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Abstract:  

In this groundbreaking study, we orchestrated a meticulous comparison of four revolutionary deep learning architectures: the 

Multilayer Perceptron (MLP), the Convolutional 1D Neural Network (Conv1D), the Recurrent Neural Network (RNN) and the 

Long Term Short Term Memory (LSTM). We have thus deployed their disruptive potential for cutting-edge breast cancer diagnosis. 

Drawing on the Wisconsin Breast Cancer Database (WBCD) and the Breast Cancer Coimbra Database (BCC), our research not 

only optimised hyperparameters via Grid Search CV but also incorporated cross-validation, paving the way for a new era in 

diagnostic reliability and robustness.   Our exploration revealed exceptional performance on WBCD, MLP and Conv1D leading the 

way with spectacular accuracies of 99.30% and 96%, near-perfect F1 scores of 0.99 and 0.96, and ideal AUCs of 1.00. The RNN 

and LSTM models followed with distinction, displaying accuracies of 97.20% and 98.60%, F1 scores of 0.97 and 0.98, and AUCs 

of 1.00 and 0.99 respectively,Concerning the BCCD, the models demonstrated remarkable adaptability and performance. MLP 

shone with an accuracy of 80.77%, an F1 score of 0.80, and an AUC of 0.88, while Conv1D, RNN, and LSTM presented accuracies 

of 81%, 84.62%, and 84.62%, with F1 scores of 0.78, 0.82, and 0.83, and AUCs of 0.88, 0.89, and 0.81.This research represents a 

significant leap towards the optimal use of deep learning to save human lives. 

 

IndexTerms - Deep learning, Multilayer Perceptron (MLP), Convolutional Neural Network 1D (Conv1D), Recurrent Neural Network (RNN), 
Long Term Short Term Memory (LSTM), Wisconsin Breast Cancer Database (WBCD), Breast Cancer Coimbra Database (BCCD). 

 

1.INTRODUCTION 

Breast cancer remains a major global health problem, affecting millions of people worldwide [1]. In 2022, breast cancer caused 

670,000 deaths worldwide [2], according to the WHO report of 13 March 2024. Around half of all breast cancers occur in women 

with no specific risk factors other than gender and age [1]. In 157 out of 185 countries, breast cancer was the leading cause of cancer 

in women. By 2022, every country in the world will be affected by breast cancer, and men will account for around 0.5% to 1% of 

people with the disease[1]. The emergence of breast cancer is influenced by a combination of factors[3,4], with research indicating 

that genetic mutations and family histories of cancer are responsible for 5-10% of breast cancer cases[5]. In addition, it is estimated 

that lifestyle adjustments and other adjustable factors could potentially impact 20-30% of breast cancer diagnoses [5,6]. In the 

healthcare sector, the use of data analysis techniques can play a crucial role in predicting various clinical scenarios, reducing the 

costs associated with treatment and increasing the effectiveness of the care provided, thereby helping to save lives [12].More 

recently, the development of machine learning has led to a revolution in the way this disease is diagnosed [7], making it possible to 

detect and personalise treatment protocols [8]. Thanks to the use of advanced algorithms [31], these models can scan immense 

quantities of data [11], in order to spot complex patterns [9], revealing essential information [32], which enables breast cancer to 

be predicted reliably [10].We have made several significant contributions to the science of medical diagnosis using deep learning 

techniques. Here are the most relevant contributions of our work:Our novel approach to hyperparameter optimisation via Grid 

Search CV, accompanied by cross-validation, has set a new standard in the reliability and robustness of results. We integrated 

sophisticated pre-processing steps, such as class balancing via SMOTE and normalisation, as well as a dimensionality reduction 

method via Recursive Feature Elimination (RFE). These techniques significantly improved the performance of our models by 

focusing on the most influential variables. Thanks to these sophisticated techniques, we obtained superior results, with an accuracy 

of 99.30% on the WBCC dataset, surpassing the results of the most recent work in this field. This performance illustrates the 

effectiveness of our deep learning approaches in improving the reliability and accuracy of breast cancer diagnosis, and we have 

compared our results with those of the most recent studies to highlight the significant advance that our methods represent. The 

application of these different deep learning techniques was crucial in achieving superior performance, demonstrating the potential 

of these technologies in transforming healthcare, particularly in the crucial diagnosis of breast cancer.These contributions illustrate 

our commitment to advancing accuracy, efficiency and reliability in breast cancer diagnosis, offering valuable insights for future 

research and clinical applications. Our work clearly demonstrates the potential impact of deep learning and machine learning in 

transforming healthcare, particularly in the critical area of cancer diagnosis. 
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2. PROPOSED METHOD 
Our study explored the effectiveness of four advanced deep learning architectures: Multilayer Perceptron (MLP), Convolutional 

1D Neural Network (Conv1D), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) in breast cancer 

diagnosis, using datasets from the Wisconsin Breast Cancer Database (WBCD) and Breast Cancer Coimbra Dataset (BCCD) 

[14,15]. After a crucial data pre-processing step, including balancing via SMOTE and normalisation, we proceeded to a rigorous 

separation into training and test sets. An exhaustive optimisation of hyperparameters was carried out using Grid SearchCV, 

supported by cross-validation to confirm the reliability of our models. Careful evaluation was based on key performance indicators, 

including accuracy, F1 score, and AUC, for rigorous comparison. The full methodology, illustrated in Figure 2.1, demonstrates the 

precision and rigour of our analytical approach to this investigation. 

 

 

 
                                                                    Fig.2-1 Breast cancer classification pipeline with hyperparameter optimisation 

 

2.1 Description of the dataset  
We chose to work with two specific datasets: the Wisconsin Breast Cancer Database (WBCD) and the Breast Cancer Coimbra 

(BCC). Our selection was based on their established reputation in the scientific community [16], being resources frequently used in 

many previous studies, as highlighted in various references [16, 17, 18, 19,20]. This decision stems from our commitment to 

scientific rigour and our desire to ensure high-quality results. We judged these datasets to be appropriate[18] and relevant[19] to 

our field of research. Their choice was also based on their ability to provide robust[20] and representative[17] data, thus meeting 

the requirements of our advanced analyses. 

The WBCD dataset, compiled by the University and Hospitals of Wisconsin in 1995[21]. This dataset includes 569 observations 

from 32 patients, with a distribution of 62.74% benign versus 37.26% malignant cases [14]. The data structure consists of 32 

variables, including a unique identifier for each case, the diagnostic label (benign or malignant), and 30 diagnostic variables [22]. 

These are derived from 10 primary features, including perimeter, radius, texture, smoothness, area, compactness, concavity, concave 

points, fractal measure and symmetry [14]. Figure 2.2 below illustrates the distribution of diagnoses in the dataset, highlighting the 

proportion of benign versus malignant cases. 
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                                                                    Fig. 2-2 Distribution of diagnoses in the WBCD dataset. 

The Coimbra Breast Cancer Dataset (BCCD) from the University of Coimbra [15], compiles a set of biometric measures from 

routine blood samples [16], consisting of nine predictor variables and a categorical outcome expressing the disease state of the 

patients examined [15]. Predictive measures include demographic data such as age, body metrics such as BMI, and biochemical 

data such as glucose and insulin levels. The HOMA device and concentrations of leptin, adiponectin, resistin and MCP-1 complete 

this range[15]. Collected between 2009 and 2013, this information represents samples from 64 women diagnosed with breast cancer 

and 52 undiagnosed controls[15], giving a total sample size of 116 individuals[16]. Figure 2.3 below shows a pie chart that visually 

quantifies cases according to whether or not they are affected by breast cancer, illustrating the respective proportion of diagnoses 

within the cohort studied. 

 

                                                       Fig. 2-3.pie chart of the distribution of diagnoses in the Coimbra dataset. 

2.2 RFE Methodology for Data Dimensionality Reduction 

Recursive feature elimination (RFE) is a key mechanism in the field of machine learning [16], especially when faced with datasets 

with a large number of variables [16]. The aim of this process is to discern and retain only the most significant variables that 

contribute to maximising the accuracy of predictions [23]. By reducing the number of features, only those that are truly relevant to 

the model are retained [23], increasing its efficiency and improving the relevance of predictions, while simplifying the model for 

greater interpretability and better overall performance [24]. In this work, as part of the refinement of predictive models, the RFE 

technique is used to distinguish essential features[51], within a large dataset. This approach[52], based on the careful evaluation 

and rigorous selection of attributes[53], focuses on retaining only those that have a decisive influence on the predictions[54]. It 

enables the model to be simplified effectively, gradually eliminating superfluous elements and retaining only the essentials[54], 

making it easier to improve model performance by reducing dimensionality[53], eliminating less relevant variables and 

concentrating on those that contribute most to accurate prediction[54] . 

2.3 Optimising hyperparameters  

Parameter tuning in machine learning models aims to identify the ideal configurations that maximise predictive efficiency for 

various applications[47], thereby helping to improve the overall accuracy and reliability of the analyses carried out[25].The 

parameters that govern the way in which learning takes place in the models are crucial to their performance[25]. Various strategies 

for adjusting these parameters exist, encompassing systematic methods such as exhaustive or random search [50], sophisticated 

approaches such as Bayesian optimisation, and advanced techniques based on the gradient or on evolutionary and collective 

principles [16]. In our study, we employed the GridSearchCV optimisation technique for its proven ability to efficiently determine 
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optimal parameters [16]. This technique adopts a brute-force approach [49], testing all possible combinations of specified 

parameters within a predefined grid to identify the one that maximises cross-validation performance [16]. We chose to use K-folds 

cross-validation, a standard scikit-learn method, adapted to our datasets for disease prediction. In order to guarantee reliable and 

accurate predictive models, we integrated GridSearchCV into our evaluation process, enabling us to test a multitude of 

hyperparameter combinations. The application of GridSearchCV was systematic, using 'estimator', 'param_grid', 'scoring', 'verbose' 

and 'n_jobs' to refine and evaluate the performance of each hyperparameter combination through our deep learning models. 

 

2.4. Model Performance Evaluation 

In order to ensure a rigorous and comprehensive evaluation of the performance of the proposed deep learning architectures, we have 

adopted a multidimensional approach based on a set of statistically robust metrics [44]. This section describes the criteria used to 

quantify classification efficiency, highlighting the importance of each metric in the context of our study 

Validation Accuracy in GridSearchCV:This metric is essential for identifying the set of hyperparameters that maximises model 

generalisation on unseen data,it is the metric that measures the proportion of correct predictions made by a model on a validation 

set during the GridSearchCV process [55]. It is calculated for each hyperparameter configuration tested during the cross-validation 

integrated into GridSearchCV, and guides the selection of the best model by avoiding overlearning and ensuring optimal 

performance on data outside the training set [56]. 

accuracy-validation=
𝑇𝑃𝑣𝑎𝑙+𝑇𝑁𝑣𝑎𝑙

𝑇𝑃𝑣𝑎𝑙+𝑇𝑁𝑣𝑎𝑙+𝐹𝑃𝑣𝑎𝑙+𝐹𝑁𝑣𝑎𝑙
                  (2.1)      

where TPval is the number of positive examples correctly identified by the model on the validation set. TNval is the number of 

negative examples correctly identified by the model on the validation set.FPval is the number of negative examples incorrectly 

identified as positive on the validation set.FNval is the number of positive examples incorrectly identified as negative on the 

validation set. 

Accuracy (Model Accuracy): is an essential metric for assessing the overall performance of the model on the test set, providing an 

overview of its ability to correctly identify the two classes [34]. 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                 (2.2)    

where TP: Number of positive examples correctly identified by the model.TN: Number of negative examples correctly identified 

by the model.FP: Number of negative examples incorrectly identified as positive.FN:Number of positive examples incorrectly 

identified as negative.                          

Sensitivity or True Positive Rate (Recall): This measure assesses the model's ability to correctly identify positive observations 

[35,71]. 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                       (2.3) 

Accuracy: This quantifies the proportion of positive predictions that are actually correct [35]. 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                           (2.4) 

F1 Score= 2*
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
                                       (2.5) 

AUC (Area Under the Curve):is particularly useful because it is independent of the decision threshold and gives a measure of the 

model's performance over all possible thresholds, providing a robust assessment of its ability to classify observations 

correctly[35].∫
 1

0
𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)                                 (2.6) 

where TPR (True Positive Rate) is calculated as  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                             (2.7) 

FPR (False Positive Rate) is the false positive rate, calculated as  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                       (2.8) 

We also examined the confusion matrix and other curves for a complete assessment of the model's performance.  
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 3. Experimental results and discussion 

The system developed is fully implemented on the Google Collaboratory (Colab) platform, an invaluable resource for researchers 

and developers enabling the execution of computationally intensive code through access to hosted graphics processing units (GPUs) 

[39] . This platform facilitates the manipulation and analysis of large datasets without hardware constraints [40], which is essential 

for the efficient processing and analysis of complex cancer diagnostic data.  The core of the development is based on the use of 

TensorFlow [41], integrated with the Keras library, for the construction and optimisation of several neural network architectures 

[41], including multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), 

including Long Short-Term Memory (LSTM) for processing data sequences. Keras, with its simplicity of use and flexibility, allows 

rapid and efficient experimentation with different model architectures and parameters [42], thus encouraging innovation and the 

exploration of new modelling ideas [42]. The experiments were conducted using a balanced dataset generated using the SMOTE 

approach. The results of each scenario are discussed separately. 

3.1 Multilayer Perceptron (MLP) 

In this section, we compare the results obtained with our Multilayer Perceptron (MLP) model on two distinct datasets: the Wisconsin 

Breast Cancer Database (WBCD) and the Breast Cancer Coimbra (BCC).Table 3.1, which follows, details the architecture of the 

MLP model with the best hyperparameters found and the performance of the validation accuracy that is measured during the 

hyperparameter selection process with GridSearchCV.   
 

Table 3.1. MLP model architecture with the best hyperparameters found 

  

Hidden Layer Neurons 32 neurons for both layers (optimised using GridSearchCV) 

Activation function tanh for all hidden layers (confirmed by GridSearchCV) 

Dropout layer 30% rate after each hidden layer (optimised using GridSearchCV) 

Optimizer adam (confirmed by GridSearchCV) 

Batch size 32 (optimised via GridSearchCV) 

Number of Epochs 10 (optimised via GridSearchCV) 

Max Validation Accuracy 97.20% 

 

Table 3.2 below examines in depth the effect of the best hyperparameters on the performance of the MLP model. These indicators 

provide us with a comprehensive assessment of the model's quality, generalisability and reliability in classifying cancer diagnoses. 

 Table3.2. Results of the MLP model on the two datasets  

 

dataset  accuracy of 

the model 

 precision sensitivity f1 score AUC 

WBC 99.30 1.00 0.99 0.99 1.00 

BCC 80.77 0.83 0.77 0.80 0.88 

 

Analysis of the results indicates that hyperparameter optimisation played a crucial role in improving the model's performance 

metrics, suggesting that the model was well adapted to the specificities of the data.Having examined the quantitative performance 

metrics of our Multilayer Perceptron model, we now turn to a more detailed visual analysis.The following Figures 3.1 and 3.2 show 

the confusion matrices for the predictions of our model on the WBCD (Figure 3.1) and BCC (Figure 3.2) datasets with the 

equilibrium data.These matrices allow us to visualise the distribution of correct and incorrect predictions, providing a more nuanced 

perspective on the performance of the model in terms of true positives, true negatives, false positives and false negatives. 

Examination of these matrices is essential for understanding the model's behaviour when faced with real cases, in particular its 

tendency to commit type I errors (false positives) or type II errors (false negatives). 
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Fig 3.1.Confusion matrix on WBCD obtained                          Fig 3.2.Confusion matrix on BCC obtained by the MLP model 

 by the MLP model. 

In addition to the confusion matrices, the following Figures 3.3 and 3.4 illustrate two crucial aspects of the performance of our 

model on the WBC dataset for Figure 3.3 ,On the left, the accuracy curve illustrates the accuracy of training and validation across 

different epochs,on the right, we observe the loss curve, which plots the loss of training and validation across epochs.  and in Figure 

3.4, the dotted line represents random performance, while the blue curve represents the performance of the evaluated model, with 

an AUC (Area Under the Curve) of 0.88, indicating a good discrimination ability of the model. 

 

                                          Fig 3.3.Accuracy and loss curve on WBCD obtained by the optimal MLP model. 

 

                                                             Fig 3.4.Roc curve on BCC obtained by the optimal MLP model. 

3.2.1D Convolutional Neural Network (Conv1D) 

 

Table 3.3 below provides an in-depth overview of the selected optimal architectures.    
                                                           Table 3.3 Architecture of conv1D on the two datasets  

 

  

Filters by Conv1D Layer 32 (optimised via GridSearchCV) 

http://www.ijrti.org/


© 2024 IJNRD | Volume 9, Issue 4 April 2024| ISSN: 2456-4184 | IJNRD.ORG 

 

 

IJNRD2404702 International Journal of Novel Research and Development (www.ijnrd.org) h16 

 

Kernel size 3 (optimised via GridSearchCV) 

Activation function relu (confirmed by GridSearchCV) 

Optimizer adam (confirmed by GridSearchCV) 

Batch size 32 (optimised via GridSearchCV) 

Max Validation Accuracy 98.43% (according to GridSearchCV) 

 

Table 3.4 below provides an in-depth look at the performance of the Conv1D model, configured with the most efficient 

hyperparameters identified during our optimisation process.  
                                                                     Table 3.4. Result of the 1D conv model on the two datasets  

 

dataset  accuracy of the 

model 

 precision sensitivity f1 score AUC 

WBC 96 0.95 0.97 0.96 1.00 

BCC 81 0.90 0.69 0.78 0.88 

 

 

We turn to a visual assessment of performance with Figures 3.5 and 3.6 below, which display the confusion matrices generated by 

our model on the WBCD and BCC datasets (Figure 3.5 and Figure 3.6 respectively), clearly distinguishing correct predictions from 

classification errors. 

                   
  Fig 3.5.Confusion matrix on WBCD obtained by                                       Fig 3.6.Confusion matrix on BCC obtained by the Conv1 model.  

the Conv1 model 

 

3.3. Recurrent Neural Network (RNN) 

Table 3.5 below provides an in-depth look at the optimal architectures selecting the best performing hyperparameters through our 

optimisation process. 
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                                                   Table 3.5. Result of the 1D conv model on the two datasets  

Hidden Layer Neurons 
16 for the first layer, 8 for the second 

(determined by GridSearchCV) 

Dropout layer 

50% rate after dense layers (determined by 

GridSearchCV) 

 

Optimizer adam (confirmed by GridSearchCV) 

Batch size Varied (determined by GridSearchCV) 

Number of Epochs 
300(determined by GridSearchCV) 

 

In Table 3.6 below, we deploy a series of key metrics such as accuracy, precision, recall, F1 score and AUC to assess the 

effectiveness of the RNN model in our classification context. These metrics provide a critical overview of the effectiveness of the 

RNN model and its accuracy in distinguishing different diagnostic classes. 

                                                                       Table 3.6. Optimal result of the RNN model on the two datasets 

 

dataset  accuracy of 

the model 

 

precisio

n 

sensitivit

y 

f1 

score 

AUC 

WBC 97.20 0.96 0.99 0.97 1.00 

BCC 84.62 1.00 0.69 0.82 0.89 

 

 
 

In assessing the performance of our model, particular attention was paid to the visual interpretation of the Confusion Matrix, as 

illustrated in Figures 3.7 and 3.8. 

                          

 Fig 3.7.Confusion matrix on WBCD obtained                                                  Fig 3.8.Confusion matrix on BCCD obtained by the RNN model  

 by the RNN model  

D. Long Short Term Memory (LSTM) neural network 

Table 3.7, below, provides a detailed analysis of the optimal architectures determined by selecting the most efficient 

hyperparameters, as a result of our rigorous optimisation process. 
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                                                                        Tab3. 3.7. LSTM architecture on the two datasets 

 

Neurons per First Layer 50 neurons, determined as optimal by GridSearchCV 

Neurons per Second Layer 25 neurons, via GridSearchCV 

Activation function 
relu' for the LSTM layers, 'sigmoid' for the output; best 

confirmed via GridSearchCV 

Number of Epochs 150, the optimal number of GridSearchCV epochs 

Max Validation Accuracy 95.45%, achieved during the best iteration of GridSearchCV  

In Table 3.8 below, we present a range of key metrics including accuracy, precision, sensitivity (recall), F1 score, and AUC. These 

metrics are essential for assessing the performance of the LSTM model in our classification task. They provide a detailed perspective 

on the model's ability to correctly differentiate between the various diagnostic categories. 

 
                                                                     Tab 3.8. Optimal result of the LSTM model on the two datasets 

 

dataset  accuracy of the model  precision sensitivity f1 score AUC 

WBC 98.60 0.98 0.98 0.98 0.99 

BCC 84.62 0.90 0.76 0.83 0.81 

 

 

Figure 3.9 and Figure 3.10 below show the optimal confusion matrices obtained from the WBCD and BCC datasets, allowing a 

direct comparison of the model's diagnostic performance. This representation highlights the model's accuracy in terms of true 

classifications versus false predictions, illustrating its reliability in the clinical context for both types of data. 

 

Fig 3.9.Confusion matrix on WBCD obtained by Fig 3.10.Confusion matrix on BCCD obtained by the LSTM model  
 the LSTM model  

 E. Intermediate conclusion on the results observed 

Our comparative analysis revealed that the MLP and Conv1D models outperformed the RNN and LSTM architectures in terms of 

accuracy on the WBCD database, with scores of 99.30% and 96% respectively. These models also demonstrated an excellent ability 

to generalise on the BCCD, albeit slightly less than that observed on the WBCD. The RNN and LSTM models, while showing more 

modest performance, nevertheless demonstrated great robustness, suggesting their usefulness for applications requiring the 

management of sequences or complex temporal data. The following histogram in Figure 3.11 illustrates the accuracy rates obtained 

by the MLP, Conv1D, RNN and LSTM models on the WBCD and BCCD datasets. The coloured bars allow an instant comparison 

between the results on the two datasets, highlighting the strengths and weaknesses of each model in different diagnostic contexts. 
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                                                    Figure 3.11: Comparison of Model Accuracy on WBCD and BCCD Datasets 

Putting the F1 score into perspective, a key indicator harmonising precision and recall, is essential for a balanced assessment of 

classification performance, especially when faced with unequal classes. Figure 3.12 illustrates these scores for the MLP, Conv1D, 

RNN and LSTM models, applied to the WBCD and BCCD datasets. 

 

                                           Figure 3.12: F1 Scores of Machine Learning Models on WBCD and BCCD Datasets 

 F. Discussion  
This section presents a synthesis of recent research exploiting the Wisconsin Breast Cancer Database (WBCD) and Breast Cancer 

Coimbra Dataset (BCCD) for the development of predictive models of breast cancer. In this section, we focus on the analysis of the 

results obtained by different recent studies on the prediction of breast cancer. To ensure a relevant[43] and up-to-date comparison, 

we have selected only research published from 2023 onwards. This temporal limitation allows us to discuss the most recent advances 

and compare them directly with our own results. 

Table 3.9 below summarises the details reported by each study, as well as the datasets used, which helps us to assess the relative 

effectiveness of the different approaches in similar settings. The aim of our analysis is to identify the advances that have been made 

in the field of early detection of breast cancer and to determine the extent to which these advances could influence current diagnostic 

practices. 
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                                                   Table 3.9. Comparison of Results of Recent Breast Cancer Prediction Models  

 

Main author Year Precision Data Sets Used 

Amit Kumar Jakhar et al [57] 2023 99% WBCD 

Md. Murad Hossin et al[58]. 

 
2023 99.12% WBCD 

Sara Laghmati et al [59] 

 
2023 97.37% WBCD 

Aarti et al[60] 

 
2024 96.5% WBCD 

Achini Nisansala  

et al[61] 

 

2023 97.82% WBCD 

Sujeet Kumar et al [62] 2023 98.8% WBCD 

Tsehay Admassu Assegie et al[63]. 

 
2021 92.53% WBCD 

Ashok Kumar et al[64] 

 
2023 99% WBCD 

Ayman Alsabry et al[65]. 

 
2023 88%  BCCD 

Vikas Kushwaha et al[66]. 

 
2023 99% BCCD, WBCD 

Fatema Tabassum Liza et al[67]. 

 
2023 99.20% WBCD 

Akhil Kumar Das et al[68]. 

  
2023 97.53% WBCD 

Our result  - 99.30% WBCC 

 

CONCLUSION 

Our study marks a significant step towards fully exploiting the capabilities of deep learning in the accurate diagnosis of breast 

cancer. By employing a rigorous methodology to compare several advanced deep learning architectures and optimising 

hyperparameters, we have demonstrated the exceptional effectiveness of these models using the Wisconsin Breast Cancer Database 

(WBC) and the Breast Cancer Coimbra Database (BCC). These results underline not only the power of deep learning as a diagnostic 

tool but also its potential to transform breast cancer treatment protocols.the adaptability and accuracy of our models on various 

databases highlight their applicability in a wide range of medical contexts, laying the foundations for the future integration of these 

technologies into real-time diagnostic systems. Furthermore, the hyperparameter optimisation approach presented here promises to 

improve the performance of deep learning models in other areas of medicine.In the future perspectives of our research, we plan to 

focus on the explainability of predictive models. The aim will be to reveal how these models arrive at their decisions, by making 

their learning process transparent and comprehensible to clinicians. This move towards greater explicability aims to facilitate the 

clinical adoption of deep learning models by offering healthcare professionals valuable insights into how they work and why they 

make predictions. This will not only help to increase confidence in the use of these advanced technologies, but also enable more 

informed and personalised medical decision-making. 
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