
 © 2024 IJNRD | Volume 9, Issue 3 March 2024| ISSN: 2456-4184 | IJNRD.ORG

IJNRD2403379 International Journal of Novel Research and Development (www.ijnrd.org)

d603

c603

A Web Based Search

Engine

1st Prasun Kumar

CSE

Parul University

vadodara, india

2nd Singh AbhishekKumar

CSE

Parul University

vadodara, india

3rd Manish Kumar

CSE

Parul University

vadodara, india

4th Shyam Tiwari

CSE

Parul University

vadodara, india

5th Vaibhavi Jani

CSE,PIET

Parul University

vadodara, india

Abstract—Competitive programming involves solving

algorithm-mic problems from various online platforms such as
Codeforces, Leetcode, HackerRank, etc. These platforms offer a
wide range of problems with varying difficulty levels and
categories. However, finding relevant and challenging problems
from these platforms can be time-consuming and overwhelming.
In addition, many competitive programmers may not be familiar
with all the platforms and may not know where to start looking
for problems. To address this issue, we propose the development
of a web-based search engine that aggregates problems from
different platforms and allows users to search for specific
problems based on various criteria such as difficulty level, tags,
and contest name. The proposed search engine will use web
scraping techniques to extract problem data from different
platforms. The scraped data will be stored in a database and
indexed using a search engine such as Elasticsearch. The search
engine will provide users with a simple and intuitive interface to
search for problems based on different criteria. Users will also be
able to filter the results based on their preferences. Developing a
web-based search engine for competitive programming problems
from platforms like codeforces, Leetcode, etc, and writing the
code for scraping using Nodejs for taking data (IDs, URL links,
and tags of a question) from websites like codeforces.

Keywords: Competitive programming involves solving

algorithmic problems from various online platforms like Code-

forces, Leetcode, HackerRank, etc.

I. INTRODUCTION

Developing a web-based search engine for competitive

programming problems. The search engine will aggregate

problems from different platforms and allow users to search

for specific problems based on various criteria such as

difficulty level, tags, and contest name. The proposed solution

involves web scraping techniques to extract problem data from

different platforms, storing the scraped data in a database,

and indexing it using a search engine like Elasticsearch. The

search engine will provide users with a simple and intuitive

interface to search for problems based on different criteria.

Competitive programming has gained immense popularity

among developers and computer science enthusiasts as a

means of honing their problem-solving skills and algorithmic

understanding. However, navigating the plethora of problems

scattered across various online platforms can be a daunting

task for both beginners and experienced programmers alike.

To address this challenge, we propose the development of a

comprehensive web-based search engine tailored specifically

for competitive programming problems. This search engine

aims to streamline the process of discovering relevant

problems by aggregating data from multiple platforms and

providing users with intuitive search functionalities.

To ensure optimal performance and user experience, the

scraped problem data will be stored and indexed using

advanced indexing technologies like Elasticsearch. This

indexing process will facilitate swift and accurate retrieval of

problems based on various search criteria, including difficulty

level, problem tags, contest names, and more. By providing a

seamless interface that empowers users to refine their search

queries and explore relevant problems effortlessly, our search

engine aims to democratize access to high-quality competitive

programming challenges and foster a vibrant community of

aspiring programmers striving for mastery in algorithmic

problem-solving.

II. APPLICATION

A. Education

The platform can be used in educational institutions to help

students and teachers find relevant and challenging problems to

improve their algorithmic problem-solving skills. The platform

can also be used to evaluate the progress of students and

provide feedback.

B. Recruitment

Companies that require algorithmic problem-solving skills

as part of their recruitment process can use the platform to

evaluate candidates. The platform can be used to provide a set

of problems that are relevant to the position being offered, and

http://www.ijrti.org/

 © 2024 IJNRD | Volume 9, Issue 3 March 2024| ISSN: 2456-4184 | IJNRD.ORG

IJNRD2403379 International Journal of Novel Research and Development (www.ijnrd.org)

d604

c604

candidates can be evaluated based on their solutions to these

problems.

C. Self-Learning

The platform can be used by individuals who want to

improve their algorithmic problem-solving skills for personal

or professional development. The platform provides a means

of finding relevant and challenging problems, allowing indi-

viduals to track their progress and evaluate their skills.

D. Competitive Programming

The platform can be used by competitive programmers to

find problems for practicing and improving their skills. The

platform can also be used to participate in online coding

competitions and hackathons.

III. MONGODB SECURITY FEATURES

This section introduces the built-in MongoDB (version 3.4)

security features that are used to prevent popular database

attacks: authentication, authorization, encryption, auditing,

network exposure, and injection prevention. As noted below,

not all of these features are completely effective. At the very

least, many result in decreased database speed.

A. Authentication

Authentication of a user is vital in any database

implementation. Determining who the user is allows for

authorization and other security measures to be applied

appropriately. MongoDB uses SCRAM-SHA-1 as the default

method for user authentication. The Internet Engineering Task

Force (IETF) established SCRAM-SHA-1 to formally define

how to securely implement a challenge-response mechanism

that authenticates users with a password.[6]

MongoDB previously defaulted to authorizing users with

MongoDB Challenge and Response (MongoDB-CR).

SCRAM-SHA-1 has a number of advantages over MongoDB-

CR such as a tunable work factor, per-user random salts,

a stronger hash function (SHA-1 rather than MD5), and

bidirectional authentication of the server and client. It is vital

that MongoDB implementations of versions before 3.0 update

to the latest version to get these upgrades. Specifically, we

will look closer at the hash functions SHA-1 and MD5.

MD5 has been known to suffer from vulnerabilities since

1996.[5] Over the years, even more security flaws of MD5

have been found including the potential for collisions. While

MD5 is a faster hash function than SHA-1, SHA-1 is widely

accepted as being more secure.

However, it is important to understand that SHA-1 is

still vulnerable to attacks. In 2005, SHA-1 was also found to

suffer from collisions and will not survive attacks from well-

funded opponents.[5] SHA-1 has since been taken over by the

preferred SHA-2 and SHA-3 cryptographic functions. There

are open-source libraries to help programmers apply SHA-3

to their MongoDB implementation. However, it is not built-in.

Choosing the best built-in MongoDB authentication method

really depends on the specific situation. For large-scale

organizational use of MongoDB, investing in the MongoDB

Enterprise edition seems to be a reasonable option. The

enterprise edition of MongoDB unlocks more authentication

methods such as Kerberos Authentication, and LDAP Proxy

Authentication.

B. Authorization

Authentication is a prerequisite for authorization. Now that

unique instances of users can be reliably identified, each user

can be assigned predefined roles. Roles are used to grant

users access to different MongoDB resources.[3]

Roles can be defined in the admin database and describe

what privileges all users have over certain databases and

collections. Roles can inherit privileges from other roles

to expand on legal user actions. Database administrators

have the responsibility of creating new users and assigning

them roles. Administrators have the power to use MongoDB

built-in roles or can create roles for a specific purpose.

Database administrators must take full advantage of assigning

roles. Limiting user behavior will limit the danger occurring

from a single account being hacked. A hacked account only

presents a disastrous outcome if that user is a database

administrator.

Fig. 1. A visualization of the exchange of messages during an authentication
session.

C. Encryption

MongoDB supports two different kinds of encryption.

By default, it uses AES256-CBC, which is the Advanced

Encryption Standard running in Cipher Block Chaining mode.

Additionally, MongoDB supports AES256-GCM, which is

known as Galois/Counter Mode. Two different types of keys

http://www.ijrti.org/

 © 2024 IJNRD | Volume 9, Issue 3 March 2024| ISSN: 2456-4184 | IJNRD.ORG

IJNRD2403379 International Journal of Novel Research and Development (www.ijnrd.org)

d605

c605

are used in the data encryption process: master keys and

database keys. The data within the database is encrypted

using the database keys, and the database keys are in turn

encrypted with the master key.

MongoDB does not offer any in-house features for

application-level encryption. To encrypt each field or

document, MongoDB documentation suggests writing a

custom encryption/decryption methods or using solutions

created by one of their partners.

MongoDB also supports transport encryption, such as

TLS/SSL, to encrypt network traffic. The implementation of

TLS/SSL makes use of OpenSSL libraries, only using SSL

ciphers that use a key that is at least 128-bit in length.

Fig. 2. A conceptual model of how AES-CBC operates.

D. Network Exposure

MongoDB should be implemented such that network

exposure is limited. This is done by running MongoDB on a

trusted network and only allowing trusted clients to interface

with the network.

By default, MongoDB follows the best practice of

limiting network access to localhost. In application, this

implementation is not common since databases tend to be

accessed remotely. However, this is an important starting

point because authentication, authorization, and other security

measures should be established before making the MongoDB

instance available to the public.

Once MongoDB is being hosted on a network and listening

for connection attempts, only trusted connections to that

network must be allowed. The use of firewalls and VPN

can limit network traffic to only trusted users. It is also

recommended that the port used to listen for connections be

changed from the default, which is 27017. Automated attacks

crawl through networks attempting to connect to MongoDB

deployments using the default port.

Even if a malicious user accesses the network, authentication

and authorization security implementations should prevent an

attacker from completing a disastrous attack such as a data

ransom.

E. Injection Prevention

Using injection methods as a means of hacking is possible

in MongoDB. As mentioned in the security failures section,

injections can occur in MongoDB. However, not all types of

injections are possible due to built-in security features.

One example of this is the fact that SQL injections are

not possible. This is because when queries are assembled

in MongoDB, build BSON objects instead of a string.

Nevertheless, injections are still possible—both in the form

of HTTP trespassing and JavaScript Injections.

The MongoDB documentation presents ways in which

these injections can be avoided. First, by being mindful

of which MongoDB operations allow for the running of

arbitrary JavaScript expressions: where, map Reduce, and

group; second, by using the “CodeScope” mechanism if user-

supplied values must be passed a where clause.

Fig. 3. A schematic showing how the process of injection hacking proceeds.

IV. FUTURE IMPROVEMENTS

Of the built-in security features detailed in this paper, there

are clear issues with authentication and encryption.

The MongoDB authentication method defaults to a relatively

costly hashing algorithm, SHA-1, which is proven to break

under certain conditions. Implementing SHA-3 or paying

for the enterprise edition are possible options to fix this.

However, it seems evident that the the primary security risk

for MongoDB is that the database administrators do not

configure database security appropriately if at all.

Defaulting to an effective, free, authentication method

is necessary if MongoDB wants to maintain its popularity.

Otherwise, hacking user accounts will eventually become

commonplace for free deployment. Database administrators

will inevitably seek alternative data storage options. Finally,

application-level encryption must be implemented independent

of MongoDB instances. To avoid interception of data, all

fields must be encrypted at every step. As mentioned

previously, database security best practices are commonly

ignored or left until the end. Application-level encryption

should be built-in to encourage programmers to easily take

advantage of the feature.

http://www.ijrti.org/

 © 2024 IJNRD | Volume 9, Issue 3 March 2024| ISSN: 2456-4184 | IJNRD.ORG

IJNRD2403379 International Journal of Novel Research and Development (www.ijnrd.org)

d606

c606

As one of the most popular No-SQL database management

systems available, MongoDB should default to database

security best practices. Of course, it is still up to the

discretion of the database administrator to implement built-in

features. Please note, implementing all built-in security

features are a must for any successful database.

V. CONCLUSION

It would seem that MongoDB’s built-in features provide

adequate security, especially for deployments running on the

enterprise edition. However, there are still two main issues

that need to be addressed: first, the use of SHA-1, which has

been known to be vulnerable to attacks for over a decade;

second, the absence of built-in application-level encryption.

These issues notwithstanding, MongoDB (especially its

enterprise edition) seems to be a secure and attractive option

for big data needs.

The hacks that occurred in early 2017 were due to

MongoDB’s questionable selection of default settings, and

also due to users not following best practices. With that in

mind, MongoDB users should be motivated to make use of

the security features offered and to ensure that a database’s

settings are set up appropriately for their security needs.

However, a better way to ensure compliance with the

best security practices of MongoDB would be to have the

security features as “opt-out” instead of “opt-in.” If all

security features were on by default, speed may suffer, but

the security of general deployments would improve.

Additionally, DBAs may need to turn off these default

settings to improve performance. As a result, they would

likely become familiar with all of the security features

available to them. Alternatively, as the default settings are

now, DBAs have no performance-related incentive to learn

about the built-in security features.

REFERENCES

[1] Hou, Boyu, et al. “Towards Analyzing MongoDB NoSQL Security and
Designing Injection Defense Solution.” 2017 IEEE 3rd International
Conference on Big Data Security on Cloud, July 2017.

[2] Sahafizadeh, Ebrahim, and Mohammad Nematbakhsh. “A Survey on
Security Issues in Big Data and NoSQL.” Advances in Computer
Science: an International Journal, vol. 4, no. 4, July 2015, pp. 68–72.

[3] “Security.” Security — MongoDB Manual 3.4, MongoDB, Inc,
docs.mongodb.com/manual/security/.

[4] Al-Ithawi, O. A Security Comparison between MySQL and MongoDB.

n.d. TS.
[5] Stevens, Marc, et al. “SHAttered.” SHAttered, Google Research, shat-

tered.it/.
[6] “Salted Challenge Response Authentication Mechanism

(SCRAM) SASL and GSS-API Mechanisms.” IETF Tools,
tools.ietf.org/html/rfc5802.

[7] “Improved Password-Based Authentication in MongoDB 3.0: SCRAM
Explained - Pt. 1.” MongoDB, www.mongodb.com/blog/post/improved-
password-based-a uthentication-mongodb-30-scram-explained-part-1.

[8] “Block cipher mode of operation.” Wikipedia, Wikimedia Foundation,
23 Nov. 2017, en.wikipedia.org/wiki/Block cipher mode of operation.

[9] Chodorow, K. (2013). MongoDB: The Definitive Guide (2nd ed.).
O’Reilly Media.

[10] Pos pı́ši l, J., Pokorný , J. (2016). Sec ur ity Analys is of NoSQL Da ta bases.
Information Sciences, 367-368, 714-729. doi:10.1016/j.ins.2016.06.028

[11] Nayak, A., Joshi, V., Kumar, V. (2018). A Comparative Analysis
of Security Features in SQL and NoSQL Databases. International
Journal of Advanced Computer Science and Applications, 9(9), 144-
150. doi:10.14569/ijacsa.2018.090920

[12] da Silva, F. A., de Oliveira, J. P. M. (2017). A Survey on Security
Issues in NoSQL Databases. In 2017 IEEE International Conference
on Information Reuse and Integration (IRI) (pp. 435-440). IEEE.
doi:10.1109/IRI.2017.105

[13] Javed, M. A., Agarwal, S. (2015). Securing NoSQL Database: A
Study and Evaluation. In 2015 International Conference on Green
Computing and Internet of Things (ICGCIoT) (pp. 946-951). IEEE.
doi:10.1109/ICGCIoT.2015.7380571

[14] Lin, Y., Zhou, L., Zhang, X., Jin, H. (2019). A Study of MongoDB
Security Strategies. Journal of Physics: Conference Series, 1168(1),
012079. doi:10.1088/1742-6596/1168/1/012079

[15] Sos ı́ k, P., Ně mcová, A. (2015). Sec uri ty Issues of NoSQL Data base s:
A Survey. In 2015 38th International Conference on Telecom-
munications and Signal Processing (TSP) (pp. 142-146). IEEE.
doi:10.1109/TSP.2015.7296301

[16] Hasan, R., Rahman, M., Chowdhury, M. S. (2016). NoSQL
Database: Security Threats and Countermeasures. Journal of King
Saud University - Computer and Information Sciences, 28(3), 335-345.
doi:10.1016/j.jksuci.2014.09.003

[17] Sanzgiri, U., Karmarkar, A., Takate, A. (2014). Security analy-
sis of NoSQL databases. In 2014 International Conference on Con-
temporary Computing and Informatics (IC3I) (pp. 156-161). IEEE.
doi:10.1109/IC3I.2014.7019803

[18] Bhowmick, S., Thakur, P. (2017). A Survey on Security Issues and
Solutions in NoSQL Databases. International Journal of Computer
Applications, 171(11), 32-37. doi:10.5120/ijca2017915327

[19] Jindal, S., Singh, M. (2019). A Comparative Study of Security Features
in SQL and NoSQL Databases. In 2019 IEEE International Conference
on Electrical, Computer and Communication Technologies (ICECCT)
(pp. 1-6). IEEE. doi:10.1109/ICECCT.2019.8869346

[20] Bhowmick, S., Thakur, P. (2017). A Survey on Security Issues and
Solutions in NoSQL Databases. International Journal of Computer
Applications, 171(11), 32-37. doi:10.5120/ijca2017915327

[21] Tripathi, A., Shrivastava, P. (2017). Security Challenges in NoSQL
Databases and their Solutions. International Journal of Computer Appli-
cations, 165(9), 1-5. doi:10.5120/ijca2017915289

[22] Sathiyaraj, A., Ramesh, R. (2017). A Review on Security Issues
and Solutions in NoSQL Databases. International Journal of Computer
Applications, 167(5), 1-4. doi:10.5120/ijca2017915590

[23] Shah, S. R., Ransing, V. (2018). Securing NoSQL Databases - A
Systematic Review. International Journal of Computer Applications,
179(9), 7-10. doi:10.5120/ijca2018917626

[24] Hass, B., Maher, B. (2018). MongoDB in Action (2nd ed.). Manning
Publications.

[25] Malavolta, I., Sorace, D., Spoto, F. (2017). Security Issues in NoSQL
Databases: Analysis and Prevention. Procedia Computer Science, 112,
1839-1846. doi:10.1016/j.procs.2017.08.111

[26] Nayak, S., Manjula, D. (2015). A Study on Security Issues and Coun-
termeasures in NoSQL Databases. International Journal of Scientific and
Research Publications, 5(10), 1-5.

[27] Atreya, P., Kumar, S. (2018). A Review on Security Issues in NoSQL
Databases. International Journal of Computer Applications, 180(4), 23-
26. doi:10.5120/ijca2018917417

[28] Shetty, P. K., Singh, G. K. (2019). Securi ty Challenges and Countermea -
sures in NoSQL Databases: A Review. International Journal of Advanced
Research in Computer and Communication Engineering, 8(4), 358-363.
doi:10.17148/ijarcce.2019.84113

[29] Kumar, V., Dhawan, S. (2018). An Insight into Security Issues in
NoSQL Databases. Journal of Advanced Research in Dynamical and
Control Systems, 10(3), 1084-1089.

[30] Bell, D., Lee, H., Dinh, H. T. (2017). Security Enhancements
and Performance Evaluation of MongoDB. International Journal
of Advanced Computer Science and Applications, 8(5), 254-261.
doi:10.14569/ijacsa.2017.080537

http://www.ijrti.org/
http://www.mongodb.com/blog/post/improved-

