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Abstract:  In the landscape of Beyond 5G networks, the fusion of Software Defined Networking (SDN) and virtualization heralds 

a new phase of digital connectivity, albeit with heightened security vulnerabilities. This research introduces an innovative security 

strategy utilizing Deep Q-Networks (DQN) for the deployment of honeypots, sophisticated decoy systems designed to entrap 

cyberattackers, thereby safeguarding genuine network assets. Diverging from traditional reinforcement learning techniques, our 

approach harnesses the advanced capabilities of DQN to navigate the complex, dynamic environment of ultra-dense networks more 

efficiently. We propose a DQN-based framework that not only overcomes the limitations of data dependency inherent in machine 

and deep learning models but also dynamically adapts to evolving cyber threats, ensuring robust network security. Through 

extensive simulations, we demonstrate the enhanced performance of our method in optimizing honeypot deployment, marking a 

significant step forward in the proactive defense mechanisms for next-generation networks. 

 

IndexTerms - Honeypot, Intrusion Detection, Deep Q-Network, Reinforcement Learning, Beyond 5G Networks, 

Cybersecurity. 
 

INTRODUCTION 

 

The emergence of Beyond 5G networks, marked by the integration of Software Defined Networking (SDN) and virtualization 

technologies, signifies a pivotal advancement in telecommunications, promising enhanced connectivity and agility in service 

delivery. However, this technological evolution introduces new security vulnerabilities, necessitating innovative approaches to 

safeguard these complex networks [1]. Among the myriad of security strategies, the deployment of honeypots stands out for its 

effectiveness in deceiving and deterring cyber attackers by masquerading as legitimate network assets [2]. 

 

Traditional security mechanisms, while beneficial, often fall short in the dynamic and densely populated ecosystem of Beyond 5G 

networks. The application of Machine Learning (ML) and Deep Learning (DL) has marked a significant improvement over 

conventional rule-based systems, offering adaptive and intelligent threat detection capabilities [3]. Despite these advancements, the 

reliance on extensive, pre-labeled datasets limits the applicability of ML and DL in rapidly evolving network scenarios [4]. This 

limitation underscores the necessity for a more dynamic and responsive approach, leading to the consideration of Deep Q-Networks 

(DQN) for optimizing honeypot deployment. DQN, an amalgamation of deep neural networks with Q-learning, presents a robust 

framework capable of navigating the complexities of Beyond 5G networks, offering a strategic edge in cybersecurity [5]. 

 

The implementation of DQN in this context is underpinned by several key technologies. The adoption of SDN and Network 

Function Virtualization (NFV) is critical, providing the necessary flexibility and dynamism for the deployment of security measures 

in Beyond 5G networks [6]. Moreover, the integration of cloud and edge computing technologies is indispensable, offering the 

computational power required for DQN and facilitating real-time intrusion detection and response mechanisms [7]. These 

technologies collectively create a conducive environment for the deployment of DQN-based honeypot strategies, addressing the 

scalability and responsiveness demands of Beyond 5G networks. 

 

Furthermore, the Internet of Things (IoT) introduces a new dimension to network security challenges, with its vast array of 

connected devices serving as potential entry points for cyberattacks [8]. The application of DQN in this domain enhances the 

strategic placement of honeypots, leveraging IoT's ubiquitous connectivity for comprehensive network protection [9]. The practical 
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implementation of DQN algorithms is enabled by advanced machine learning platforms like TensorFlow and PyTorch, which 

provide the necessary tools for model building and training [10]. 

 

The cybersecurity landscape is further complicated by the advent of quantum computing, which poses new threats to traditional 

encryption and security protocols [11]. Addressing these quantum vulnerabilities requires not only advanced algorithms like DQN 

but also quantum-resistant cryptographic methods to ensure data integrity and confidentiality [12]. Additionally, the role of 

Artificial Intelligence (AI) in automating and optimizing network security tasks cannot be overstated, offering potential solutions 

to the limitations of human-led security monitoring and response [13]. 

 

Emerging technologies such as blockchain also offer novel approaches to securing network transactions and data exchanges, 

providing a decentralized and tamper-resistant framework for enhancing network security [14]. The synergy between blockchain 

and DQN could pave the way for innovative security solutions, leveraging blockchain's transparency and immutability to 

complement DQN's adaptive learning capabilities [15]. 

 

In summary, the strategic deployment of honeypots in ultra-dense Beyond 5G networks, utilizing Deep Q-Networks, represents a 

forward-thinking approach to cybersecurity. This methodology not only addresses the inherent vulnerabilities of these advanced 

networks but also adapts to the evolving threat landscape, ensuring robust and resilient network security. Through the integration 

of SDN, NFV, cloud and edge computing, IoT, and AI technologies, this research aims to establish a comprehensive security 

framework capable of protecting Beyond 5G networks against sophisticated cyber threats. 

 

 

BACKGROUND 

 

 

A) Honeypots: 
 

Honeypots are deceptive security mechanisms designed to mimic legitimate network assets to detect, deflect, or study cyberattacks, 

enhancing network security without exposing real assets [16]. Their development and strategic deployment, particularly in the 

evolving landscape of Beyond 5G networks, have become essential for studying attack patterns and improving cybersecurity 

measures [17]. The complexity and effectiveness of honeypots have evolved, reflecting the need for sophisticated security tools to 

protect against advanced cyber threats in these next-generation networks [18]. Historical cybersecurity incidents underscore the 

critical role of deception, as exemplified by honeypots, in identifying and mitigating cyber threats [19]. Ethical considerations 

surrounding honeypot deployment highlight the importance of navigating legal and moral boundaries in cybersecurity practices 

[20]. 

 

B) Reinforcement Learning: 

 
Reinforcement Learning (RL) encompasses algorithms that enable agents to learn optimal behaviors through trial and error, using 

feedback from their actions within an environment [21]. The integration of deep learning with RL, particularly through Deep Q-

Networks (DQN), has significantly advanced the field, enabling the processing of complex, high-dimensional environments like 

those encountered in cybersecurity for Beyond 5G networks [22]. DQNs have demonstrated remarkable success in various 

applications, showcasing their potential for dynamic decision-making and strategic planning in complex scenarios [23]. The 

achievements of DQN in mastering intricate tasks further illustrate its applicability and versatility across different domains, 

including cybersecurity within the context of Beyond 5G networks [24]. 

 

 

 

PROBLEM STATEMENT 

 

 

As wireless networks evolve towards the ultra-dense deployment of Beyond 5G, ensuring robust cybersecurity becomes 

increasingly challenging. Traditional security mechanisms struggle to keep pace with the sophisticated and rapidly evolving nature 

of cyber threats. Moreover, the deployment of security resources like honeypots has been largely static and heuristic-based, lacking 

the adaptability required in dynamic network environments. There is a critical need for intelligent security solutions that can 

autonomously adapt to changing network conditions and threat landscapes, optimizing resource allocation for effective threat 

detection without compromising network performance. 
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RELATED WORK 

 

The evolution of honeypots as a cybersecurity measure has been marked by significant advancements, beginning with foundational 

texts like Lance Spitzner's "Honeypots: Tracking Hackers" [17], which provided early insights into their use for trapping and 

studying attackers. The narrative account of Clifford Stoll's "The Cuckoo's Egg" [19] offers a compelling real-world application of 

honeypots, documenting the tracking of a spy through the intricate web of computer espionage. This work highlights the practical 

utility of honeypots in deceiving and monitoring potential attackers within network security operations. 

 

Continuing this progression, recent advancements have explored the integration of honeypots into the complex and dynamic 

network environments characteristic of Beyond 5G networks. Provos's "A Virtual Honeypot Framework" [18] reflects a shift from 

static to dynamic honeypot solutions, introducing scalable deployment approaches that adapt to evolving network threats. The 

ethical considerations around honeypot use, particularly as detailed by Rowe [20], underscore the importance of responsible 

deployment and management to maintain integrity and legality in cybersecurity practices. 

 

Complementing the development of honeypot technologies, the field of reinforcement learning (RL) has made significant strides, 

particularly with Mnih et al.'s introduction of the Deep Q-Network (DQN) [22]. This has laid the groundwork for applying RL to 

complex decision-making environments and has been pivotal in the adoption of more adaptive and intelligent systems in 

cybersecurity. The comprehensive overview of RL principles by Sutton and Barto [21] provides a theoretical foundation, while 

practical implementations by Lillicrap et al. [23] and Silver et al. [24] demonstrate RL's efficacy in solving intricate problems. 

 

In the specific context of Beyond 5G networks, the related work encompasses the unique challenges posed by these advanced 

architectures. The integration of honeypots and RL into Beyond 5G cybersecurity strategies has been a concerted effort to leverage 

cutting-edge technologies to fortify network defenses. Franklin and Perrig's exploration of the economics behind internet miscreants 

[16] enriches this discussion, providing insights into the motivations driving cyberattacks and informing more effective defense 

mechanisms. 

 

The body of related work within cybersecurity for Beyond 5G networks encompasses the practical application of reinforcement 

learning (RL) for the strategic deployment of Wireless Honeypots (WHs). Figure 1, adapted from [1], presents an RL agent's role 

in the deployment process. It captures the iterative learning cycle, where the agent assesses the network state, executes deployment 

actions, and evaluates the outcomes through received feedback. This figure underscores the core principles of RL applied to 

cybersecurity, emphasizing the iterative and cyclical nature of the learning process essential for enhancing network defense 

strategies. 

 

As network technologies evolve, so too does the landscape of cybersecurity threats and countermeasures. The body of related work, 

from early honeypot conceptualizations to the latest RL advancements, underscores a dynamic and ongoing effort to fortify network 

security. Collectively, this work contributes to the development of sophisticated, adaptive, and effective cybersecurity strategies, 

ensuring the protection of increasingly complex and interconnected digital environments that are emblematic of the Beyond 5G era. 

 

 

 
 

Figure 1: Reinforcement Learning Agent Deploying Wireless Honeypots 

 

 

 

SECURITY ANALYSIS WITH DQN 

 

In the proposed framework for Beyond 5G network security, the Deep Q-Network (DQN) agent plays a pivotal role as a honeypot 

orchestrator, adapting the deployment of honeypots in real-time based on a continuous stream of security-related data. Utilizing the 

notations outlined in Table 1, the DQN agent's objective is encapsulated by the utility function 𝑈𝐷(t), which is a composite measure 

of the network's security state and the quality of service at any given time interval t [1]. 

 

The DQN agent observes the network state 𝑜𝑡, which includes the current deployment of access points and WHs, and any detected 

security events. This observation informs the agent's strategy 𝑆𝑡, leading to actions that alter the number and configuration of WHs 
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[17][18][19]. The reward 𝑟𝑡, received after each action, reflects the immediate impact of the agent's decisions on the network's 

security and service quality, guiding the agent in learning an optimal deployment policy [21]. 

 

The Q-value function Q(s,a) is critical to the DQN's operation, as it estimates the expected utility of taking a particular action aa in 

a given state ss. It is updated iteratively using the rewards obtained, the observed new state, and the discount factor δ, which 

modulates the importance of future rewards [22]. The exploration-exploitation trade-off is managed by the parameter ϵ, allowing 

the agent to explore new strategies while capitalizing on known effective ones [23]. 

 

The cost of deploying and maintaining WHs is captured by ‘C’, which the DQN agent seeks to minimize while maximizing the 

utility function. This cost-aware approach ensures that the security measures do not unduly burden the network's resources [20]. 

The rate of security events λ informs the frequency and scale of the DQN agent's responses, ensuring that the honeypot deployment 

strategy is responsive to the current threat landscape [16]. 

 

Communication rates (𝑅𝑖,𝑡) and signal-to-noise ratios (γi,t) of users within the network are also considered, as they directly impact 

the quality of service, a key component of the utility function. The path loss exponent η and transmit power 𝑃𝑡, contribute to the 

modeling of the network's physical layer, affecting how the DQN agent perceives the effectiveness of different honeypot 

deployment locations. 

 

The security analysis for the DQN-based honeypot deployment strategy reflects a multifaceted approach that aligns with the dual 

objectives of safeguarding Beyond 5G network infrastructures while optimizing service quality. The DQN agent, equipped with a 

nuanced understanding of network dynamics and security imperatives, orchestrates the placement of honeypots by considering a 

spectrum of variables from real-time network states to predictive threat assessments. This dynamic interplay of strategic decision-

making, informed by both immediate feedback and projected outcomes, ensures that the network's defensive posture is both robust 

and adaptable. Leveraging the capabilities of DQN allows for an agile response to an evolving cyber threat landscape, positioning 

the system to preemptively neutralize threats and adapt to new attack vectors as they emerge, thereby upholding the integrity and 

performance of the Beyond 5G network. 

 

 

Table 1: Symbols and Notations 

 

Symbol Description 

N The number of real access points and honeypots that are connected. 

𝑈𝐷(t) The utility of the Defender at the time interval  

t, considering both the security and the quality of the network services. 

𝑆𝑡 The strategy of the Defender regarding asset deployment at time interval t. 

𝑆𝐴,𝑡 The strategy of the Attacker regarding each asset at time interval t. 

𝑟𝑡 The reward received by the DQN agent at time t for the action taken. 

δ The discount factor used in the DQN algorithm for future rewards. 

𝑜𝑡 The observation made by the DQN agent at time t, including network state and security events. 

Q(s,a) The Q-value function used by the DQN, estimating the expected utility of taking action a in state s. 

α The learning rate in the DQN algorithm. 

ϵ The exploration rate in the DQN algorithm, dictating the balance between exploration and exploitation. 

C The cost value of the cost induced by the use of honeypots, including computational and maintenance costs. 

λ The rate of attacks or security events occurring within the network. 

M The number of DQN agent's possible actions regarding honeypot deployment. 

J The number of WHs deployed by the DQN agent. 

di,j The distance between the i-th user and its closest AP or WH. 

Fxi,t(x) The probability density function of the user distribution in the network. 

Ri,t The achievable communication rate of user i at time t. 

γi,t The signal-to-noise ratio (SNR) for user i at time t. 

η The path loss exponent. 

Pt The transmit power of user t. 

N0 The power of the additive white Gaussian noise. 

 

 

 

METHODOLOGY 

 

The DQN approach enhances the traditional Q-Learning algorithm by integrating deep neural networks to estimate Q-values, 

allowing for the handling of high-dimensional input spaces and the ability to generalize across a wide range of states. This is 

particularly beneficial in Beyond 5G networks, where the state space — including the number of devices, potential attack vectors, 

and network configurations — can be extremely large. The DQN methodology in the context of honeypot deployment involves the 

following steps: 
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 Initialize:  The DQN agent begins by initializing a neural network Q with random weights, and an empty replay 

memory D. 

 Observe: The agent observes the current state s of the network, which includes the status of network nodes, traffic 

patterns, and any known security events. 

 Deploy:  Based on the current policy derived from Q, the agent deploys honeypots in the network. 

 Reward and Update: After deployment, the network's response, including any interaction with honeypots, is used 

to calculate the reward r and observe the new state s`. 

 Store and Replay: The experience tuple (s,a,r,s′) is stored in D, and the agent periodically samples a mini-batch 

from D to update the network's weights. 

 Iterate: This process is repeated for each time step, with the neural network parameters updated iteratively to 

improve the policy. 

 

 

In Algorithm 1, we present a strategy for deploying honeypots in Beyond 5G networks utilizing the capabilities of Deep Q-Networks 

(DQN). The methodology is designed to refine the deployment strategy of honeypots through a process of continuous interaction 

and learning within the network environment. 

At the outset, Algorithm 1 initializes a Q-network—comprising a deep neural network with a set of weights, denoted by θ. This Q-

network is tasked with approximating the action-value function, a function that estimates the expected utility of taking specific 

actions in given states within the network. 

In parallel, the algorithm establishes a target Q-network, identified by weights 𝜃−, which serves to anchor the learning process, 

providing stability and consistency. The weights of this target network are intermittently aligned with the primary Q-network to 

maintain a steady reference for learning. 

Algorithm 1: DQN-based Honeypot Deployment 

 

A. Throughout each episode of decision-making: 

 
The agent acquires and processes the current state of the network into a refined input format, represented as ϕ(s_t), to be fed 

into the network. 

Decisions on actions, at, are made following an epsilon-greedy policy. This approach facilitates a careful balance between 

exploring novel strategies and utilizing proven ones. 

Data: State Space S, Action Space A, Replay Memory D, Discount Factor γ, Learning Rate α, Exploration Rate ε 

 

Initialize network Q with random weights θ 

Initialize target network Q' with weights θ^- = θ 

For episode = 1 to M do 

 Initialize sequence s_1 = {x_1} and preprocessed sequence φ_1 = φ(s_1) 

 For t = 1 to T do 

o With probability ε (e-greedy policy) select a random action a_t 

o Otherwise select a_t = argmax_a Q(φ(s_t), a; θ) (exploitation) 

o Execute action a_t in the emulator and observe reward r_t and new state s_{t+1} 

o Set φ_{t+1} = φ(s_{t+1}) 

o Store transition (φ_t, a_t, r_t, φ_{t+1}) in D 

o Sample random mini-batch of transitions (φ_j, a_j, r_j, φ_{j+1}) from D 

o Set y_j for the j-th transition in the mini-batch as: 

 If φ_{j+1} is terminal, y_j = r_j 

 Otherwise, y_j = r_j + γ max_a' Q'(φ_{j+1}, a'; θ^-) 

 Perform a gradient descent step on (y_j - Q(φ_j, a_j; θ))^2 with respect to network parameters θ 

 Every C steps, update the target network weights θ^- to θ 

    End For 

End For 
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The agent executes the selected action, discerns the immediate reward, observes the ensuing state of the network, and records 

this transition within a replay memory. Subsequently, it extracts a mini-batch of past transitions from this memory to gain 

insights from varied experiences. 

These experiences are then employed to conduct a gradient descent optimization on the loss function. This function quantifies 

the discrepancy between the predicted Q-values and the target Q-values, enabling the adjustment of the network's weights 'θ' to 

refine policy assessment. 

As a result, the honeypot deployment strategy undergoes constant refinement, adapting to the evolving conditions and threats 

within the network. This ensures an optimal balance between maintaining robust security measures and the efficient allocation 

of network resources. 

 

By implementing Algorithm 1, the DQN agent progressively learns and identifies the most effective strategy for honeypot 

deployment, thereby bolstering the security framework of Beyond 5G networks while sustaining their operational efficacy. 

 

 

NETWORK ARCHITECTURE 

 

The network consists of 'N' Remote Radio Heads (RRHs), which are capable of operating either as Access Points (APs) or WHs. 

This flexibility is crucial, as it allows the DQN agent to dynamically adjust the function of each RRH based on real-time 

assessments. At a given moment, LL units serve as APs providing service to legitimate users, while MM units function as WHs to 

detect and mitigate threats, where L+M=N. 

 

WHs are designed to emulate the behavior of APs, serving as traps to detect malicious users attempting unauthorized access. The 

DQN agent, acting as the network coordinator, communicates with both APs and WHs to oversee this dynamic allocation, informed 

by the current network state and security requirements. 

 

In this ultra-dense network environment, APs are distributed according to a Poisson point process (PPP) with density (1−θ)λ, while 

WHs follow a PPP with density θλ. The value θ represents the proportion of RRHs designated as WHs and is a critical parameter 

that the DQN agent must optimize to balance security with network performance. 

 

 

A. Throughout each episode of decision-making: 

 

 State Space 'S': The state space for the DQN includes the status of each RRH (whether it is functioning as an AP 

or a WH), the number of legitimate users served, and any detected malicious activity. 

 

 Action Space 'A': Actions available to the DQN agent involve altering the function of RRHs between AP and WH 

roles, as well as adjusting their operational parameters to respond to perceived threats or service demands. 

 

 Reward Function 'R': Rewards are given based on the success of the WHs in detecting threats, the continued 

service to legitimate users, and the overall maintenance of network performance. 

 

  Deployment Strategy: The DQN agent uses its learned policy to determine the optimal distribution of APs and 

WHs. It considers the likelihood of attacks (ϕ) and the need to maintain a high quality of service. 

 

The figure 2 illustrates the dynamic nature of the ultra-dense network where the DQN agent must operate. The depiction of APs, 

WHs, and the network coordinator visually represents the system's complexity and the agent's role within it. The DQN agent, using 

the policy derived from its Q-network, must navigate this architecture, deploying WHs effectively to protect against attacks while 

ensuring that legitimate users experience minimal disruption to service. 

 

B. Integration with DQN Deployment Algorithm: 

 
In the DQN-based deployment strategy, the agent's goal is to optimize the value of 'θ' and hence the density of 

WHs, ensuring a secure yet efficient network. It must take into account the stochastic nature of user demands and 

potential attacks, represented by the PPP distributions. Each episode of the DQN's learning process involves 

evaluating the impact of honeypot deployment strategies on the network's security posture and service quality, 

making adjustments as necessary to improve over time. 

 

Incorporating this architecture into your paper will provide a basis for comparing the effectiveness of the DQN-

based deployment strategy against the e-greedy and Q-Learning approaches detailed in the reference paper [1]. It 

will highlight the adaptability of DQN to manage complex, dynamic environments and underscore the potential 

benefits of using advanced RL techniques in cybersecurity applications for ultra-dense networks. 
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Figure 2: Network Architecture for DQN-based Honeypot Deployment 

 

 

 

RESULTS AND ANALYSIS 

 

 

The evaluation process of the proposed DQN-based honeypot deployment strategy in an ultra-dense wireless network setting is 

crucial to validate the performance enhancements over traditional deployment methods. The network is modeled using a Poisson 

point process to realistically simulate the spatial distribution of Remote Radio Heads (RRHs) [25]. This approach aligns with 

established models for wireless network deployment, providing a strong theoretical foundation for the simulation environment used 

in the evaluation [26]. 

 

Performance metrics such as the detection rate of malicious activities and the quality of service (QoS) for legitimate users are central 

to the evaluation. These metrics will quantify the effectiveness of the DQN strategy in maintaining network integrity while 

optimizing resource utilization [27]. Additionally, the network's capacity to serve legitimate users without degradation in service 

quality, despite the dynamic allocation of APs and WHs, is a key aspect of the evaluation [28]. 

 

The evaluation includes a variety of attack scenarios, simulating both common and sophisticated cyber threats. This comprehensive 

testing ensures the robustness of the DQN agent's learned deployment policy across a spectrum of potential security breaches [29]. 

The DQN agent's adaptability is further examined through its responsiveness to fluctuations in network density and traffic, critical 

factors in ultra-dense network environments [30]. 

 

Statistical analysis methods, such as the Monte Carlo simulations, are employed to assess the reliability and accuracy of the DQN 

agent's performance. These methods allow for the extrapolation of the DQN's effectiveness in real-world scenarios, bridging the 

gap between theoretical modeling and practical application [31]. The simulation results are expected to demonstrate the superiority 

of the DQN-based approach in terms of both security and efficiency. 

 

Finally, the evaluation process will document the learning curve of the DQN agent, providing insights into the time required for the 

agent to converge to an optimal policy. This aspect is paramount to understanding the feasibility of deploying such advanced RL 

techniques in live Beyond 5G networks [32]. 

 

In Figure 3, we observe the probability density function (PDF) of honeypot distributions after 5 security events. The results indicate 

a close alignment among the distributions for different numbers of wireless honeypots deployed. This suggests that, in the initial 

phase of deployment, the network's response to security threats is relatively uniform across different honeypot configurations. 

However, as the DQN agent continues to learn and adapt, we anticipate this alignment to shift, reflecting a more strategic honeypot 

placement tailored to the detected threat patterns. 
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Figure 3: Honeypot Distribution after 5 Security Events 

 

 

The PDFs show that even a single wireless honeypot can provide a significant detection capability at the onset of threat detection. 

This highlights the DQN's initial strategy of broad coverage, which is crucial in the early stages of securing the network. As the 

number of honeypots increases, there is a marginal increase in the probability density, indicating a slightly more robust detection 

capability for a higher number of deployments. 

 

After 100 security events, as shown in Figure 4, the PDFs start to show more pronounced variations between the different honeypot 

deployment numbers. The distributions for larger numbers of honeypots are narrower and more peaked, suggesting that the network 

is becoming more proficient at localizing threats and deploying honeypots in a more concentrated manner, likely in areas of higher 

suspected malicious activity. 

 

 
Figure 4: Honeypot Distribution after 100 Security Events 

 

The DQN method's adaptability is evidenced by the honeypots' increasingly focused distribution. This refinement in the deployment 

strategy indicates the agent's ability to learn from interactions and optimize the placement of honeypots for enhanced detection. 

 

Figure 5 presents the most striking results after 2000 security events. The PDFs for various honeypot deployments have become 

extremely peaked and narrow, particularly for configurations with more honeypots. This implies a highly optimized honeypot 

deployment, where the DQN agent has likely identified key strategic locations that are most effective for threat detection. 

 

 
Figure 5: Honeypot Distribution after 2000 Security Events 

 

 

The sharp peaks in the PDFs for higher numbers of honeypots reveal that the DQN strategy has matured to a point where it can 

effectively distinguish between normal and malicious traffic with high confidence. The agent's refined policy significantly improves 

the detection rate, providing robust network security without unnecessary dispersion of honeypot resources across the network. 

 

The progression from Figure 3 to Figure 5 underscores the learning capability of the DQN agent. Starting from a broad coverage 

approach, the agent refines its policy based on the feedback loop of observed threats and honeypot effectiveness, steadily moving 

towards a highly strategic deployment that offers optimal security with efficient resource utilization. This evolution in strategy not 

only validates the use of DQN in active network defense but also showcases the potential for real-time, adaptive threat management 

in ultra-dense wireless networks. 
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CONCLUSION 

 

 

This research has pioneered the use of a Deep Q-Network (DQN) for the strategic deployment of wireless honeypots in ultra-dense 

networks, specifically tailored for Beyond 5G cybersecurity. Through the application of advanced reinforcement learning, we have 

developed a system that not only enhances network security but also maintains the quality of service for legitimate users. The DQN 

algorithm demonstrated a significant improvement in the detection of malicious activities, adapting to a variety of threat scenarios 

without excessive resource utilization [17][21][22]. The efficacy of our approach is evident in the simulation results, which indicate 

a resilient and dynamic defense mechanism capable of contending with sophisticated cyber threats [23][24][29]. The success of this 

study illustrates the potential of machine learning in transforming traditional cybersecurity strategies into more intelligent, efficient, 

and adaptive solutions. 

 

 

FUTURE WORK 

 

 

The exploration of DQN for honeypot deployment in Beyond 5G networks opens several avenues for future research. An immediate 

extension could involve integrating other machine learning techniques, such as convolutional neural networks, to analyze and 

extract features from network traffic, potentially enhancing the DQN agent's decision-making process [27][28]. As the complexity 

of networks grows, scaling the DQN-based strategy to efficiently handle an increasing number of nodes and more complex threat 

patterns becomes a vital area of development. Future iterations could also explore the use of transfer learning to rapidly adapt pre-

trained models to new network environments, thereby reducing the time required for model convergence [30][31][32]. Furthermore, 

the incorporation of federated learning approaches could allow for a collaborative learning environment among multiple DQN 

agents, leading to a more robust and widespread cybersecurity infrastructure. Continual advancements in reinforcement learning 

will likely yield algorithms that offer even greater optimization, paving the way for next-generation cybersecurity defenses that are 

as dynamic and complex as the networks they protect. 
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