

EVALUATE MANDIBULAR RETROMOLAR SPACE BY USING CONE BEAM COMPUTED TOMOGRAPHY: A SYSTEMATIC REVIEW

¹Sreeram N.M., ² K Guaba

¹Post-Senior resident, ²Professor (retired), ¹Macherla, Andhra Pradesh, India

Abstract :

Objective of the study: 1. To measure retromolar space in all sagittal malocclusion (Skeletal Class I, Class II, Class III) patients by using cone beam computed tomography 2. To measure accurate retromolar space in all divergent growth pattern (Hypodivergent Growth pattern, Normodivergent Growth pattern, Hyperdivergent Growth Pattern by using cone beam computed tomography.

Material & Methods: Population of aged 18- 40 years taken of various sagittal malocclusion of skeletal class I, II, III & Vertical facial types of hypodivergent, Normodivergent, Hyper divergent growth patterns. PubMed, Google scholar, Science direct search engines taken to retrieve studies.

Results: Results showed that Skeletal Class III malocclusion has more retromolar space than Skeletal Class I, Skeletal Class II malocclusion. Hypodivergent growth patterns has more retromolar space than Normodivergent growth patterns

Conclusion: Skeletal Class III malocclusion & Hypodivergent growth pattern had more retromolar space.

Index Terms - Retromolar space, Cone beam computed tomography, Sagittal skeletal malocclusion, vertical face types

I. INTRODUCTION

Key to success & stability of mandibular molar distalization depends on the availability of retromolar space.¹ Maintaining retromolar space minimize risk of potential damage to adjacent molar root & alveolar bone.² Availability of retromolar space helps in correction of dental Class III malocclusion,³ to relieve crowding in anterior and middle dental arch⁴ to place ramal plates.

The concept of retromolar space analysis evolved from Merri-field's viewpoint of total space analysis.⁴ The boundaries of retromolar space are cortical layer of alveolar bone⁵ & anterior border of ramus of Mandible.⁶ Anatomically Retromolar space defined as the distance between the distal contact point of the 2nd molar & junction of the anterior border of the ramus with the body of the mandible.³

In previous times, initially thought anatomically limits of mandibular arch thought to be anterior border of ramus of mandible.^{7–9} However, studies with CBCT reported that anatomical limits of mandibular posterior anatomic limit were, a bone limitation of mandible was lingual cortex of mandibular body. Hence got the great importance to retromolar space with Cone beam computed tomography.

Some limited conducted on lateral cephalogram which had limitation of image error & reduction of available retromolar space than original anatomic given pathway to Cone beam computed tomography studies.

The primary aim of this systematic review to measure accurate retromolar space in sagittal skeletal malocclusion (Skeletal Class I, Class II, Class III) patients by using cone beam computed tomography. Secondary aim to measure accurate retromolar space in all divergent growth pattern (Hypodivergent, Normodivergent, Hyperdivergent growth Patterns by using cone beam computed tomography.

II. NEED OF THE STUDY.

The purpose & need of this systematic review to quantitatively measure retromolar space with cone beam computed tomography in sagittal skeletal malocclusion & vertical grower patients.

III. MATERIAL AND METHODOLOGY:

3.1. Population and Sample: Population of age between 18-40 years of all types of malocclusion i.e. Skeletal Class I,

IINRD2402360 International Journal of Novel Research and Development (www.ijnrd.org)

d573

Skeletal Class II malocclusion, Skeletal Class III malocclusion included. All types of vertical faces i.e., Normodivergent, Hypodivergent, Hyperdivergent growth pattern taken for measurement of retromolar space.

3.2 Data and Sources of Data: Data obtained from past to mid of February 2024. Search engine include Google scholar, PubMed, Science direct, Cochrane.

3.3 Framework for conduct of this study

Table 1: PICO format for current study

Population	Population of age between 18-40 years of all types of races
Intervention	To measure retromolar space between various Sagittal malocclusion (Skeletal Class I, Skeletal Class II, Skeletal Class III) & to measure retromolar space between various divergent growth pattern (Hypodivergent, Normodivergent, Hyperdivergent)
Control group	Comparison between sagittal malocclusion groups & comparison between vertical face growers
Outcome	Measure the Retromolar space by using Cone Beam Computed Tomography tool

Malocclusion for this study include Skeletal Class I, Skeletal Class II, Skeletal Class III malocclusion patients & Hypodivergent, Hyperdivergent growth pattern, Normodivergent growth pattern. All studies of Prospective, Retrospective, Casecontrol, cross-sectional studies, randomized and controlled clinical trials. All case reports, all animal studies, all systematic review cases excluded.

3.4 Methodology of study

Inclusive criteria of study (1) All population with age range of 18 years to 40 years (2) Crowding of mandibular arch < 5 mm (3) Single or combination of malocclusion cases (Skeletal Class I malocclusion (ANB angle 1^o - 4^o), Skeletal Class II malocclusion (ANB angle > 4^o), Skeletal Class III malocclusion (ANB angle Less than or Equal 1^o) included in this study (4) Healthy periodontal status (5) Hypodivergent growth Pattern cases (SN-MP angle $<27^{o}$), Normodivergent Growth pattern (SN-MP angle 27^{o} -37^o), Hyperdivergent Growth pattern (SN-MP angle $>37^{o}$). Exclusion criteria include (1) History of Orthodontic treatment / Orthopedic / or/ Orthognathic treated case (2) Missing Teeth excluding 3rd molars (3) Skeletal Deviation <4 mm deviation of mandible (Gross skeletal Asymmetry Cases) (4) All Congenital cranio-facial anomalies cases like Cleft Lip & Palate etc. (5) All syndromic cases (6)Prosthetic rehabilitation of Molar (7) Periodontally compromised cases with Bony defect (8) Root anomalies of mandibular 2nd molars (9) Presence of cyst or tumors, fracturs in mandible. Search strategy was mentioned for this study mentioned in Table 2. Included & excluded studies mentioned in Table 3,4 respectively.

Table 2. Search Strategy for this study

S. No	Search Engine	Keywords used in combinations	No. Of articles
			retrieved
1	Google scholar	Retromolar space/ Mandibular retromolar space/third molar eruption space/	705
2	Pubmed	mandibular anatomic limit	323
3	Science direct		681
4	Cohrane	Cone beam computed tomography/ CBCT/ 3-d image	3
5	ILLAC data base	Vertical growers/ Divergent growth pattern/ Divergent growth/ Vertical face Skeletal malocclusion/ Sagittal skeletal malocclusion/	193
		Total	1905

Figure 1. PRISMA FLOW chart mentioned.

Research Through Innovation

Table 3. Studies included in this systematic review

S. No	Year, Author	Study design
1	Kim et al. ⁶ 2014	Retrospective study
2	Choi et al. ³ 2018	Retrospective study
3	Zhao et al. ² 2020	Prospective study
4	Kim et al. ¹⁰ 2021	Retrospective study
5	Aoun et al. ¹¹ 2022	Retrospective study
6	Guo et al. ¹² 2022	Prospective study
7	Hui et al. ¹³ 2022	Cross-sectional retrospective study
8	Kim et al. ¹⁴ 2022	Prospective study
9	Huang et al. ⁵ 2022	Prospective study
10	Fan et al. ¹ 2022	Prospective study
11	Oz <mark>den e</mark> t al. ¹⁵ 2022	Retrospective study
12	Rajamanickam & Sundari ¹⁶ 2023	Prospective study
13	Huang et al. ⁵ 2023	Retrospective study
14	Seol et al. ¹⁷ 2023	Retrospective study

Research Through Innovation

Table 4. Reason for Exclusion study in this systematic review

S. No	Author & Year	Reason for exclusion of study
1	Hattab et al. ¹⁸ 1999, Mollaoglu et al. ¹⁹ 2002, Uthman et al. ²⁰ 2007, Alhaija ²¹	Orthopantomogram study (2, 3, 6, 7, 8, 9)
	et al. 2010, Zelic et al. ²² 2013, Jakovljevic et al. ²³ 2014	
2	Richardson et al. ²⁴ 1977, Alhaija et al. ²¹ 2011, Jakovljevic et al. ²³ 2014, Yeon	Lateral cephalogram study (1,7,9,13)
	et al. ²⁵ 2021	
3	Richardson et al. ²⁴ 1977	Plaster model study (1)
4	Artun et al. ²⁶ 2005, Behbehani et al. ²⁷ 2006, Yeon et al. ²⁵ 2021	Orthodontically treated case (4, 5, 13)
5	Behbehani et al. ²⁷ 2006, Sisman et al. ²⁸ 2015, Nookala et al. ²⁹ 2023	No quantitative measurement of retromolar
		space (5, 10, 14)
6	Bayome et al. ³⁰ 2021	Systematic review (11)
7	Liu et al. ³¹ 2021	Study of maxilla

Table 5. Material and methodology in this study

S. No	Author, Year	Design of study	Material & Methodology (Total Malas Famalas Malaeslusion) Tool used	Reference line for	Result & Conclusion
110			(Total, Males, Females, Malocclusion), Tool used	Mandibular	
				Retromolar space	
1	Kim et al.º 2014	Retrospective	Total – 34 adults (68 mandibular 2 nd molar molars)	Mandibular occlusal	Posterior available
		study		plane	space is limited in
			Total sample sub divided in to Molar Contact group $(n - (m a \log n \log \log$		Skeletal Class I
			& Non- contact group (Lower 2 nd molar not in contact		growth pattern
			with Cortical bone)		giowin pattern
			Tool – CBCT		Posterior available
					space was smaller at
					the root level than that
					limitation of lingual
					cortex of mandibular
					body
2	Choi et al. ³ 2018	Retrospective	Total sample – 110 of Skeletal Class I, Skeletal Class	Mandibular occlusal	The available space
		study	III malocclusion case	plane mesiobuccal	availability affected by
				cusp of 1 st lower molar	age, sex, and skeletal
			Skeletal Class I malocclusion 49 patients (Male were 18, female were 31) & Mean age 27.7 ± 9.5 years	& central incisor	& dental patterns.
					Skeletal class III
			Skeletal Class IIII malocclusion 61 patients (Male were		malocclusion had
			22, Tentale were 59) & Mean age was 20.4 ± 4.4 years		space than Skeletal
					Class I malocclusion
3	Zhao et al. ² 2020	Prospective	Total sample – 123 Hypodivergent, Normodivergent,	The midsagittal	Skeletal Class I
		study	Hyperdivergent growth pattern od all Skeletal Class I	reference (MSR) plane	Hyperdivergent
		ncerne	malocclusion	constructed using the	growth pattern had
				Crista Galli, Anterior	smallest retromolar
			Age range 20-40 years	Nasai Spine, Opisuiton	normodivergent
					Hypodivergent growth
			Hypodivergent growth pattern case 41 patient with		pattern
			mean age of 24.00 ± 3.87 years, mean mandibular plane		
			angle $23.11 \pm 3.10^{\circ}$ (Males – 10, females – 31)		
			Normodivergent growth pattern case 41 patient with		
			mean age of 23.39 ± 2.79 years, mean mandibular		
			plane angle $32.26 \pm 2.70^{\circ}$ (Males – 9, females – 32)		
			Hyperdivergent growth pattern case 41 patient with		
		Reje	mean age of 23.46 ± 3.98 years, mean mandibular plane	novatio	n
4	TC 1 10 2021	D. i.	angle $41.36 \pm 3.38^{\circ}$ (Males – 7, females – 34)	D : 1 11	<u>(1)</u>
4	кım et al. ¹⁰ 2021	Retrospective	1 otal sample – 48 Hypodivergent, Normodivergent, Hyperdivergent growth pattern	Posterior occlusal line	Shorter retromolar
		study	riyperurvergent grown pattern	of 1 st & 2 nd molars	hyperdivergent growth
			Males were 34 & Females were 14 patients		pattern than in
			Hypodivergent growth nattern case 16 nations with		growth nattern nations
			mean age of 22.5 ± 1.9 years, mean mandibular plane		growin pattern patient
			angle $25.3 \pm 3.3^{\circ}$ (Males – 12, females – 4)		
					Limited retromolar
			Normodivergent growth pattern case 16 patient with		space available with
			mean age of 22.9 ± 3.6 years, mean mandibular plane		temale hyperdivergent
			angle 55.0 ± 1.6 (wrates – 11, temates – 5)		growin pattern
			Hyperdivergent growth pattern case 16 patient with		
			mean age of 23.1 ± 3.7 years, mean mandibular plane		
		<u> </u>	angle $39.8 \pm 2.4^{\circ}$ (Males – 11, females – 5)		

5	Aoun et al. ¹¹ 2022	Retrospective	Total sample – 32 CBCT cases	1. Occlusal plane line	CBCT derived
		study		molar and premolars	shown larger
			Males were 12 & females were 20 patients	2. Tangent plane: -	retromolar space due adopted techniques
			Mean age of study 20.97 ± 2.152 years (age range of 18 -25 years)	distal surface of mandibular 2 nd molar	
			Tool:- CBCT derived Orthopantomogram	& perpendicular to occlusal plane	
			Tool – CBCT derived Orthopantomogram & CBCT derived Orthopantomogram		
6	Guo et al. ¹² 2022	Prospective study	Total 186 patients categorized in to different status of 3 rd molar analysed depth of 2mm, 4mm, 6mm,8mm,	Parallel to Occlusal plane	No significant gender difference in
		study	10mm from Cemento-enamel junction	Printe	retromolar space
					impaction & normal
					eruption of lower wisdom tooth have
					larger retromolar space
					Different status of lower wisdom teeth
					effects the retromolar
7	Hui et al. ¹³ 2022	Cross-sectional	Total sample -120 CBCT	Mandibular occlusal	Limit of retromolar
		study	Skeletal Class II malocclusion of 60 patients (30 Male	central incisor & 2 nd	observed in Skeletal
			+ 30 Female) with age range of 18 - 35 years	molar	class II malocclusion
			+ 30 females with age range of 18 -35 years		Limit of retromolar
					space at Apical level in Skeletal Class III
8	Kim et al. ¹⁴ 2022	Prospective	Total sample – 114 patients with mean age 22 ± 3.0	Reference plane	malocclusion Posterior retromolar
		study	years age range of 18 years to 29 years	Parallel to Occlusal plane and	space greater in Males than females in
				perpendicular to lower 2^{nd} molar tooth	mandibular arch
					Normodivergent growth pattern has
					greater retromolar
					hypodivergent and
-	~~				growth pattern
9	Huang et al. ³ 2022	Prospective study	Total sample size – 103 patients in which 52 male + 51 Female with mean age of 28.39 years	Mandibular occlusal	Retromolar space at is higher at crown level
			All 206 distal to 2 nd lower 2 nd molar retromolar space		and Minimum at root area
			evaluated		
			Age range of 18 - 40 years		
10	Fan et al. ¹ 2022	Prospective	Total sample – 120 all Normodivergent growth pattern	1. Mandibular occlusal	Skeletal Class III malocclusion have
			Skeletal Class L48 patient (17 Males \pm 31 Female)	mesio-buccal cusp of	larger retromolar space
			with mean age of 22.56 ± 3.31 years, mean ANB angle 2.64 ± 0.96 years	Incisor tip	Skeletal Class II malocelusion
		Rece	Skalatal Class II 36 notiont (12 Mala + 24 Famala)	2. Midsagittal	introcerusion.
		ILC PC	with mean age of 22.19 ± 3.92 years, mean ANB angle	passing through Crista	
			0.04 ± 1.15 years	Spine, Opistion.	
			Sketetai Class III 36 patient (16 Male + 20 Female) with mean age of 21.50 ± 3.30 years, mean ANB angle		
			-2.34 ± 2.23 years		
11	Ozden et al. ¹⁵	Retrospective	Tool – CBCT Total sample – 120 divided in Skeletal Class I &	Mandibular occlusal	Skeletal Class III
	2022	study	Skeletal Class III malocclusion	plane	malocclusion with Hyperdivergent
			Group;1 Class I with Normodivergent pattern (15 males + 15 Females with mean age of 21.7 years		growth pattern have large retromolar space
			Group; 2 Class I with Hyperdivergent pattern (14		(p<0.001)
			males + 16 Females with mean age of 20.4 years		
			Group; 3 Class III with Normodivergent pattern (17 males + 13 Females with mean age of 19.4 years		
T	MDD2402260	Intornati	ional Journal of Noval Pacearch and Dovalan	mont (ununu jinnd on	

12	Rajamanickam & Sundari ¹⁶ 2023	Prospective study	Group; 4 Class III with Hyperdivergent pattern (15 males + 15 Females with mean age of 18.5 years) Tool – CBCT Total sample 80 al skeletal Class III Normodivergent growth pattern malocclusion cases (No gender mentioned) Age range 18 years – 35 years	 Mid sagittal plane passing Crista Galli Posterior occlusal plane passing through buccal cusp tip of 1st 	Adequate space available for the purpose Molar distalization ((p<0.05) with 3.3 ± 0.9 mm)
				and 2 nd mandibular molars	
13	Huang et al. ⁵ 2023	Retrospective study	Total sample – 103 patients (Males were 52, Female were 51) Age range (18-40) Mean age of 28.39 years Tool:- CBCT derived Panoramic radiographs	Occlusal plane	Retromolar space at crown level was longer than at the root level (p<0.05) Sufficient space available between Ramus of mandible & Distal aspects of 2 nd molar Hence special attention needed for during molar Distalization process
14	<u>Seol</u> et al. ¹⁷ 2023	Retrospective study	Total sample – 30 patients of contained both skeletal Class I & skeletal Class III malocclusion Sample contained 17 were male & 13 were female with mean age of 22.2 ± 4.5 years. Tool - CBCT		Skeletal Class III malocclusion 11.1 mm retromolar space & Skeletal Class I malocclusion had 9.8 mm of retromolar space available location at 8 mm apical to CEJ

IV. RESULTS: -

Results of this study mentioned in Table 6, 7. that Skeletal Class III malocclusion had greater retromolar space among Skeletal Class III malocclusion and among divergent faces Hypodivergent growth pattern had larger retromolar space than Hyper divergent growth pattern patient and Normodivergent growth pattern patients.

Table 6. Measurement of Retromolar space in various sagittal malocclusions (Skeletal Class I, Skeletal Class II, Skeletal Class III)

S. No	Author, Year, type of	Name of malocclusion & Age	Result & Conclusion
	study		
1	Choi et al. ³ 2018, Retrospective study	Total sample 110 contained both Skeletal Class I, Skeletal Class III malocclusion case	The available space availability affected by age, sex, and skeletal & dental patterns.
	INCE	Skeletal Class I malocclusion 49 patients (Male were 18, female were 31) & Mean age 27.7 ± 9.5 years	Skeletal class III malocclusion had greater retromolar space than Skeletal Class I malocclusion
		Skeletal Class IIII malocclusion 61 patients (Male were 22, female were 39) & Mean age was 26.4 ± 4.4 years	
2	Hui et al. ¹³ 2022, Cross- sectional retrospective	120 skeletal class II, Skeletal Class III malocclusion	Limit of retromolar space at coronal area is observed in Skeletal class II malocclusion
	study	Skeletal Class II malocclusion of 60 patients (30 Male + 30 Female) with age range of 18 -35 years	
		Skeletal Class III malocclusion of 60 patients (30 Male + 30 females with age range of 18 -35 years	Limit of retromolar space at Apical level in Skeletal Class III malocclusion
3	Fan et al. ¹ 2022, Prospective study	120 sample contained skeletal class I, Skeletal Class II, Skeletal Class III malocclusion	Skeletal Class III malocclusion have larger retromolar space than Skeletal Class I, Skeletal Class II malocclusion.
	1.0.0	Skeletal Class I 48 patient (17 Males + 31 Female) with mean age of 22.56 ± 3.31 years, mean	
		Skeletal Class II 36 patient (12 Male + 24 Female) with mean age of 22.19 ± 3.92 years, mean	
		Skeletal Class III 36 patient (16 Male + 20 Female) with mean age of 21.50 ± 3.30 years	
4	Ozden et al. ¹⁵ 2022, Retrospective study	120 sample contained both Skeletal Class I & Skeletal Class III malocclusion	Skeletal Class III malocclusion with Hyperdivergent growth pattern have large retromolar space (p<0.001)
		Skeletal Class I 60 patient (29 males + 31 Females) age 26.06 years	
		Skeletal Class III 60 patient (32 males + 28 Females) age of 37 years	
5	Rajamanickam & Sundari ¹⁶ 2023, Prospective study	Total sample of 80 contained skeletal Class III malocclusion cases (No gender mentioned)	Adequate space available for the purpose Molar distalization (($p<0.05$) with 3.3 ± 0.9 mm)
		Age range 18 years – 35 years	

6	<u>Seol</u> et al. ¹⁷ 2023,	Total of 30 patients contained both Skeletal Class I & Skeletal Class	Skeletal Class III malocclusion 11.1 mm
	Retrospective study	III malocclusion	retromolar space & Skeletal Class I
			malocclusion had 9.8 mm of retromolar
		Sample contained 17 were male & 13 were female with mean age of	space available location at 8 mm apical to
		22.2 ± 4.5 years.	CEJ

Table 7. Measurement of Retromolar space in various divergent growth patterns (Hypodivergent, Normodivergent, Hyper

		divergent patterns)	
S. No	Author & Year	Sample size	Result & Conclusion
1	Zhao et al. ² 2020 & Prospective study	Total sample – 123 Hypodivergent, Normodivergent, Hyperdivergent growth pattern of all Skeletal Class I malocclusion	Hyperdivergent growth pattern had smallest retromolar space than normodivergent, Hypodivergent growth pattern
		Age range 20-40 years	
		Hypodivergent growth pattern case 41 patient with mean age of 24.00 ± 3.87 years, mean mandibular plane angle $23.11 \pm 3.10^{\circ}$ (Males – 10, females – 31)	
		Normodivergent growth pattern case 41 patient with mean age of 23.39 ± 2.79 years, mean mandibular plane angle $32.26 \pm 2.70^{\circ}$ (Males – 9, females – 32)	
		Hyperdivergent growth pattern case 41 patient with mean age of 23.46 ± 3.98 years, mean mandibular plane angle $41.36 \pm 3.38^{\circ}$ (Males – 7, females – 34)	
2	Kim et al. 2021 ¹⁰ & Retrospective study	Total sample 48 contained Hypodivergent, Normodivergent, Hyperdivergent growth patterns	Shorter retromolar space in hyperdivergent growth pattern than in Normodivergent growth pattern patient
		Males were 34 & Females were 14 patients	
		Hypodivergent growth pattern case 16 patient with mean age of 22.5 \pm 1.9 years, mean mandibular plane angle 25.3 \pm 3.3 ^o (Males – 12, females – 4)	Limited retromolar space available with female hyperdivergent growth pattern
		Normodivergent growth pattern case 16 patient with mean age of 22.9 ± 3.6 years, mean mandibular plane angle $33.0 \pm 1.8^{\circ}$ (Males – 11, females – 5)	
		Hyperdivergent growth pattern case 16 patient with mean age of 23.1 ± 3.7 years, mean mandibular plane angle 39.8 $\pm 2.4^{0}$ (Males – 11, females – 5)	
3	Fan et al. ¹ 2022 & Prospective study	Total sample – 120 all Normodivergent growth pattern patients	Adequate retromolar space is available in Normodivergent growth pattern
	Inte	Skeletal Class I 48 patient (17 Males + 31 Female) with mean age of 22.56 ± 3.31 years, mean ANB angle 2.64 ± 0.96 years Skeletal Class II 36 patient (12 Male + 24 Female) with mean age of 22.19 ± 3.92 years, mean ANB angle 6.04 ±	rch Journal
		Skeletal Class III 36 patient (16 Male + 20 Female) with mean age of 21.50 ± 3.30 years, mean ANB angle -2.34 \pm 2.23 years	
		Tool - CBCT	
4	Ozden et al. ¹⁵ 2022 & Retrospective study	Total sample – 120 divided in Skeletal Class I & Skeletal Class III malocclusion	Skeletal Class III malocclusion with Hyperdivergent growth pattern have large retromolar space (p<0.001)
	Re	Group;1 Class I with Normodivergent pattern (15 males + 15 Females with mean age of 21.7 years	nnovation
		Group; 2 Class I with Hyperdivergent pattern (14 males + 16 Females with mean age of 20.4 years	
		Group; 3 Class III with Normodivergent pattern (17 males + 13 Females with mean age of 19.4 years	
		Group; 4 Class III with Hyperdivergent pattern (15 males + 15 Females with mean age of 18.5 years)	
		Tool – CBCT	
5	Rajamanickam & Sundari ¹⁶ 2023 & Prospective study	Total sample 80 Normodivergent growth pattern malocclusion cases (No gender mentioned)	Adequate space available for the purpose Molar distalization ((p<0.05) with 3.3 ± 0.9 mm)

V. DISCUSSION

The concept of retromolar space analysis evolved from Merri-field's viewpoint of total space analysis.⁴ The boundaries of retromolar space are cortical layer of alveolar bone⁶ & anterior border of ramus of Mandible.³² Anatomically, retromolar space defined as the distance between the distal contact point of the 2nd molar & junction of the anterior border of the ramus with the body of the mandible³³

This purpose of conducting study was retromolar space calculation which helps in space available for Molar distalization and application of Ramal plates & Relieve of crowding in anterior & middle aspect of dental arches. The main objective of doing this study was to measure retromolar space in various skeletal Class III malocclusion & retromolar space relation to divergent growth pattern.

Reason for selecting CBCT as tool why not other tools

More accurate measurement, high efficiency, precise quantification, high resolution, High maneuver, flexible to move in all direction during measurement given pathway for selection of 3 - dimensional diagnostic tools i.e. Cone beam computed tomography.⁵ Reference plane used for the measuring retromolar space was Mandibular occlusal plane to get valid & reliable results^{1,3,5,10–13,15–17,34} Some of the studies were conducted on Orthopantomogram^{18–23,25} not included in this study because posterior accessible on lateral cephalogram is less than that of original anatomical structures. Hence, such errors might mislead the study.^{16,34,35}

Effect of vertical growth relation & Retromolar space

Relationship of retromolar space availability strongly co - related to vertical skeletal pattern.^{10,36} retromolar space strongly correlated with vertical growth pattern. Retromolar space availability is more in hypodivergent grower patient¹⁰ because hypodivergent grower cases have greater occlusal forces^{10,14,37} enhances bone resorption due to muscle activity leads to more availability of retromolar space & increased attachments of mandibular lingual cortical bone also one of the factor for retromolar space availability is more in hypodivergent growth² pattern followed by Normodivergent growth pattern. ^{1,10,16} Least retromolar space available in hyperdivergent growth pattern.^{2,10} In contrast to our study, Hyperdivergent patients had larger retromolar space reason behind that involvement of skeletal Class III pattern.¹⁵

Effect of Sagittal skeletal relation & Retromolar space

In current study, skeletal Class III pattern involved to size of mandible. Skeletal Class III malocclusion had large number of Retromolar space. The main reason was large size of mandible which leads to larger retromolar space^{1,23} & other reason was mandibular molar were far from the inner cortex of mandible.³⁹

Retromolar space availability is directly proportional to size of mandible. Retromolar space availability depends on size of body of mandible^{10,14,23} In skeletal Class III malocclusion have large mandible indicate that more availability of retromolar space than skeletal Class I & Class II patients. Retromolar space also depends on buccolingual position of mandible. Skeletal Class III patients mandibular molars more lingually inclined suggested that roots of mandibular 2^{nd} molar far from the inner cortex of mandible.^{36,39} Choi.et al.³ (2018) reported that in retromolar space available in skeletal class III malocclusion 2.7 ± 2.8 mm at 6 mm apical to furcation of adjacent teeth. Since amount of space for molar distalization varied from 3.2 mm to 4.9 mm including distal tipping.^{35,40,41}

Studies shows retromolar space is larger in skeletal Class III malocclusion were Choi et al.³ (2018), Hui et al.¹³ (2022), Fan et al.¹ (2022), Ozden et al.¹⁵ (2022), Iguchi et al.³⁶ (2022), Rajamanickam & Sundari ¹⁶ (2023), Seol et al. (2023).¹⁷ Existence of 3rd molar, age & retromolar space availability

Some studies strongly supported that presence of 3rd molar does not influence on the retromolar space availability.^{1,2,10,34} sometimes, influence of age on retromolar space caused by periodontal disease or physiological alveolar bone ridge absorption⁴² Huang et al.⁵ found that retromolar space had no significant difference in gender. Retromolar space availability depends on size of body of mandible^{10,14} & buccolingual position of mandible³⁶

Limitation of current systematic study are some strong evidence needs to supported gender does not influence retromolar space availability. The finding by Choi etal.³ that the available space at the posterior boundary of molars is influenced by age supports our results.

Conclusion:

- 1. Retromolar space availability inversely proportional to Mandibular plane angle
- 2. Hypodivergent growth pattern had large retromolar space than hyperdivergent & Normodivergent growth pattern
- 3. Skeletal Class III malocclusion had large retromolar space than Skeletal Class I, Class II malocclusion
- 4. Gender had no effect retromolar space length or width. But Eruption stage of 3rd molar makes limiting factor for availability of retromolar space

Acknowledgment

No conflict of interest

References

- 1. Fan Z, Zhang Q, Jiang Y, Qin Q, Huang S, Guo J. Mandibular retromolar space in adults with different sagittal skeletal patterns. Angle Orthod. 2022 Jul 18;92(5):606–12.
- 2. Zhao Z, Wang Q, Yi P, Huang F, Zhou X, Gao Q, et al. Quantitative evaluation of retromolar space in adults with different vertical facial types: Angle Orthod. 2020 Nov;90(6):857–65.

- 3. Choi YT, Kim YJ, Yang KS, Lee DY. Bone availability for mandibular molar distalization in adults with mandibular prognathism. Angle Orthod. 2018 Jan;88(1):52–7.
- 4. Merrifield LL, Klontz HA, Vaden JL. Differential diagnostic analysis system. Am J Orthod Dentofacial Orthop. 1994 Dec;106(6):641-8.
- 5. Huang Y, Chen Y, Yang D, Tang Y, Yang Y, Xu J, et al. Three-dimensional analysis of the relationship between mandibular retromolar space and positional traits of third molars in non-hyperdivergent adults. BMC Oral Health. 2023 Mar 10;23(1):138.
- 6. Kim SJ, Choi TH, Baik HS, Park YC, Lee KJ. Mandibular posterior anatomic limit for molar distalization. Am J Orthod Dentofacial Orthop. 2014 Aug;146(2):190–7.
- 7. Ganss C, Hochban W, Kielbassa AM, Umstadt HE. Prognosis of third molar eruption. Oral Surg Oral Med Oral Pathol. 1993 Dec;76(6):688–93.
- 8. Begtrup A, Grønastøð HÁ, Christensen IJ, Kjær I. Predicting lower third molar eruption on panoramic radiographs after cephalometric comparison of profile and panoramic radiographs. Eur J Orthod. 2013 Aug;35(4):460–6.
- 9. Kim TW, Artun J, Behbehani F, Artese F. Prevalence of third molar impaction in orthodontic patients treated nonextraction and with extraction of 4 premolars. Am J Orthod Dentofacial Orthop. 2003 Feb;123(2):138–45.
- 10. Kim SH, Cha KS, Lee JW, Lee SM. Mandibular skeletal posterior anatomic limit for molar distalization in patients with Class III malocclusion with different vertical facial patterns. Korean J Orthod. 2021 Jul 25;51(4):250–9.
- 11. Aoun Y, Husseini B, Younes R, Ghosn N, Bouserhal J. Assessment of lower third molar space: A comparative radiographic study. Dentomaxillofac Radiol. 2022 Jul 1;51(5):20220049.
- 12. Guo X, Gao Y, Zhang F, Wang M, Tian X, Huang Q, et al. Assessment of mandibular retromolar space in adults with regard to third molar eruption status. Clin Oral Investig. 2023 Feb;27(2):671–80.
- 13. Hui VLZ, Xie Y, Zhang K, Chen H, Han W, Tian Y, et al. Anatomical limitations and factors influencing molar distalization. Angle Orthod. 2022 May 23;92(5):598–605.
- 14. Kim KJ, Park JH, Chang NY, Seo HY, Chae JM. A cone-beam computed tomography evaluation of posterior available space in both arches relative to various skeletal patterns. Am J Orthod Dentofacial Orthop. 2022 Jun;161(6):798–808.
- 15. Özden S, Uslu F, Dedeoğlu N. Evaluation of bone area in the posterior region for mandibular molar distalization in class I and class III patients. Clin Oral Investig. 2023 May;27(5):2041–8.
- 16. Rajamanickam P, Sundari SK. Mandibular Posterior Anatomic Limit for Distalization in Patients With Various Patterns of Third Molar Impactions: A Three-Dimensional Cone Beam CT (CBCT) Study. Cureus. 2023 Dec;15(12):e50165.
- 17. Seol J, Bayome M, Kook YA, Kang SJ, Oh J, Ham LK, et al. A 3-dimensional evaluation of available retromolar space for the application of ramal plates. Am J Orthod Dentofacial Orthop. 2023 Nov;164(5):628–35.
- 18. Hattab FN, Alhaija ES. Radiographic evaluation of mandibular third molar eruption space. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 Sep;88(3):285–91.
- 19. Mollaoglu N, Cetiner S, Güngör K. Patterns of third molar impaction in a group of volunteers in Turkey. Clin Oral Investig. 2002 Jun;6(2):109–13.
- 20. Uthman AT. Retromolar space analysis in relation to selected linear and angular measurements for an Iraqi sample. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007 Oct;104(4):e76-82.
- 21. Abu Alhaija ESJ, AlBhairan HM, AlKhateeb SN. Mandibular third molar space in different antero-posterior skeletal patterns. Eur J Orthod. 2011 Oct;33(5):570–6.
- 22. Zelić K, Nedeljković N. Size of the lower third molar space in relation to age in Serbian population. Vojnosanit Pregl. 2013 Oct;70(10):923–8.
- 23. Jakovljevic A, Lazic E, Soldatovic I, Nedeljkovic N, Andric M. Radiographic assessment of lower third molar eruption in different anteroposterior skeletal patterns and age-related groups. Angle Orthod. 2015 Jul;85(4):577–84.
- 24. Richardson ME. The etiology and prediction of mandibular third molar impaction. Angle Orthod. 1977 Jul;47(3):165–72.

- 25. Yeon BM, Lee NK, Park JH, Kim JM, Kim SH, Kook YA. Comparison of treatment effects after total mandibular arch distalization with miniscrews vs ramal plates in patients with Class III malocclusion. Am J Orthod Dentofacial Orthop. 2022 Apr;161(4):529–36.
- 26. Artun J, Thalib L, Little RM. Third molar angulation during and after treatment of adolescent orthodontic patients. Eur J Orthod. 2005 Dec;27(6):590–6.
- 27. Behbehani F, Artun J, Thalib L. Prediction of mandibular third-molar impaction in adolescent orthodontic patients. Am J Orthod Dentofacial Orthop. 2006 Jul;130(1):47–55.
- 28. Sisman Y, Ercan-Sekerci A, Payveren-Arıkan M, Sahman H. Diagnostic accuracy of cone-beam CT compared with panoramic images in predicting retromolar canal during extraction of impacted mandibular third molars. Med Oral Patol Oral Cir Bucal. 2015 Jan;20(1):e74–81.
- 29. Nookala H, Sreenivasagan S, Sivakumar A, S AK. Computed Tomographic Evaluation of Buccal Shelf Dimensions in South Indian Patients With Sagittal Skeletal Class III Malocclusion: A Retrospective Study. Cureus. 15(8):e43883.
- 30. Bayome M, Park JH, Bay C, Kook YA. Distalization of maxillary molars using temporary skeletal anchorage devices: A systematic review and meta-analysis. Orthod Craniofac Res. 2021 Mar;24 Suppl 1:103–12.
- 31. Liu LP, Yang TT, Cheng JX. [Anatomical limits of distal displacement of bony maxillary molars in patients with skeletal Class II malocclusion]. Shanghai Kou Qiang Yi Xue. 2021 Aug;30(4):410–3.
- 32. Chen LL, Xu TM, Jiang JH, Zhang XZ, Lin JX. Longitudinal changes in mandibular arch posterior space in adolescents with normal occlusion. Am J Orthod Dentofacial Orthop. 2010 Feb;137(2):187–93.
- 33. Legović M, Legović I, Brumini G, Vandura I, Cabov T, Ovesnik M, et al. Correlation between the pattern of facial growth and the position of the mandibular third molar. J Oral Maxillofac Surg. 2008 Jun;66(6):1218–24.
- 34. Kim SJ, Choi TH, Baik HS, Park YC, Lee KJ. Mandibular posterior anatomic limit for molar distalization. Am J Orthod Dentofacial Orthop. 2014 Aug;146(2):190–7.
- 35. Yu J, Park JH, Bayome M, Kim S, Kook YA, Kim Y, et al. Treatment effects of mandibular total arch distalization using a ramal plate. Korean J Orthod. 2016 Jul;46(4):212–9.
- 36. Iguchi K, Kim YI, Adel M, Nadim M, Hatanaka R, Koizumi S, et al. Association of Mandibular Posterior Anatomic Limit with Skeletal Patterns and Root Morphology Using Three-Dimensional Cone Beam Computed Tomography Comprehensive Analysis. Diagnostics (Basel). 2022 Dec 2;12(12):3019.
- 37. Ingervall B, Helkimo E. Masticatory muscle force and facial morphology in man. Arch Oral Biol. 1978;23(3):203-6.
- 38. Masumoto T, Hayashi I, Kawamura A, Tanaka K, Kasai K. Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. Eur J Orthod. 2001 Feb;23(1):15–23.
- 39. Sendyk M, de Paiva JB, Abrão J, Rino Neto J. Correlation between buccolingual tooth inclination and alveolar bone thickness in subjects with Class III dentofacial deformities. Am J Orthod Dentofacial Orthop. 2017 Jul;152(1):66–79.
- 40. Poletti L, Silvera AA, Ghislanzoni LTH. Dentoalveolar class III treatment using retromolar miniscrew anchorage. Prog Orthod. 2013 May 23;14:7.
- 41. Kook YA, Park JH, Bayome M, Kim S, Han E, Kim CH. Distalization of the mandibular dentition with a ramal plate for skeletal Class III malocclusion correction. Am J Orthod Dentofacial Orthop. 2016 Aug;150(2):364–77.
- 42. Sapey E, Yonel Z, Edgar R, Parmar S, Hobbins S, Newby P, et al. The clinical and inflammatory relationships between periodontitis and chronic obstructive pulmonary disease. J Clin Periodontol. 2020 Sep;47(9):1040–52.
- 43. Chen CL, Chen CH, Pan CY, Chang HP, Chen PH, Tseng YC. Cone beam computed tomographic analysis of the spatial limitation during mandibular arch distalization. BMC Med Imaging. 2020 Apr 15;20(1):39.