
© 2024 IJNRD | Volume 9, Issue April 2024| ISSN: 2456-4184 | IJNRD.ORG 
  

 

IJNRD2404610 International Journal of Novel Research and Development (www.ijnrd.org) g94 
 

 

Life Span Calculation VIA Food Consumption: A 

Comprehensive Analysis of Diet and Lifestyle 

Factors 

Sankara rao L 

Assistant professor 

School of Computer Science and 

Engineering 

Raghu Engineering Collage 

Vizianagaram, Andhra Pradesh  

 

Bandi sai saketh 

UG Scholar 

School of Computer Science and 

Engineering 

Raghu Engineering Collage 

Vizianagaram, Andhra Pradesh  

saisakethbandi@gmail.com 

 

Devaraju sai spandana 

UG Scholar 

School of Computer Science and 

Engineering 

Raghu Engineering Collage 

Vizianagaram, Andhra Pradesh  

 

Karreddula Roshan Yag                                               

UG Scholar 

Department of Computational 

Intelligence 

Raghu Engineering Collage 

Vizianagaram, Andhra Pradesh  

karreddularoshanyag@gmail  

Bogipilli praveen kumar 

UG Scholar 

School of Computer Science and 

Engineering 

Raghu Engineering Collage 

Vizianagaram, Andhra Pradesh  

 
Shaik Asif 

UG Scholar 

School of Computer Science and 

Engineering 

Raghu Engineering Collage 

Vizianagaram, Andhra Pradesh  

shaikasif2811@gmail.com

 
Abstract — Life expectancy is a critical health indicator that 

reflects the overall well-being of individuals. In recent years, 

there has been growing interest in understanding the impact of 

lifestyle choices and dietary habits on life expectancy. This 

research paper presents a comprehensive analysis of predictive 

models for estimating life expectancy using a dataset that 

includes various lifestyle and dietary features. The study 

explores a range of machine learning approaches, including K-

Nearest Neighbors (KNN), KNN with hyperparameter tuning, 

XGBoost, Gradient Boosting, and Linear Regression, as well as 

deep learning models with two different Multi Layered 

Perceptron (MLP)architectures. These models are trained on a 

diverse set of input variables, such as meals per day, exercise 

hours, stress levels, and pre-existing conditions. We preprocess 

the data, handle categorical features, and scale numerical 

attributes to ensure robust model performance. Our findings 

reveal that the XG Boost model outperforms the other machine 

learning approaches, achieving a root mean squared error 

(RMSE) of 4.84. The models highlight the significance of stress 

management, exercise, and balanced nutrition in influencing life 

expectancy. Additionally, we provide insights into feature 

importance, shedding light on the relative contributions of 

different factors. This research contributes to the field of health 

analytics by emphasizing the role of lifestyle choices in shaping 

longevity. Policymakers, healthcare professionals, and 

individuals can leverage these insights to promote healthier 

living and enhance overall quality of life. 

Keywords: Predictive Modeling, Life Expectancy, Diet, 

Lifestyle Factors, Machine Learning, K-Nearest Neighbors, Multi 

Layered Perceptron, Gradient Boosting, XGBoost, Linear 

Regression, Root Mean Squared Error, Feature Importance 

I. INTRODUCTION 

    Life expectancy is a vital indicator of overall health and 

well-being within a population. It reflects a complex interplay 

between genetics, socioeconomic factors, environmental 

conditions, and, crucially, individual lifestyle choices. 

Understanding the specific ways in which dietary habits, 

exercise patterns, stress levels, and pre-existing health 

conditions impact life expectancy is key to promoting 

longevity and enhancing the quality of life. While the 

relationship between individual factors and life expectancy 

has been investigated, creating predictive models that 

integrate a wide range of lifestyle variables can provide a 

more comprehensive and illuminating perspective. 

Traditionally, statistical methods have been employed in this 

area; however, their ability to capture complex non-linear 

relationships and interactions between features can be 

limited. Modern machine learning approaches offer 

promising avenues for addressing these limitations. Gradient 

boosting algorithms, such as the Gradient Boosting Regressor 

and XGBoost, have demonstrated remarkable success in 

various predictive tasks due to their ability to model intricate 

patterns within data. This research aims to develop a robust 

predictive model for life expectancy by leveraging these 

advanced machine learning techniques, along with deep 

learning models. Drawing insights from a dataset containing 

diverse lifestyle and dietary features, we seek to answer the 

following questions: “To what extent can lifestyle choices 

and health status be used to accurately predict life 
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expectancy?”, “Which specific factors demonstrate the 

strongest influence on life expectancy, as determined by 

machine learning models?”, and “Can the insights gained 

from this analysis inform targeted interventions and health 

policies promoting longevity?” The findings of this study 

have the potential to empower both individuals and health 

professionals.  

By understanding the modifiable factors that 

significantly contribute to life expectancy, individuals can 

make informed choices for healthier living. At a broader 

level, the results could shape public health initiatives focused 

on encouraging those lifestyle behaviors that have the most 

profound impact on longevity. The study explores a range of 

machine learning approaches, including KNN, KNN with 

hyperparameter tuning, XGBoost, Gradient Boosting, and 

Linear Regression, as well as deep learning models with two 

different MLP architectures. The first MLP model is a dense 

neural network with layers of 32 and 16 neurons, 

respectively, and the second MLP model is an improved 

version with three layers of 64 neurons each. These models 

are trained on a diverse set of input variables, such as meals 

per day, exercise hours, stress levels, and pre-existing 

conditions. We preprocess the data, handle categorical 

features, and scale numerical attributes to ensure robust 

model performance. Our findings reveal that the XG Boost 

model outperforms the other machine learning approaches, 

achieving a root mean squared error (RMSE) of 4.84, while 

the improved MLP model shows enhanced predictive 

accuracy among the deep learning approaches. The models 

highlight the significance of stress management, exercise, 

and balanced nutrition in influencing life expectancy. 

Additionally, we provide insights into feature importance, 

shedding light on the relative contributions of different 

factors. This research contributes to the field of health 

analytics by emphasizing the role of lifestyle choices in 

shaping longevity. Policymakers, healthcare professionals, 

and individuals can leverage these insights to promote 

healthier living and enhance overall quality of life.  

II. RELATED WORK 

    In our quest to unravel the intricate relationship between 

diet, lifestyle, and life expectancy, we delve into existing 

research that sheds light on this critical topic. The following 

papers provide valuable insights, methodologies, and gaps 

that inform our own study, The study "Effects of Lifestyle-

Related Risk Factors on Life Expectancy: A Comprehensive 

Model for Early Prevention of Premature Mortality from 

Noncommunicable Diseases" aimed to develop a 

multivariable model for predicting life expectancy based on 

modifiable lifestyle factors [1]. The researchers utilized a 

cross-sectional approach with extensive data from the 

National Health and Nutrition Examination Survey (1999-

2014). Their analysis included key predictors such as 

smoking, diet, physical activity, body mass index, and the 

presence of chronic diseases. The study's results 

demonstrated the profound impact of these lifestyle-related 

factors on life expectancy. Importantly, it highlighted the 

potential for lifestyle modifications to positively influence 

outcomes, emphasizing the value of early intervention.  

However, a limitation of this work was the lack of tools 

specifically designed for early risk identification among 

young adults. Our research aims to build upon this foundation 

by incorporating additional lifestyle features and refining risk 

prediction models with a focus on younger populations. 

The study "Estimating Impact of Food Choices on 

Life Expectancy: A Modeling Study" focused on predicting 

how dietary choices directly impact life expectancy [2]. 

Employing life table methodology and extensive data from 

meta-analyses and the Global Burden of Disease study, 

researchers estimated how sustained changes in food intake 

could alter life expectancy. Their findings revealed that 

optimized diets could potentially increase life expectancy by 

over a decade. Specific dietary shifts associated with these 

gains included increased consumption of legumes, whole 

grains, and nuts, along with a reduction in red and processed 

meats. While insightful, the study lacked tools for 

individualized forecasting and did not fully address the 

uncertainties related to the time required to achieve the full 

benefits of dietary changes. Our research will explore similar 

dietary impact modeling while considering regional 

variations in food preferences and striving to provide more 

personalized recommendations. A subsequent correction to 

the "Estimating Impact of Food Choices on Life Expectancy: 

A Modeling Study" aimed to address errors identified in the 

original work [3].  The researchers revised their methodology 

to account for limitations related to time effects, individual 

variation within populations, and uncertainties in their initial 

modeling.  This resulted in updated, and likely more accurate, 

estimates for potential life expectancy gains achievable 

through dietary changes. Our research will carefully 

incorporate these corrections and strive to further refine our 

own modeling approach to ensure the highest level of rigor. 

While existing research provides crucial insights 

into the connections between lifestyle and life expectancy, 

gaps remain. Our work aims to address these gaps by 

incorporating a broader set of lifestyle features beyond diet, 

such as exercise patterns and stress management techniques.  

Furthermore, we will focus on developing tools for early risk 

identification specifically tailored to young adults.  

Recognizing the impact of regional and cultural variations on 

lifestyle choices, our research will consider these factors 

when developing recommendations.  Ultimately, our goal is 

to provide actionable recommendations for both individuals 

and policymakers, empowering them to make informed 

choices that promote longevity and well-being.  As we 

embark on our study, we draw inspiration from the valuable 

insights of previous research while charting a path toward a 

more informed, healthier future. 

III. METHODOLOGY 

In our study, we have meticulously crafted a methodology 
that encompasses data preparation, preprocessing, model 
selection, and training. Each step is critical to the integrity and 
success of our research. Here’s an overview of our approach. 

A. Data preparation 

The dataset serves as the foundation of our predictive 

modeling. We have compiled a comprehensive dataset by 

referencing the World Health Organization’s (WHO) 

extensive health databases, alongside datasets available on 

platforms like Kaggle and Hugging Face. Additionally, we 

conducted surveys to enrich our dataset with firsthand 

information. This multifaceted approach ensures a rich and 

diverse collection of data points, encompassing various 

aspects of diet and lifestyle. 

B. Data Preprocessing  

Data preprocessing is a crucial step that transforms raw 

data into a format amenable to analysis. We began by 

cleaning the data, addressing missing values, and 
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standardizing the format for consistency. Categorical 

variables were encoded to facilitate computational handling, 

and all numerical features were normalized to ensure they 

contribute equally to the model’s performance. This process 

not only refines the data but also enhances the model’s ability 

to learn from it effectively. 

C. Models used 

n this research, we have applied a variety of machine 

learning and deep learning models to address the complex 

challenge of predicting life expectancy. Our machine learning 

arsenal included K-Nearest Neighbors (KNN) and Linear 

Regression. KNN was particularly chosen for its pattern 

recognition capabilities in complex datasets without the need 

for an underlying data distribution assumption. Linear 

Regression acted as a baseline model, providing a 

comparative standard and demonstrating the potential of even 

simple models in predicting life expectancy. On the deep 

learning front, we designed two dense neural network 

architectures. The first model incorporated ReLU activation 

functions within its hidden layers, leveraging ReLU’s known 

effectiveness in nonlinear regression problems. The second 

model was an improved version that expanded the network’s 

depth with additional hidden layers and utilized a linear 

activation function for the output layer, enabling it to directly 

predict life expectancy. These deep learning models were 

pivotal for their ability to uncover intricate relationships 

between lifestyle factors and life expectancy, offering 

insights beyond the reach of simpler models. The nuanced 

understanding they provide could be instrumental in guiding 

individuals towards healthier lifestyle choices and informing 

public health policies aimed at increasing longevity. 

 

a) K-Nearest Neighbors (KNN) 

    The K-Nearest Neighbors (KNN) algorithm stands out for 

its simplicity and adaptability in both classification and 

regression problems.  Its central principle rests on the 

assumption that data points located in close proximity within 

a feature space tend to exhibit similar characteristics or 

outputs. In the context of life expectancy prediction, KNN 

aims to predict a new individual's life expectancy by 

examining the lifespans of their 'nearest neighbors' in the 

dataset – individuals whose recorded lifestyle features are 

most similar. To determine these neighbors, KNN relies on a 

distance metric.  Commonly used distance measures include: 

 

 
 

Fig. 1. Why KNN Algorithm 
    Euclidean distance: The intuitive 'straight-line' distance 

between two points in a multidimensional space. For points X 

and Y with coordinates (𝑥1, 𝑥2, ... 𝑥𝑛) and (𝑦1, 𝑦2, ... 𝑦𝑛) 

respectively, it's calculated as: 

 

  √[(x1 −  y1)^2 +  (x2 −  y2)^2 + . . . + (xn −  yn)^2]                         
(1)             

Manhattan distance: Considers distances along axes and is 

calculated as: 

∑|𝑥𝑖 − 𝑦𝑖|     (𝑖 = 1 𝑡𝑜 𝑛)                        (2) 

The choice of distance metric can influence model 

performance.  Once a metric is chosen, KNN identifies the 'K' 

closest data points (where 'K' is a hyperparameter you select) 

in the training dataset to the new, unseen query point 

representing an individual's lifestyle data. KNN then proceeds 

to calculate the predicted life expectancy for the query point. 

In regression tasks like yours, this is often done by simply 

averaging the life expectancy values of the 'K' nearest 

neighbors. This average becomes the prediction for the new 

individual. Importantly, the value of 'K’ plays a significant 

role in the model's performance. Too small of a 'K' can make 

the model susceptible to noise and overfitting, while too large 

of a value might lead to the inclusion of dissimilar neighbors 

and less accurate predictions. [3] 

    It's crucial to remember that before applying KNN, feature 

scaling or standardization is often necessary. This ensures that 

no single feature dominates the distance calculations simply 

due to its scale. Moreover, despite its simplicity, KNN can 

become computationally expensive with larger datasets, as 

distances need to be calculated to every point in the training 

set. KNN offers several advantages.  It's easy to understand 

and implement, it makes no assumptions about the underlying 

data distribution (making it effective for nonlinear 

relationships), and it offers a degree of interpretability by 

allowing you to examine the 'neighbors' influencing a 

prediction.  However, it’s important to be aware of its 

sensitivity to noise and potential performance degradation in 

high-dimensional datasets. [4] 

b) KNN with Hyperparameter Tuning 

    While the underlying principle of KNN – predicting based 

on the similarity of neighbours – remains consistent, the key 

difference between a standard KNN model and a KNN model 

with hyperparameter tuning lies in how the optimal value of 

'K' is determined. In a standard KNN, you likely select a value 

for 'K' based on intuition or convention. This might work 

reasonably well, but there's no guarantee it's the most suitable 

'K' for your specific dataset. 

    This is where KNN with hyperparameter tuning shines. 

Instead of relying on a fixed 'K', it utilizes a systematic, data-

driven approach. It tests a range of 'K' values and evaluates 

their performance on a validation set. The 'K' value yielding 

the best results (for example, the lowest RMSE) is then 

selected as the optimal hyperparameter. This data-driven 

optimization makes a significant difference. The tuned KNN 

model is meticulously tailored to the patterns within your 

dataset.  It helps mitigate the risks of overfitting (model being 

too sensitive to noise) or underfitting (model being too 

simplistic).  Ultimately, this often leads to enhanced accuracy 

and robustness when making predictions on unseen data. 

c) Linear Regression  

Linear regression stands as a cornerstone of 

statistical modeling, establishing a relationship between a 

continuous dependent variable (such as life expectancy) and 

a set of independent variables or features (such as diet, 

exercise, stress, etc.). Its core principle lies in discovering the 

best-fitting line, or hyperplane in the case of multiple 

features, that captures the trend within your dataset.  This 

relationship is expressed through a linear equation, where the 

predicted output is a weighted sum of the input feature values 

plus a bias term: 
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                                     Fig. 2. Linear Regression Architecture  
 
 

𝑦 =  𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + ⋯ + 𝑤𝑛 ∗ 𝑥𝑛 + 𝑏      (3) 

 𝑦 = predicted output (life expectancy) 

 𝑥1, 𝑥2, ... 𝑥𝑛 = feature values 

 𝑤1, 𝑤2, ... 𝑤𝑛 = weights associated with each 

feature 

 𝑏 = bias term 

 

    The weights associated with each feature signify their 

relative importance in determining the output, while the bias 

helps adjust the line's overall position. During training, a 

linear regression model learns the optimal values for these 

weights and the bias. This iterative learning process is guided 

by a loss function, with Mean Squared Error (MSE) being a 

common choice, measuring the average squared difference 

between predicted and actual values. Optimization 

algorithms, such as gradient descent, strive to minimize this 

loss function.  They progressively update the model's 

parameters, refining the line's fit on the training data.  Once 

trained, the linear regression model can effectively predict the 

target variable for new, unseen data points based on their 

corresponding set of features. [6] 

 

d) XG Boost  

XGBoost, an acronym for Extreme Gradient Boosting, is a 

sophisticated machine learning algorithm renowned for its 

performance in predictive modeling tasks. It operates on the 

principle of gradient boosting, where multiple decision trees 

are constructed in a sequential manner, with each tree being 

built to correct the residuals of the previous ones. The 

objective function that XGBoost optimizes is composed of 

two parts: the loss function, which measures how well the 

model’s predictions align with the actual data, and the 

regularization term, which penalizes the complexity of the 

model to avoid overfitting. 

 

The general form of the objective function that XGBoost 

seeks to minimize can be represented as: 

𝑂𝑏𝑗(𝜃) =  ∑ 𝑙(𝑦𝑖 , �̂�𝑖(𝜃))𝑛
𝑖=1 + ∑ 𝛺(𝑓𝑘(𝜃))𝐾

𝑘=1      (4) 

 

Here, (l) denotes the loss function that assesses the 

discrepancy between the predicted (�̂�𝑖) and the actual (𝑦𝑖) 

values, while ( 𝛺 ) represents the regularization term that 

controls the model’s complexity through parameters (𝜃), and 

(𝑓𝑘) are the individual trees in the model. 

XGBoost’s architecture is engineered for high efficiency and 

scalability, which allows it to handle large datasets 

effectively. It incorporates several system-level 

optimizations, such as cache-aware access patterns for 

computing gradients and a column block structure for parallel 

learning, which significantly enhance its speed and 

performance. 

The algorithm also features a unique regularization 

component, which includes both L1 (Lasso regression) and 

L2 (Ridge regression) regularization terms. This dual 

regularization approach helps in reducing overfitting and 

improving the model’s generalization capabilities. [7, 8] 

 

 

e) Gradient Boost Regressor 

Gradient boosting is a machine learning technique that 

constructs a predictive model in the form of an ensemble of 

weak predictive models, typically decision trees. The method 

builds the model in a stage-wise fashion and generalizes them 

by allowing optimization of an arbitrary differentiable loss 

function.  

       
                            
                            Fig. 3 Gradient Boost Regressor Algorithm.  
 

The algorithm begins with a simple model, (𝐹0(𝑥) ), which 

could be the mean of the target values. It then proceeds to 

improve this model by iteratively adding decision trees, ( 

𝐿𝑚(𝑥)  ), which are fit to the negative gradient of the loss 

function, ( 𝐿(𝑦, 𝐹(𝑥)) ), with respect to the model’s 

predictions, ( 𝐹(𝑥) ). At each stage (m), the following steps 

are performed: 

 

Compute the negative gradient of the loss function, known as 

the pseudo-residuals: 

𝑟𝑗𝑚 = − [
𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)

                             (5) 

Fit a decision tree to the pseudo-residuals, 𝑟𝑗𝑚), to obtain the 

leaf regions, (𝑅𝑗𝑚), ( j=1,2,…, 𝑗𝑚 ). 

 

For each leaf region, compute the output value that will 

minimize the loss function: 

𝛾𝑗𝑚 = 𝑎𝛾𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾)

𝑥 ∈𝑅𝑗𝑚

𝑚             (6) 

Update the model with a shrinkage factor ( \nu ), also known 

as the learning rate: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑣 ∑ 𝛾𝑗𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚)

𝐽𝑚

𝑗=1

                    (7) 

This iterative process continues for (M) stages or until a 

stopping criterion is met, resulting in the final model: 

𝐹𝑀(𝑥) = 𝐹0(𝑥)  + ∑ 𝑙

𝑀

𝑚=1

∑ 𝛾𝑗𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚)

𝐽𝑚

𝑗=1

                   (8)     

 

The learning rate ( \nu ) is a crucial hyperparameter that scales 

the contribution of each tree. It requires careful tuning as it 

controls the speed at which the model learns. Smaller values 
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of ( \nu ) typically require more iterations but can lead to a 

more robust model by preventing overfitting. 

Gradient boosting has been successfully applied to a variety 

of problems, ranging from regression to classification tasks. 

Its effectiveness has been demonstrated in numerous machine 

learning competitions and real-world applications. [9, 10] 

 

 

f) Dense Network 

The architecture of the improved dense model, a type of 

multi-layer perceptron, is designed to process input data 

through a series of layers, each composed of nodes or 

“neurons”. This particular model consists of an input layer 

followed by three hidden layers and an output layer. The 

input layer receives the data, which is then passed through the 

hidden layers, each containing 64 neurons. These neurons use 

the rectified linear unit (ReLU) activation function, which 

introduces non-linearity into the model, allowing it to learn 

complex patterns in the data. The ReLU activation function 

is chosen for its efficiency and effectiveness in deep learning 

models, as it helps to mitigate the vanishing gradient problem 

that can occur with other activation functions. The output 

layer consists of a single neuron with a linear activation 

function, making the model suitable for regression tasks 

where the prediction is a continuous value. 

The model employs the Adam optimizer, a popular choice 

for training deep learning models due to its adaptive learning 

rate capabilities, which can lead to faster convergence. The 

loss function used is the mean squared error (MSE), which 

measures the average of the squares of the errors between 

predicted and actual values, making it appropriate for 

regression. Additionally, the model tracks the mean absolute 

error (MAE) as a metric, providing an understanding of the 

average magnitude of errors in the predictions. This 

architecture is effective for regression tasks due to its ability 

to capture complex relationships within the data, adaptively 

adjust learning rates, and minimize prediction errors through 

iterative optimization. The model’s structure, with multiple 

layers of neurons and the use of ReLU activation, enables it 

to approximate non-linear functions, which is often required 

for accurate predictions in real-world scenarios. [11, 12] 

IV. DATASET DESCRIPTION 

This carefully designed dataset, meticulously assembled to 
predict life expectancy, incorporates a wide range of elements 
known to significantly impact overall health. With nearly 
10,000 records, it provides a substantial repository of 
individual profiles, each outlining specific dietary 
preferences. These preferences include details like the 
frequency of meals, consumption of legumes (a vital source of 
plant-based protein), intake of carbohydrates such as rice, 
overall protein consumption, reliance on processed foods, and 
the amount of alcohol consumed. Additionally, crucial 
lifestyle factors like weekly exercise patterns, typical sleep 
duration, and smoking habits are carefully documented.  
Furthermore, the dataset delves into individual factors such as 
age, self-reported stress levels (categorized as low, medium, 
or high), and any history of chronic health conditions (such as 
diabetes or heart disease). This meticulously collected and 
preprocessed data, with life expectancy as the primary focus, 
will lay the groundwork for predictive models. The ultimate 
objective is to meticulously analyze these diverse features, 
seeking to understand the intricate connections between 
lifestyle choices and longevity, and ultimately provide 
valuable guidance for health-conscious decision-making. 

V. RESULTS AND DISCUSSION 

Our exploration began with a KNN regressor. With 

a default of 5 neighbours, the initial KNN model achieved a 

Mean Squared Error (MSE) of 60.85. This translates to our 

life expectancy predictions being off, on average, by roughly 

7.8 years. While this established a baseline, the initial KNN’s 

performance suggested possible overfitting or susceptibility to 

noise. Seeking improvement, we employed GridSearchCV to 

tune the ‘k’ hyperparameter. This optimization led to a 

decrease in the KNN’s MSE to 55.2, a notable improvement. 

This demonstrates the importance of balancing bias and 

variance by carefully selecting the number of neighbours. 

Nonetheless, we remain mindful of KNN models’ potential 

reliance on specific data points as ‘k’ changes. 

TABLE I.  MODELS PERFORMANCE 

Name of the Model MSE RMSE 

XGBoost (Revised) 23.45 4.84 

Gradient Boost 30.79 5.55 

KNN 60.85 7.8 

KNN (Tuned) 55.2 7.43 

MLP Improved 47.93 6.92 

MLP 50.27 7.09 

Linear Regression 48.71 6.98 

 

Next, we introduced XGBoost, a robust tree-based ensemble 

method. This model achieved an MSE of 23.45. Interestingly, 

XGBoost outperformed our tuned KNN model. XGBoost’s 

inherent ability to handle non-linearity and complex 

interactions between features likely contributed to this 

performance difference. Our analysis then ventured into the 

realm of deep learning with a Multi-Layer Perceptron (MLP) 

Regressor. The achieved MSE of 50.27 showcases the ability 

of neural networks to model intricate relationships. The 

MLP’s performance compared to our previous models was 

significantly better. Further experimentation with deeper 

architectures or alternative activation functions could shed 

light on potential performance gains. 

 
                        Fig. 9. GRU  Accuracy vs epoch for second dataset 
 

To investigate the impact of model complexity on 

performance, we experimented with a Multi-Layer Perceptron 

(MLP) architecture using various numbers of hidden layers. 

This exploration revealed that increasing the number of layers 

in the MLP led to an improved Mean Squared Error (MSE) of 

47.93. This finding suggests that a more complex architecture 

was better suited to capturing the nuanced relationships within 

our data, achieving superior performance compared to the 

previous models explored. 

Overall, our analysis identifies Gradient Boost and 

XGBoost as leading contenders for this life expectancy 

prediction task. While a simpler model like KNN can aid 

interpretability, tree-based and deep learning methods appear 

to capture the nuances required for higher accuracy. The 

optimal model choice must balance this trade-off between 

interpretability and potential accuracy gains. Additionally, it 

would be insightful to compare training times and 
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computational resource requirements, as these factors become 

important in real-world applications. 

VI. CONCLUSION 

    In light of the updated results, our conclusion has been 

refined to reflect the performance of the various predictive 

models for life expectancy. The XGBoost model, with its 

ensemble learning approach, has demonstrated exceptional 

performance, achieving the lowest Mean Squared Error 

(MSE) of 23.45 and Root Mean Squared Error (RMSE) of 

4.84. This robust model adeptly captures complex patterns 

and relationships within the data, which is crucial for accurate 

life expectancy predictions. The Gradient Boost model also 

showcased impressive results, with an MSE of 30.79 and an 

RMSE of 5.55, indicating its strength in handling non-linear 

interactions and diverse data features. However, it is the 

XGBoost model that stands out for its superior predictive 

power and efficiency, making it the most effective tool in our 

study for this task. The success of these models, particularly 

XGBoost, can be attributed to their sophisticated algorithms 

that are capable of iterative learning and feature importance 

ranking, which are essential for nuanced data interpretation. 

The deep learning models, such as the improved Multi-Layer 

Perceptron (MLP), also performed well, with an MSE of 

47.93 and an RMSE of 6.92, underscoring the potential of 

neural networks in complex predictive tasks. 

As we conclude, it is evident that the XGBoost 

model's balance of accuracy and complexity makes it an ideal 

choice for predicting life expectancy. Its ability to outperform 

other models confirms its suitability for applications that 

require a nuanced understanding of data. Looking ahead, the 

potential for extending this work is vast. Future research 

could explore the integration of additional data sources, the 

application of more advanced machine learning techniques, 

and the deployment of these models in real-world scenarios. 

The insights gained from this study pave the way for further 

advancements in the field, with the ultimate goal of 

enhancing the accuracy and applicability of life expectancy 

predictions. 
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