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Abstract:  With the rapidly growing number of service providers and users, as a result, there are three important issues that we 

now have to deal with:  Firstly, we face challenges with increasingly large data sets. Secondly, many Web service providers have 

similar functionality but differ in quality properties and services. Finally, there will have a large number of missing QoS values in 

history records. Therefore, predicting the missing QoS values in the large data sets is becoming more attractive. In this paper, we 

proposed a new model based on AutoenCoder to solve the above existing problems.  It is called AutoenCoder-based Web Service 

(AWS). The model is performed with two predictions (User-based AWS and Service-based AWS) and the backpropagation 

algorithm and Stochastic Gradient Descent is used to train the model. The experimental results demonstrated that proposed model 

has better performance than other approaches. 

IndexTerms - Deep learning; AutoenCoder; QoS Prediction. 

 

I. INTRODUCTION 

 
In parallel with improving the performance of Internet connection speed, Web services are becoming more and more important, 

and indispensable in life. Hence, the number of service providers and service users are growing up too quickly. Leading to many 

services has similar functionality or identical, this problem can be caused difficulties for users. So, QoS is considered a key issue. 

Therefore, predicting the QoS values are among the most popular fields to find the best solutions to improve the quality of 

recommendation to users. 

Quality of service (QoS) is usually used for the description of non-functional characteristics of Web services and it is widely 

applied to Web service composition [1], Web service recommendation [2], service selection [3], [4], and so on. Among different 

QoS properties, some of the QoS properties are offered by service providers or by third-party registries and some others are offered 

by different values from different users (e.g., response time, invocation failure rate, etc.). Therefore, the user desires to know how 

to choose a QoS from service providers such as latency, availability and reliability. However, almost service providers nowadays 

focus on the profit and growth. Moreover, in e-commerce and other online environments, the QoS properties of each service are 

pre-determined by the service providers, but because of its promotion purpose, they often exaggerate to attract more users. Hence, 

the QoS property may have different values to different users (e.g., response time, availability, throughput etc.), to measure the 

efficiency of QoS properties, it depends on the user who uses that web service. Especially, QoS-based service recommendation has 

become a hot topic to select the best services from a set of services. But the in real case, there are always many missing QoS values 

in history records. So, it is necessary to predict the missing QoS values for service recommendation. 

Big data is a broad term for data sets so large or complex, which standard algorithms are usually not designed to handle them. 

Collaborative Filtering (CF) has been used widely in recommender systems. However, CF cannot handle very large data sets [5, 6]. 

Recently, some of these studies have been extended from different methods to deal large data sets as [7, 8, 9]. Although there are 

many research papers on big data. However, in fact the data sets in real world are growing day by day, leading to very large datasets. 

Hence, search algorithm changes almost constantly to meet actual needs. Therefore, this field is still topical issues and is now 

attracting attention of the research community. So, predicting the QoS values of Web service for larger datasets is a big challenge 

for researchers. 

Recently there has been a resurgence in the field of artificial intelligence after the study of Deep learning, it is a new area of 

Machine Learning research and has been researched and widely developed such as image processing and speech recognition [10], 

Google and Baidu have been applied deep learning to search engines in speech recognition since 2013, the collaborative filtering 

task [11-16]. Inspired by previous works, in this paper, we proposed a new model based on AutoenCoder, it is called AutoenCoder-

based Web Service model (AWS). The AWS model is used the backpropagation algorithm and Gradient descent to predict the 
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missing QoS values in  two different ways: User-based AWS (is denoted by U-AWS) and Service-based AWS (is denoted by S-

AWS). The experimental results showed that proposed model has better performance than other approaches. The contributions of 

this chapter are summarized as follows: 

- We introduce the AWS model based on Autencoder with two predictors: User-based AWS (U-AWS) and Service-based AWS 

(S-AWS). 

- The backpropagation algorithm is used to train for the model. 

- The proposed model can effectively deal with large scale datasets. 

The remainder of this chapter is organized as follows: Section 2, we present some preliminaries about Autoencoder and 

Backpropagation. In Section 3, we build the AWS model based on Autoencoder. Predicting the QoS values based on the AWS 

model is presented in Section 4. Section 5, we perform experiments and report the results. Finally, we conclude our work and some 

future directions in Section 6. 

 

2.  PRELIMINARIES 
In this section we introduce some preliminaries related to the paper, such as, AutenCoder, Backpropagation and so on. 

2.1. AutoenCoder 

An AutoenCoder [17] can be seen as an extended version of artificial neural network with three or more layers (an input layer, 

one or more hidden layers, and an output layer) and where the output layer should have the same size as the input layer. AutoenCoder 

is an unsupervised representation learning method to process the representation of the input data, typically used for the purpose of 

dimensionality reduction and they play a fundamental role in deep learning. 

Definition 1 (Autoencoder) An Autoencoder (Fig 1) is modeled as a 5-tuple 
1 0 1, , , ,A x x l A A  where: 

- x  represents the input values of the neural network. 

- 1x  is the reconstruction values of the same shape as  x . 

- l  represents latent features  0 l x  . 

- 1A represents the weights of hidden layers. 

- 0A is the weight matrix of the reverse mapping which can be constrained to the transpose of the forward mapping 

0 1

TA A ( is referred to tied weights)  

 

 

 

 

 

 

 

 

 

 

 

 

 

  An Autoencoder (Fig 1) consists of two major parts: 

  Firstly, an Autoencoder takes an input 
dx  and then maps x  (as an encoder) to the hidden representation 

kl  using 

an affine transformation with the weight matrix 1A  of the hidden layer and the bias vector b  through a deterministic mapping: 

 1.
la f A x b  , where  .f  is an activation function (Sigmoid activation or softmax activation). 

Secondly, the latent representation (latent features) will be mapped back (as a decoder) into a reconstruction 1x of the same 

shape as x  and through transformation  1 0 0. lx f A a b  .  1x  is a prediction of x . 

Based on the analysis above, we show that the aim of an Autoencoder is to minimize the reconstruction error between the input 

x  and the output 1x . Hence Autoencoder training consists of finding the optimal value of parameters 0 1 0, , ,A A b b that minimize 

the reconstruction error on a training set. The objective function to measure the reconstruction error is used a squared-error cost 

function  
2

1 1,J x x x x  . An autoencoder is often trained the model by using the backpropagation algorithm. 

 

2.2   Backpropagation 

Backpropagation is commonly used in the area of neural networks and in conjunction with a Ggradient descent method for 

minimizing an objective function. The goal of Backpropagation is employed to optimize the weights and the biases in a neural 

network and learn any arbitrary mapping from the input to the output units. 

Figure 1: The general architecture of the AutoenCoder 

1 |A encoder

0 |A decoder

( )x input

1 ( )x reconstruction

( )l code latent features
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The Backpropagation algorithm [16] is trained in two phases: Forward pass phase and Backward pass phase. Details will be 

presented in the following definitions. 

Definition 2 (Forward pass). Suppose we have a training set  1 1( , ),..., ( , )p px y x y  representing for p ordered pairs of 

( n m )-dimensional vectors, where the input value is called input pattern and the corresponding desired output is called target 

pattern. When the input pattern 
ix is presented to the network, then it will produce an output 

ih  which is different from the target 

iy  (i=1,…,p). To minimize the error function of the network, defined as 

  

    (1) 

The first step in the minimization process is to compute the error function automatically. Each output unit j ( 1... )j m  is 

connected to a node which evaluates the function  
2

ij ij

1

2
h y ,  where ijh  and ijy  represent the j-th component of the output 

pattern ih  and of the target 
iy . The outputs of the additional m nodes are collected at a node which adds them up and gives the sum 

iJ  as its output. The same network extension has to be built for each pattern 
iy . A computing unit collects all quadratic errors and 

outputs their sum 1 ... pJ J  . The output of this extended network is the error function J. 

Definition 3 (Backwards Pass).  The k weights (parameters) 1,...wkw  in the network can be modified to reduce the quadratic 

error J as small as possible.  To minimize J by using an iterative process of gradient descent, we need to compute the gradient 

1 1

, ,...,
w w wk

J J J
J

   
   

   
. Each weight is updated by summing the following correction w

w
i

i

J



  


 for 1,...,i k , 

where  is a learning constant. 

The backward pass starts at the penultimate layer of the feed-forward pass, during the backward pass it updates the weights so 

that we reach a local minimum of the error function easily by Gradient descent, where 0J   

Definition 4 (Backpropagation).  Consider a network with the inputs x  and network function Q . The derivative  'Q x  is 

computed in two phases–the training: 

Forward pass:  The inputs of each training pattern ix  is fed into the network. The outputs ih  are calculated using the inputs 

ix  and the weights wi . The difference between the target output iy  and the output ih  is termed the error. The total error is the 

sum of the errors over all training patterns and provided to the backward pass. 

Backward pass: The weights are updated iteratively during training the network to find the minimum of the error function. The 

result collected at the input unit is the derivative of the network function with respect to x. 

We performed running the forward and backward pass until stopping criterion are satisfied.  

 

3. AUTOENCODER-BASED WEB SERVICE MODEL 

In this section, we build the Autoencoder-based Web Service model (AWS) for predicting the missing QoS values based on an 

Autoencoder, where the input data are partially observed vector of user 
( )ux  or service 

( )sx . Hence, we first generate the partially 

observed vector inputs 
( )ux ,  

( )sx  (presented in definition 5 and 6) and a general model based on Autoencoder was built (Fig 2). 

Definition 5 (Partially observed vector 
( )ux ).  Suppose we have m service users and n Web services, the link between users 

and services is denoted by the user-service matrix 
m nR  . Each user u U   1 2, ,..., mU u u u

 
is represented as 

a partially observed vector  ( )

1 2, ,...,u n

u u unx R R R  , where ujR represents a QoS value (Response-time, Throughput, etc.,) 

of the service j observed by the user u.  Vector 
( )ux  is denoted by a partially observed of user u. 

Definition 6 (Partially observed vector 
( )sx ). Suppose we have m service users and n Web services, the link between users 

and services is denoted by the user-service matrix 
m nR  . Each service s S   1 2, ,..., nS s s s is represented as 

a partially observed vector  ( )

1 2, ,...,s m

s s msx R R R  , where isR represents a QoS value (Response-time, Throughput, etc.,) 

of the service s observed by the user i.  Vector 
( )sx  is denoted by a partially observed of service s. 

2

1

1

2

p

i i

i

J h y
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Definition 7 (Autoencoder–Based Web Service (AWS)). An AWS (see in Fig 2) is a 10 tuples  
(.)

0 1, , , , , , , , ,AWS m n l W W U S R x F , where 

- m  is the total number of service users 

- n is the total number of Web services. 

- l  represents the l -th layer in the model. 

- 
0W , 

1W , 
0b  and 

1b  represent the transformations 0 1, ,d k k dW W    and biases 0 1,k db b   , where 

k N . 

- U represents a set of users   1 2, ,..., mU u u u and S represents a set of services   1 2, ,..., nS s s s . 

- R  is denoted by the user-service matrix  
m nR 

.
 

- x  represents the input values of the neural network, where. vector 
( )ux is denoted by a partially observed of user u in 

mF  and vector
( )sx  is denoted by a partially observed of service s in 

nF . 

Let 
la  is the activation of layer l, we can compute this neural network given by 

    1 1.la f W x b                          (2) 

And the output of layer l is 

 

   

  
0 0, 0 0

0 1 1 0

.

. .

l

W bh x f W a b

f W f W x b b

 

  
          (3)

 

where  .f  is activation functions (the sigmoid activation). 

It is noted that we utilize the plate notation to represent n copies of the neural network (for each service or user) as follows: Let 

the weight matrix lW and the bias vector lb  which are tied across all copies, let ln  is the number of layers and layer 
lnL is the 

output layer. 

 

 

 
 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

Figure 2: An autoencoder-based Web service model (AWS) 
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4.  AWS-BASED QOS PREDICTION 

The AWS model is designed with two predictors for predicting the missing QoS values as follows: User-based AWS (is denoted 

by U-AWS) and Service-based AWS (is denoted by S-AWS), ///where U-AWS and S-AWS take input from the partially observed 

vector 
( )ux  and 

( )sx , respectively. Project AWS into a low-dimensional hidden space, and then use Backpropagation algorithm to 

reconstruct 
( )ux ,  

( )sx  in the output space. 

4.1   U-AWS-based QoS Prediction 

The AWS model has many parameters (links between nodes), so we try to optimize the parameters lW , lb   by minimizing the 

reconstruction error as follows. 

  

2

( ) ( )

,
,

1 2

( )
L Ln nl ll l

m
u u

W b
W b

u

x h x


min                      (4)

 

The Backpropagation algorithm is used to learn the set of the parameters lW , lb  . A U-AWS is presented as per Eq. (4) with 

two main tasks: First, each user 
( )ux is partially observed, which the weights are updated during Backpropagation that are associated 

with observed inputs. Second, using regularization the learned parameters are to decrease the magnitude of the weights so as to 

prevent over-fitting. Formally, the objective function of U-AWS to solve the following optimization problem 

                                                    
  

2
2( ) ( )

,
,

1

( )
2L Ln nl ll l

m
u u

W b l FW b
u l

x h x W




  min                       (5) 

where   controls the regularization strength and .
F

 denotes the Frobenius norm. In total, U-AWS requires the estimation of 

2nk+k+n parameters. To make recommendations, given the learned parameters 
nl

LW


, 
nl

Lb


 and U-AWS predicted the missing QoS 

value of user u and service s as follows: 

  

   ( )

,L Ln nl l

u

U us
W b

s

P R h x 

 
  
 

                                                                           (6) 

4.2    S-AWS-based QoS Prediction 

Similar to U-AWS, optimizing the parameters lW , lb , the reconstruction error is computed as follows: 

  
  

2

( ) ( )

,
,

1 2

( )
L Ln nl ll l

n
s s

W b
W b

s

x h x


min                                                                          (7) 

And the objective function for S-AWS is given by 

            
  

2
2( ) ( )

,
,

1

( )
2L Ln nl ll l

n
s s

W b l FW b
s l

x h x W




  min                                                             (8) 

S-AWS predicted the missing QoS value of user u and service s as follows: 

   ( )

,L Ln nl l

s

S us
W b

u

P R h x 

 
  
 

                                                                                    (9) 

 
 

5.  EXPERIMENTS 

5.1. Data set description and Evaluation Metric 

We use a public real world Web service QoS dataset for our experiments. We conducted experiments the algorithm from two 

different datasets. This dataset is collected by Zibin Zheng, et al. 

Dataset 1: The dataset monitor 100 Web services by using 150 distributed computer nodes located all over the world. The 

obtained results are contained in 150 files, where each file includes 10,000 Web Services invocations on 100 Web services by a 

service user, there are totally more than 1.5 million Web service invocations and each line in the file is a web service invocation 

result. More details can be found in [24]. 
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Dataset 2: The dataset consists two files (seen as two data sets), each dataset contains QoS records of 1,974,675 Web service 

invocations which are executed by 339 distributed users on 5825 web services and are transformed into two user-service QoS 

matrices (Response time and Throughput).  More details can be found in [18,25].  

Each dataset is divided into two parts. A training set (90%) and a test set (10%). We randomly removed entries 10% on the 

data set as missing QoS values. 

In order to measure the prediction accuracy of the model proposed, we use the Mean Absolute Error (MAE) and the Root Mean 

Square Error (RMSE). The evaluation rules are given by the following forms: 

 
, us usu s

R P R
MAE

N





                                                                                                                       (10)   

 

  
2

, us usu s
R P R

RMSE
N





 

where usR is the real QoS value observed by service user u on Web service s,  usP R is the predicted QoS value observed by 

service user u on Web service s and N  is the sum of the absolute difference over all pairs. 

5.2   Approaches to compare 

 In this paper, we evaluated three AWS-based models: U-AWS, a user-based AWS, S-AWS, a service-based AWS. To prove 

their effectiveness, we compare with some well-known models as follows: 

- UPCC: User-based CF method [19] is the classical method that applies similar users for predicting the missing QoS values. 

- IPCC: Item-based CF method [20] employs similar Web service items for predicting the missing QoS values.  

- RBM: RBM-based CF model [11] is a probabilistic graphical model based on Restricted Boltzmann machines (RBM), it 

estimates parameters of model by maximizing likelihood and training RBM by using Contrastive Divergence.  

- NMF (Non-negative matrix Factorization): This method is proposed by Lee et al. in [21, 22]. It is used to enforce the 

constraint that the factorized factors must be non-negative. And it is also widely used in the CF community. 

- PMF (Probabilistic matrix factorization): This method is proposed by Salakhutdinov and Minh in [23]. It is used a user-

item matrix based on PMF for the recommendation.  

 

5.3   Experimental results 

To perform experiments, we first set an appropriate latent-variable model k=400 (the best performance) and tuned 

 0.001,0.91,0.11,50,500 
 

Tables 1 and 2 report the MAE and RMSE values of all methods on two datasets. The results show that the item-based 

approaches (IPCC) have performance better the user-based approaches (UPCC). This observation indicates that similar services 

provide more information than similar users for the prediction in user-service matrix.The results also show that PMF performs 

better than RMB and NMF. Especially, two predictions (U-AWS and S-AWS) in the AWS model obtain smaller MAE and RMSE 

values consistently, which indicates better prediction accuracy. The MAE and RMSE values of Response time in Table 2 are larger 

than those of the Throughput, since Response time provides more similar values than Throughput.
 

Table 1: Prediction Quality on dataset 1. 

Methods Response time 

 MAE RMSE 

UPCC 1.0975 1.3756 

IPCC 1.0237 1.2897 

NMF 0.9192 1.1631 

RMB 0.9001 1.1391 

PMF 0.7875 1.0973 

U-AWS 0.7832 0.9037 

S-AWS 0.7701 0.9011 

Table 2: Prediction Quality on dataset 2. 

Methods Response time Throughput 

 MAE RMSE MAE RMSE 

UPCC 0.7551 0.9873 0.6113 0.7457 

IPCC 0.7197 0.9521 0.6119 0.7319 

NMF 0.6010 0.8979 0.4759 0.6447 

RMB 0.5928 0.8731 0.3871 0.6301 

PMF 0.5821 0.8765 0.3827 0.6300 

U-AWS 0.5711 0.8710 0.3839 0.6290 

S-AWS 0.5613 0.8700 0.3767 0.6155 
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We conducted experiments on dataset 2 ( Throughput) for comparing two predictions U-AWS and S-AWS. The results in Figure 

3 show that for MAE: The smallest value of U-AWS is 0.3939 and S-AWS is 0.3767.  For RMSE: The smallest value of U-AWS is 

0.6290 and S-AWS is 0.6155. 

From the above results we can conclude that the model AWS give better results than other models. The experiments also show 

that S-AWS have better performance than U-AWS.   This result also demonstrates that prediction based on services (S-AWS) has the 

density and thickness more than predicted based on users (U-AWS), leading to higher reliability. 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 

Assessing the quality of web services is one of the most common fields in the research community, especially predicting the 

missing QoS values to improve the quality for recommendations. Deep Learning is a prospective research field about image 

recognition, natural language processing, etc. In this paper, we proposed a new model based on Deep learning, the model is 

constructed based on Autoencoder and used the Backpropagation algorithm to train and the Gradient descent rule for updating the 

weights. The model can perform on two predictions: U-AWS and S-AWS.  The experimental results on two datasets show that the 

proposed model is more effective than other methods and S-AWS has better performance than U-AWS. 

In addition, we also orient some work to be done in the future: We will construct the combined model for two predictions U-

AWS and S-AWS. 
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