , which stands for Exponential GARCH model, is expressed as  𝑙𝑜𝑔(𝜎𝑡
2). This model captures market asymmetries, 

where the leverage effect of returns and volatility is examined. 

ln(𝜎𝑡
2) =  𝛼 + 𝜔1 ln(𝜎𝑡−1

2 ) + 𝛿1

𝜀𝑡−1

√𝜎𝑡−1
2

+ 𝜆1 [
|𝜀𝑡−1|

√𝜎𝑡−1
2

−
2

𝜋
] 

 

 

With, ln(𝜎𝑡
2) representing the log-normal of the conditional variance, the leverage effect between returns and volatility is 

represented by 𝛿1, assuming that  𝜆 > 0. A positive and significant coefficient of conditional volatility shows a positive association 

between risk and return. A negative and significant coefficient of the asymmetrical term indicates an increase in volatility due to 

bad news in the market, while a positive asymmetrical term shows a decrease in volatility due to good news in the market. The 

reality is that investors in the market are more inclined towards bad news than good news. 

3.3. TGARCH Model 

Rabemananjara and Zakoian (1993) proposed the TGARCH model, also known as Threshold GARCH, which examines the 

asymmetric relationship between risk and return using the differential effect on conditional variance. 

𝜎𝑡
2 =  𝛼 + 𝜔1𝜀𝑡−1

2 + 𝛿1𝑆𝑡−1𝜀𝑡−1
2 +𝜆1𝜎𝑡−1

2  

Where the leverage effect or the asymmetrical relationship between risk and return is given by the coefficient (𝛿1). This model 

examines the differential effect on conditional variance and is recognized when volatility in the past is greater than zero (  𝜎𝑡−1
2 >

0), indicating a positive effect and the presence of the leverage effect. Conversely, if volatility in the past is less than zero ( 𝜀𝑡−1
2 <

0 ) it shows a negative effect associated with adverse information. 
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In our study, we drew inspiration from the work of Wang (2021) to investigate cryptocurrency volatility. To measure volatility, we 

utilized the closing prices of each cryptocurrency. The return (Rt) of each cryptocurrency was calculated using the classic formula 

for logarithmic rate of return: 

𝑹𝒕 = 𝒍𝒏(
𝑷𝒕

𝑷𝒕−𝟏
) 

 

Where Pt, is the closing price at date t and Pt−1, is the closing price at date t-1.  

We conducted an Augmented Dickey-Fuller (ADF) test on the time series of cryptocurrency prices. The aim of this test is to 

determine whether these price series are stationary. A stationary series is a time series whose statistical properties (mean, variance, 

etc.) remain constant over time. Stationarity is important in the analysis of financial time series, as many statistical models assume 

that the data are stationary. This analysis is crucial for establishing the relevance of using statistical models in analyzing the volatility 

of these financial assets. The stationarity of price series is a critical prerequisite as it ensures the validity of the stat istical models 

applied in the study of volatility. 

 

IV. DESCRIPTIVE STATISTICS 

The volatility diagram highlights the following points: (See Appendices 1 and 2) 

 The volatility of Bitcoin's daily returns has been marked by significant instability during different 

periods: 
 Peak in 2013: Volatility reached its record high in 2013, influenced by the European sovereign debt crisis. This 

economic context likely generated uncertainties, thus impacting the stability of Bitcoin's daily returns. 

 Peak in January 2015: Another significant volatility spike is observed in January 2015. 

 The instability of Bitcoin's daily returns sparked investor interest as a "safe haven," suggesting that Bitcoin was 

perceived as a secure asset during these periods of economic uncertainty, leading to significant price fluctuations until 

2016. 

 2017-2018: The price of Bitcoin experienced high volatility, characterized by an initial increase followed by a decrease 

in 2018. 

 2019: Volatility persisted, influenced by factors such as the Covid-19 pandemic and economic-political tensions 

between China and the United States. These global events likely had a major impact on investor confidence and 

contributed to the instability of financial markets in general and cryptocurrencies in particular. 

 2020: Bitcoin is considered a safe haven asset amidst economic-political shocks. This perception attracted investors 

seeking to diversify their portfolios and protect their wealth in a context of economic uncertainty." 

 The volatility of Bitcoin's daily returns has been marked by significant instability during different 

periods: 
 Peak in 2013: Volatility reached its record high in 2013, influenced by the European sovereign debt crisis. This 

economic context likely generated uncertainties, impacting the stability of Bitcoin's daily returns. 

 Peak in January 2015: Another significant peak of volatility is observed in January 2015. 

 The instability of Bitcoin's daily returns has attracted interest from investors as a "safe haven," suggesting that Bitcoin 

was perceived as a safe asset during these periods of economic uncertainty, leading to significant price fluctuations 

until 2016. 

 2017-2018: The price of Bitcoin experienced high volatility, characterized by an initial increase followed by a decrease 

in 2018. 

 2019: Volatility persisted, influenced by factors such as the Covid-19 pandemic and economic-political tensions 

between China and the United States. These global events likely had a major impact on investor confidence and 

contributed to the instability of financial markets in general, including cryptocurrencies. 

 2020: Bitcoin is considered a safe haven asset amid economic-political shocks. This perception attracted investors 

seeking to diversify their portfolios and protect their wealth in an economic uncertainty context. 

 Binance Coin and Solana display the highest rates of return, reaching 0.39% and 0.23%, respectively. 

It is noted that these two cryptocurrencies, although recent, are among the top 10 most capitalized 

cryptocurrencies in the market. 

 Dogecoin presents a very high maximum return rate of 151.62%. However, this positive impact is 

accompanied by an 8% increase in the standard deviation, suggesting a high level of investment risk 

associated with this cryptocurrency in this context. 

 Analysis of the return rates shows that the average daily value is 0.136% and 0.224% for Bitcoin and 

Ethereum, respectively. The corresponding standard deviations are 4.11% and 6.41%, indicating 

relative instability and significant variability in the daily returns of these two cryptocurrencies. 

 Skewness and kurtosis coefficients, measuring the shape of the distribution of returns, are analyzed. 

For Bitcoin, the values are -0.52 and 13.83, while for Ethereum, they are -3.1 and 71.18. These values 

deviate significantly from the reference values of a normal distribution, indicating an abnormal 

distribution of returns. The presence of a sharp peak and a thick tail suggests significant concentration 

around the mean but also a high variability in extreme returns. 

 The Jarque-Bera normality test confirms that the return rates of Bitcoin and Ethereum significantly 

differ from a normal distribution, with values of 17432.4 and 527359.7, respectively. This finding 
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indicates that statistical methods based on a normal distribution are not suitable for analyzing the 

returns of these two cryptocurrencies. 
 

V. ADF TEST 

The data of analyzed cryptocurrency return rates show fluctuations around their mean, without presenting a clear upward or 

downward trend. In particular, the average return rate of Bitcoin is 0.136%. This indicates that, on average, Bitcoin return rates do 

not show consistent progression in any particular direction over the study period. 

To verify the stationarity of the return rates, we conducted an Augmented Dickey-Fuller (ADF) unit root test based on 4 lags, with 

a constant but without considering the trend. The objective here is to determine whether the series of return rates is stationary, 

meaning it exhibits a trend or not. 

 

Table 1. Unit Root Test results (ADF) 

(Cryptocurrencies listed by market capitalization, 2023) 

H0 : R has a Unit Root 

ADF Test  with constant 

Number of lags: 4 (fixe) 

Cryptocurrencies T-statistic Prob. * 

BTC Bitcoin -25.17879 0.0000 

ETH Ethereum -24.10165 0.0000 

USDT Tether -41.83516 0.0000 

SOL Solana -13.68408 0.0000 

XRP Ripple -23.97242 0.0000 

ADA Cardano -17.95251 0.0000 

DOGE Dogecoin -25.45405 0.0000 

LTC Litecoin -25.72454 0.0000 

BCH Binance coin -16.77815 0.0000 

XLM Stellar -23.88048 0.0000 

Critical Value 
-3.432449 

(1%) 

 

 -2.862353 

(5%) 

 

 -2.567247 

(10%) 

 

 

The results of the unit root test via ADF indicate that the cryptocurrency return series studied are stationary, confirming the stability 

of the statistical properties of these series over the study period. 

 

VI.THE ARCH TEST EFFECT 

The equation for the return rate (R) of cryptocurrencies is formulated as follows: 

𝑹𝒕 = 𝜶𝟎 + ∑ 𝜶𝒊

𝒏

𝒊=𝟏
𝑹𝒕−𝟏 + 𝜺𝒕 

Where, Rt, is the return rate at a given time, 

 α0 is the constant term, αi are the coefficients associated with past lags (Rt−1),  

 ϵt,. is the error term.  

Statistical tools such as Akaike Information Criteria (AIC) and the F-statistic are used here to select the most appropriate lag order. 

In the context of the ARIMA model, the optimal lag order is the one that minimizes the Akaike Information Criterion (AIC) and 

maximizes the F-statistic. The AIC is a model selection criterion that balances model fit and complexity, while the F-statistic 

evaluates the overall significance of the model. 

Statistical tools such as Akaike Information Criteria (AIC) and the F-statistic are used here to select the most appropriate lag order. 

In the context of the ARIMA model, the optimal lag order is the one that minimizes the Akaike Information Criterion (AIC) and 

maximizes the F-statistic. The AIC is a model selection criterion that balances model fit and complexity, while the F-statistic 

evaluates the overall significance of the model. After applying these criteria, the analysis results indicate that the most appropriate 

lag order for most of the studied cryptocurrencies is generally 4. The optimal lag order obtained for most cryptocurrencies is then 

used in the ARCH model to assess the conditional heteroskedasticity of the time series of return rates. 

 

VII.ARCH-LM HETEROSKEDASTICITY TEST 

Here, the ARCH-LM test aims to determine if the residuals of a regression exhibit conditional autocorrelation, which means that 

the variance of the residuals depends on their past values. This situation can indicate conditional heteroskedasticity in the data. 

Conditional autocorrelation occurs when the correlation between residuals at different time points is significant, indicating that the 

volatility of the residuals varies based on past observations. 

The ARCH-LM test is performed while respecting the determined number of lags for each cryptocurrency (in this case, the lag 

order is 4 for Bitcoin, for example). 

The regression equation is then formulated by including the appropriate lags, as illustrated for Bitcoin: 

 

𝑹𝒕 = 𝜶𝟎 + 𝜶𝟏𝑹𝒕−𝟏 + 𝜶𝟐𝑹𝒕−𝟐 + 𝜶𝟑𝑹𝒕−𝟑 + 𝜶𝟒𝑹𝒕−𝟒+𝜺𝒕 
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 If the ARCH-LM test is statistically significant, it indicates that the residuals of the regression exhibit conditional 

autocorrelation. In this case, another approach to modeling the data may be necessary. 

 If the test is not significant, it suggests that the linear serial regression is adequate, and one can continue to use this approach 

to model the data. 

 

Table 2. ARCH-LM Test of Cryptocurrency Returns Residuals 

(Cryptocurrencies listed by market capitalization, 2023) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can highlight the following points: 

Significant Heteroskedasticity: The results of the ARCH-LM test indicate that the sequence of cryptocurrency return rates exhibits 

significant heteroskedasticity. This means that the volatility of these return rates is not constant over time and may be influenced 

by past variations in volatility. 

Strong ARCH Effect:  
The observation of a strong ARCH effect suggests that the sequence of regression residuals exhibits conditional autocorrelation, 

showing that the volatility of the return rates is strongly influenced by past volatility variations. 

The associated F-statistic for Bitcoin is 40.482, indicating significant heteroskedasticity for this specific model. The Obs.*R-squared 

(155.031) measures the heteroskedasticity of the error variance.  

A high value of this measure, as observed, indicates a strong presence of heteroskedasticity in the model. Statistically Significant 

Model Overall:  

The probability associated with the F-statistic (4.352) indicates that the model is statistically significant overall, reinforcing the 

validity of the results observed in the context of the ARCH-LM test. 

 Errors Do Not Follow a Normal Distribution: 

 The probability associated with the error normality test (Chi-Square(4)) is often performed in conjunction with the ARCH test. 

This probability indicates that the errors do not follow a normal distribution. 

 

VIII.CRYPTOCURRENCY VOLATILITY STUDY 

This section focuses on the study of cryptocurrency return volatility, particularly for Bitcoin and Ethereum, using the GARCH(1,1) 

model. Bitcoin and Ethereum were chosen due to their importance as key indicators of cryptocurrency financial performance and 

their popularity among investors. 

The estimation results (See Annex 3) highlight the following points: 

Volatility Clustering Characteristics: The presence of significant ARCH and GARCH terms indicates that return volatility 

exhibits clustering characteristics. This suggests that shocks may have a lasting impact on conditional variance. 

ARCH HETEROSKEDASTICITY TEST 

BTC F-statistic 40.48289 Prob. F (4,3521) 0.0000 

 Obs.*R-squared 155.0316 Prob. Chi-Square (4) 0.0000 

ETH F-statistic 83.85426 Prob. F (2,2696) 0.0000 

 Obs.*R-squared 158.0626 Prob. Chi-Square (2) 0.0000 

USDT F-statistic 1102.787 Prob. F (2,2854) 0.0000 

 Obs.*R-squared 1245.426 Prob. Chi-Square (2) 0.0000 

SOL F-statistic 41.07988 Prob. F (1,991) 0.0000 

 Obs.*R-squared 39.52438 Prob. Chi-Square (1) 0.0000 

XRP F-statistic 77.62959 Prob. F (4,3423) 0.0000 

 Obs.*R-squared 285.1083 Prob. Chi-Square (4) 0.0000 

ADA F-statistic 62.48417 Prob. F (2,1908) 0.0000 

 Obs.*R-squared 117.4708 Prob. Chi-Square (2) 0.0000 

DOGE F-statistic 27.81477 Prob. F (2,3294) 0.0000 

 Obs.*R-squared 54.75548 Prob. Chi-Square (2) 0.0000 

LTC F-statistic 33.94854 Prob. F (4,3521) 0.0000 

 Obs.*R-squared 130.9371 Prob. Chi-Square (4) 0.0000 

BCH F-statistic 58.85493 Prob. F (4,1972) 0.0000 

 Obs.*R-squared 210.8456 Prob. Chi-Square (4) 0.0000 

XLM F-statistic 426.0480 Prob. F (1,3066) 0.0000 

 Obs.*R-squared 374.3120 Prob. Chi-Square (1) 0.0000 
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Model Convergence: Model convergence is achieved after a limited number of iterations (24 for Bitcoin and 22 for Ethereum). 

This suggests that the model is effective in predicting conditional variance of returns. 

Sum of ARCH and GARCH Terms: The sum of ARCH and GARCH terms is close to unity for both cryptocurrencies studied. 

This observation indicates that the impact of shocks on conditional variance is not transient but permanent. 

Mean Reverting Process for Ethereum: For Ethereum, the sum of ARCH and GARCH terms is less than 1 (0.852). However, 

conditional variance shows that the influence of past fluctuations is limited and gradually attenuates to zero. This suggests a mean 

reverting process, where volatility gradually returns to more stable levels. 

 

IX.ASYMMETRY TEST OF CRYPTOCURRENCY RETURN 

Two statistical models, TARCH and EARCH, are used to determine whether negative shocks have a greater impact on future return 

volatility than positive shocks. The estimation results (see Annex 4,5) highlight the following points: 

Concept of Leverage Effect: The leverage effect suggests that a change in future return volatility may be more influenced by 

negative events than by positive events, such as inflation, economic crises, or the COVID-19 pandemic, or more generally, other 

politico-economic events. 

TARCH Model Results: (See Appendix 4) The results show a significant leverage effect for Bitcoin, Dogecoin, and Tether. This 

indicates that negative shocks have a greater impact on the future volatility of returns for these three assets. The estimated coefficient 

of the variable ARCH(1)*(RESID(−1)< 0) is positive and significant, indicating that special price fluctuations have leverage effect 

on the price of Bitcoin. 

Confirmation by EARCH Model: (See Appendix 5) The results of the EARCH model confirm those of the TARCH model for 

Bitcoin and Dogecoin, showing that these cryptocurrencies have a leverage effect on their return rates. The C1 rate measures the 

percentage impact that shocks will have on the future volatility of the return rate. For Bitcoin, it shows an impact of 26.5%, and for 

Dogecoin, an impact of 65.07%. 

Absence of Leverage Effect for Other Cryptocurrencies: The results of the TARCH and EARCH models do not show significant 

evidence of a leverage effect for the other tested cryptocurrencies. 

 

X. CONCLUSION 

 Cryptocurrencies are relatively new financial assets characterized by high volatility, making the ability to predict their future 

volatility crucial for investors. Our empirical results obtained through time series econometrics from April 2013 to June 2022 show 

that cryptocurrency return volatility is not constant (heteroskedastic). By using GARCH modeling, we found that volatility shocks 

in returns are permanent and significant on conditional variance. The sum of ARCH and GARCH terms is close to unity, indicating 

that shocks on the conditional variable have a permanent impact. However, the results of the TARCH and EGARCH models 

highlighted a leverage effect for three cryptocurrencies (Bitcoin, Dogecoin, and Tether): negative economic shocks have a greater 

impact on future return volatility (amplification effect). For other crypto-assets, the models did not indicate significant impacts. 

Finally, our results underscore the importance of the GARCH model in forecasting cryptocurrency volatility, providing investors 

and portfolio managers with relevant information for effective portfolio and risk management. 
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APPENDIX 1. Volatility Diagrams of Daily Rate of Return  
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APPENDIX 2: Descriptive Statistics of Daily Returns of Cryptocurrencies for the Period 04/2013 - 12/2022 

 

 BTC ETH USDT SOL XRP ADA DOGE LTC BCH XLM 

MEAN 0.001362 0.002245 -6.68E-05 0.002361 0.001180 0.001193 0.001654 0.000786 0.003905 0.001098 

MEDIAN 0.001558 0.000432 0.000000 -0.000228 -0.001691 0.000000 -0.001813 0.000000 0.000991 -0.001578 

MAXIMUM 0.357451 0.412405 0.500545 0.387766 1.027463 0.861235 1.516211 0.828968 0.675064 0.723152 

MINIMUM -0.464730 -1.302139 -0.690671 -0.549522 -0.616380 -0.503705 -0.581047 -0.513925 -0.542809 -0.410040 

STD. DEV. 0.041529 0.064122 0.016719 0.079155 0.069613 0.068190 0.080004 0.061386 0.067151 0.069667 

SKEWNESS -0.525826 -3.098461 -15.24924 -0.367103 1.576980 1.826007 3.701441 1.122544 0.931769 1.771042 

KURTOSIS 13.82961 71.14718 1299.755 8.444352 30.32891 25.81173 65.05747 26.35277 19.02941 20.35815 

JARQUE-BERA 17432.40 527359.7 2.01E+08 1251.214 108351.0 42630.27 537553.9 81045.27 21538.46 40146.85 

PROBABILITY 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

SUM 4.814584 6.068535 -0.191020 2.348814 4.054344 2.287656 5.462430 2.778262 7.752009 3.372179 

SUM SQ. DEV. 6.093272 11.10949 0.799413 6.227866 16.64570 8.909083 21.13484 13.31300 8.946247 14.89548 

OBSERVATIONS 3534 2703 2861 995 3436 1917 3303 3534 1985 3070 
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APPENDIX 3: Estimation Results of the GARCH(1,1) Model 

 

Note: This table presents the estimations of the GARCH(1,1) model, described by the following equation: GARCH = C0 + C1*RESID (-1)² + C2*GARCH (-1). 

The probabilities are indicated in parentheses. 

 

 

 

 

 

Dependent Variable: R 

Method: ML-ARCH (Marquardt) Normal Distribution 

Coeff BTC ETH USDT SOL XRP ADA DOGE LTC BCH XLM 

Variance Equation           

C0 7.67E-05 0.000257 1.27E-07 0.000925 0.000381 0.000172 0.000281 0.000127 0.000103 0.000283 

(0.0202) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

C1 0.1343982 0.162549 0.335423 0.217166 0.418946 0.127082 0.545282 0.083824 0.165271 0.206942 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

C2 0.831939 0.768116 0.811691 0.640606 0.592485 0.838880 0.606348 0.884401 0.823815 0.754399 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Log Likelihood 6616.889 4098.953 13335.89 1194.108 5144.706 2709.355 4726.361 5325.340 3021.732 4350.574 

AIC -3.746113 -3.031435 -9.325561 -2.392572 -2.995166 -2.824392 -2.859958 -3.014357 -3.045666 -2.831915 

SC -3.737375 -3.020511 -9.315141 -2.367916 -2.986220 -2.809882 -2.848867 -3.005619 -3.031553 -2.822092 
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APPENDIX 4: Results of the Estimation of the TGARCH Model 

 

Note: This table presents the estimations of the TGARCH model, described by the following equation: GARCH = C0 + C1*RESID (-1)² + C2*RESID (-

1)²*(RESID (-1) <0) + C3*GARCH (-1). Probabilities are indicated in parentheses. 

 

 

 

 

 

Dependent Variable: R 

Method: ML-ARCH (Marquardt) Normal Distribution 

 

Coeff BTC ETH USDT SOL XRP ADA DOGE LTC BCH XLM 

Variance Equation           

C0 7.96E-05 0.000264 1.15E-07 0.000924 0.000419 0.000175 0.000268 0.000120 0.000104 0.000283 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

C1 0.115013 0.155259 0.183389 0.218347 0.526153 0.131839 0.409859 0.099335 0.159321 0.226320 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

C2 0.044394 0.022089 0.360993 -0.002999 -0.172120 -0.015606 0.227898 -0.041591 0.019051 -0.076399 

(0.0000) (0.0777) (0.0000) (0.9283) (0.0000) (0.1275) (0.0000) (0.0000) (0.1115) (0.0000) 

Log Likelihood 0.827340 0.763033 0.811029 0.640919 0.566171 0.840059 0.621546 0.890366 0.821459 0.765195 

AIC (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

SC 6620.670 4099.397 13356.74 1194.110 5151.550 2709.617 4738.317 5332.796 3022.046 4354.886 
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APPENDIX 5: Results of the Estimation of the EGARCH (1,1) Model 

 

Note: This table presents the estimations of the EGARCH model, described by the following equation:LOG(GARCH) = C0 + C1*ABS (RESID (-1)/@SQRT 

(GARCH (-1))) + C2*RESID (-1)/@SQRT (GARCH (-1)) + C3*LOG (GARCH (-1)). Probabilities are indicated in parentheses.  

Dependent Variable: R 

Method: ML-ARCH (Marquardt) Normal Distribution 

Coeff BTC ETH USDT SOL XRP ADA DOGE LTC BCH XLM 

Variance Equation           

C0 7.96E-05 0.000264 1.15E-07 0.000924 0.000419 0.000175 0.000268 0.000120 0.000104 0.000283 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

C1 0.115013 0.155259 0.183389 0.218347 0.526153 0.131839 0.409859 0.099335 0.159321 0.226320 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

C2 0.044394 0.022089 0.360993 -0.002999 -0.172120 -0.015606 0.227898 -0.041591 0.019051 -0.076399 

(0.0000) (0.0777) (0.0000) (0.9283) (0.0000) (0.1275) (0.0000) (0.0000) (0.1115) (0.0000) 

Log Likelihood 0.827340 0.763033 0.811029 0.640919 0.566171 0.840059 0.621546 0.890366 0.821459 0.765195 

AIC (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

SC 6620.670 4099.397 13356.74 1194.110 5151.550 2709.617 4738.317 5332.796 3022.046 4354.886 
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