

THE SIGNIFICANCE OF HETEROCYCLIC COMPOUNDS IN BIOLOGICAL ACTIVITY AND MEDICINAL CHEMISTRY: A REVIEW STUDY

Shilpi Srivastava

Department of Chemistry, Siddharth University,

Kapilvastu, Siddharthnagar-272202

email: shilpisrivastava329@gmail.com

ABSTRACT

The wide and almost all-various family of organic compounds is made up of heterocyclic compounds. There are many heterocyclic compounds known today, and the number is growing daily as a result of extensive synthetic study as well as their synthetic value. Most scientific disciplines, including medical chemistry and biochemistry, involve heterocyclic molecules. The majority of biologically active heterocyclic compounds—such as those with antifungal agents, inflammation reducers, antibiotics, flavonoids, antiepileptic drugs, antihistamines, herbicidal, anticancer, and antimicrobial properties—that have been recently synthesised or isolated from plants are covered in this review.

Key words: heterocyclic compounds, antifungal agents, antiepileptic drugs etc.

INTRODUCTION

It has been shown that heterocyclic compounds can be present in at least 85% of every drug, and such drugs are physiologically active in nature. This represents the importance of heterocyclic compounds in the development of modern medications. Heterocyclic compounds are cyclic organic molecules containing at least one heteroatom. Although heterocyclic rings, including extra heteroatoms, are also well-known, nitrogen, oxygen, and sulphur are the most common heteroatoms in these compounds. An organic compound that is cyclic and contains all of its carbon atoms in rings is known as a carbocyclic compound. Heterocyclic compounds are used in many biological domains and are considered one of the essential types of organic compounds due to their capacity to treat a wide range of ailments.

Every heterocycle, whether man-made or organic, has medicinal effects. Due to their physiological and pharmacological activity, heterocyclic compounds have become more and more prominent in the field of medicine. Heterocyclic rings make up the main structural element of many biological substances, such as hemoglobin, DNA,

RNA, chlorophyll, and vitamins. Numerous heterocyclic compounds have common applications in various disorders. Triazine derivatives, for instance, have been used as anti-inflammatory medications, urinary antiseptics, and herbicides with antibacterial qualities. Several reports have been made of the biological activity of benzoimidazole derivatives, including anthelmintic, antiviral, antifungal, and antibacterial properties. [1] Heterocyclic compounds that include nitrogen atoms are thought to be the most common type of chemical molecules found in naturally occurring products, physiologically active complexes, and chemicals used extensively in medical chemistry. [2] As chemistry and medical issues are combined to research prevalent disorders and potential solutions, medicinal chemistry emerges as a significant area of study in chemistry. This area of contemporary chemistry emerged when researchers worldwide began concentrating on the extraction and purification of active ingredients from the tissues of plants, animals, and microorganisms, as well as from the results of their fermentation. Medical chemistry is based on the classical branches of chemistry, especially organic chemistry, biology, and some aspects of physics. The literature survey indicates that heterocyclic compounds have a significant role in medicinal chemistry. Recently, there has been a greater focus on the development of heterocyclic scaffolds for the synthesis of sophisticated pharmaceuticals. [3]

BIOLOGICAL ACTIVITY OF HETEROCYCLIC COMPOUND

In addition to being a crucial structural component in medicinal chemistry, heterocycles are also frequently found in large quantities in biomolecules, such as enzymes, vitamins, natural products, biologically active substances, and enzyme inhibitor properties, as well as insecticidal, antidiabetic, and anti-HIV qualities. In order to find correlations that help with the modeling of new systems, the biological activity, as determined by the IC₅₀ parameter, was measured in vitro. [4] The N-heterocyclic molecules are important in pharmaceutical chemistry nonetheless.

Therefore, from the perspective of medicinal chemistry, the combination of synthetic and natural pharmaceuticals is an evolving element to consider. Heterocycles are an excellent starting point for designing substances that interfere with targets and biological processes implicated in the progression of cancer because of the great tendency of pockets that bind enzymes to interact with heterocyclic compounds. These anticancer medications usually function by blocking particular pathways involved in the growth and development of cells. A crucial issue for advanced medicine and science is the research and development of new pharmaceutical substances that are extremely targeted to cancerous cells, which would lessen the burden of

Side effects associated with [2, 5]

Anti-inflammatory activity:

This term is used to characterize medications that reduce or treat swelling or inflammation. Roughly half of the anti-inflammatory medication is an analgesic reducing inflammation in order to relieve suffering instead of using opioids, which interfere with the central nervous system to stop pain signals from reaching the brain. The most popular naproxen, ibuprofen, and aspirin are anti-inflammatory drugs; these medications are referred to as NSAIDs, or non-steroidal anti-inflammatory medicines. For short. This name distinguishes these medications from steroids. To test their anti-inflammatory activity, albino rats with paw edema produced by carrageenan were utilized. Through the plantar injection of 0.1 ml of 1% carrageenan solution, aponeurosis of one of the rear paws, edema was produced. Many cytokines that are generated during the

inflammatory response process are crucial in encouraging the growth of cancer incursions and metastases cells. They can indeed lessen the effectiveness of cancer medications. The origin of cancerous growth, inflammation, and angiogenesis progression as well a metastasis is all linked to nitric oxide (NO), a significant cytokine (Vakkala et al., 2000; Fernandes et al., 1998; Felley-Bosco, 1998). Thus, cytotoxic medications and anti-inflammatory drugs are typically utilized in conjunction with the purpose of treating cancer. [6]

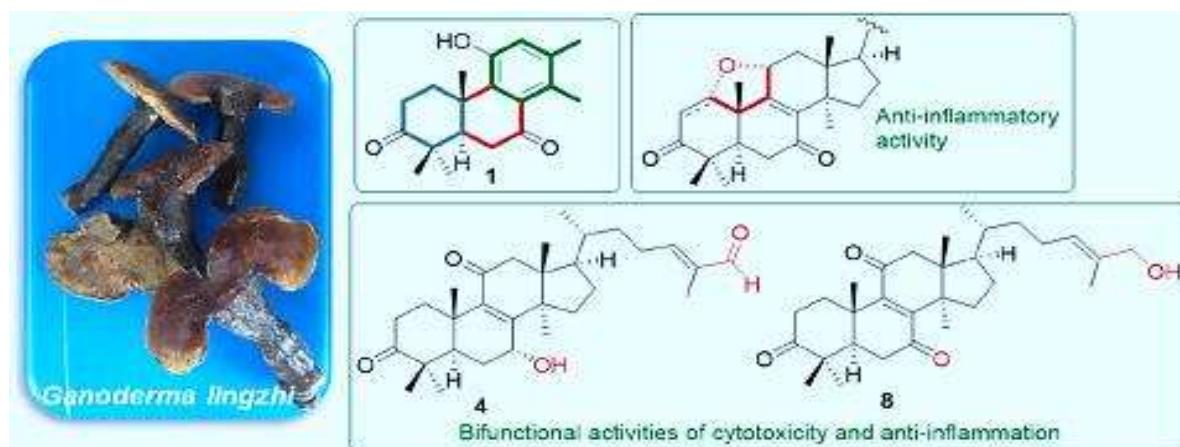


Figure 1: The combination of anti-inflammatory properties and immunosuppressive effects is shown in the image.[7]

Using the classic method of paw edema in rats produced by carrageenan, Ghattas and others synthesized several 4, 6-Diamino-3-cyano-2-methylthiopyridine derivatives additionally demonstrated the ability of these substances to reduce inflammation.

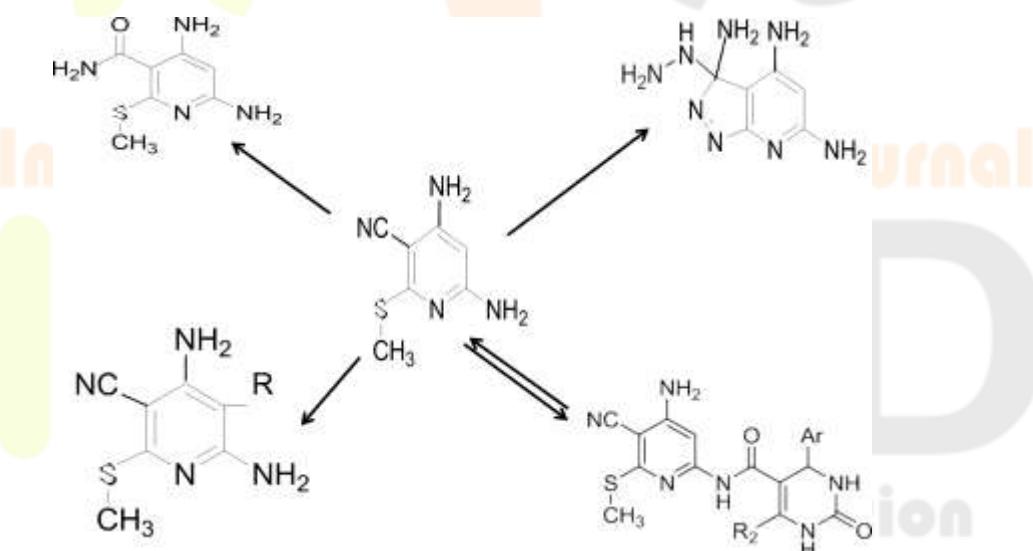


Figure 2: Illustrate the anti-inflammatory characteristics of derivatives of 4, 6-diamino-3-cyano-2-methylthiopyridine.[8]

Antibacterial activity:

The phrase "antibacterial" or "antibiotics" refers to drugs that either eradicate or inhibit bacterial development. To be able to cure or prevent bacterial infections. Some antibiotics and their antiprotozoal action are connected. Antibiotics are ineffective against viral diseases like the flu or the common cold. Inappropriate use of antibiotics may lead to the evolution of resistant organisms. Antibiotics are categorized based on their chemical structures or modes of action. Aromatic heterocyclic derivatives, like β -lactam derivatives, are a key component of the chemical

structure of antibiotics. Many chemists have synthesized and tested numerous molecules with this kind of action against various bacteria. [9]

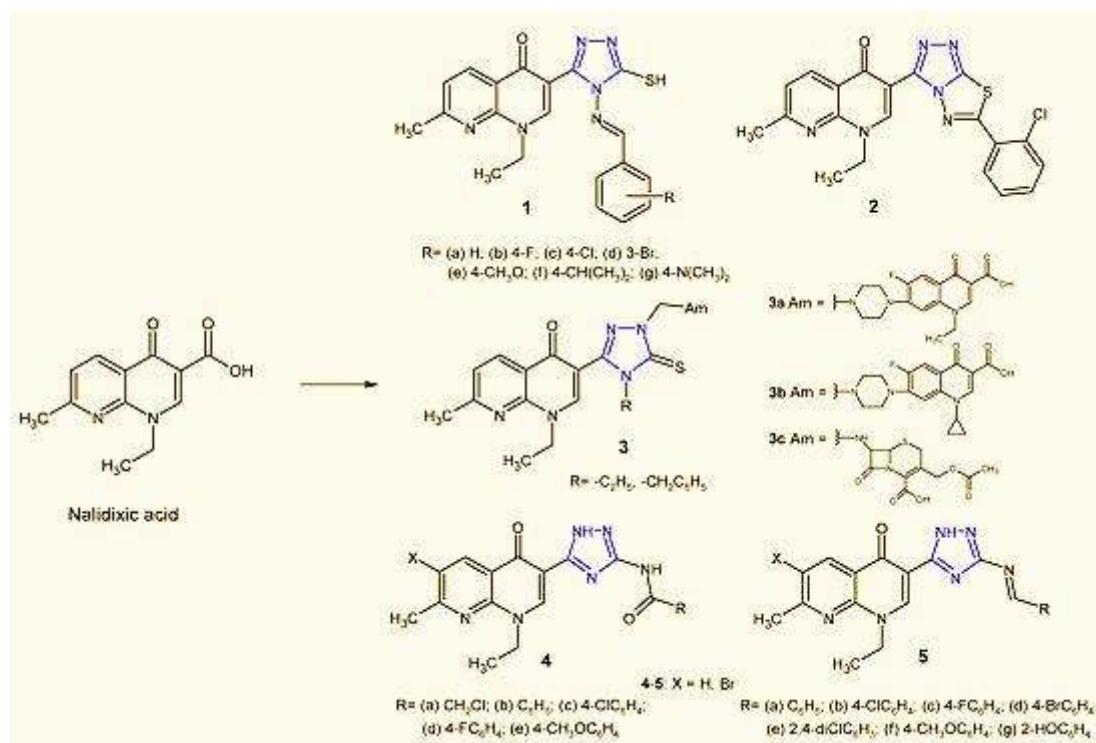


Figure 3: An assortment of substances with diverse applications include the 1, 2, 4-triazole analogues of nalidixic acid..[10]

Novel sulfadiazine-based pyrimidine and 1, 2, 3, 4-tetrazole derivatives were synthesized by Abbass and Zimam and tested on two different strains of bacteria: *Porphyromonas gingivalis* (a Grammeme-negative bacteria) and *Streptococcus* spp. (a Grammeme-positive bacteria). Additionally, as illustrated in Scheme 2, 2017 saw Largani and other synthesized Pyrrolo [3, 4-b] benzamides containing quinolin-2(3H)-yl from benzohydrazide and 9-phenylfuro[3,4 b] quinoline-1,3-dionesas (a compound with the chemical formula 9-phenylfuro[3,4-b]).

Compounds 37–41 were tested for their antibacterial efficacy against *Staphylococcus aureus*. Strong inhibition was shown by *E. coli* and *Enterococcus faecalis* against these bacterial strains. 37 of the selected compounds were shown to have outstanding activity against the microorganisms *E. faecalis*, *S. aureus*, and *E. coli*, with respective minimum inhibitory concentrations (MICs) of 0.5, 0.25, and 0.25 mg/mL.

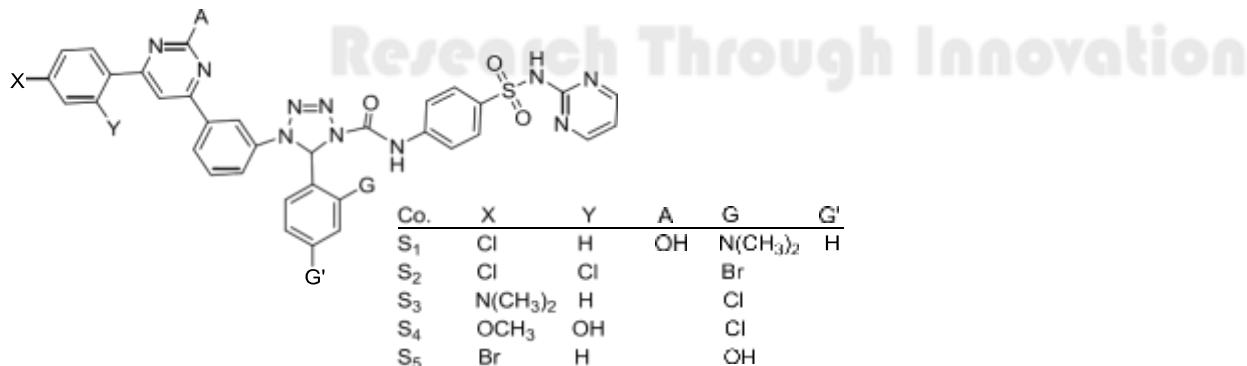


Figure 4: Pyrimidine and 1, 2, 3, 4-tetrazole derivatives' antibacterial activity [11]

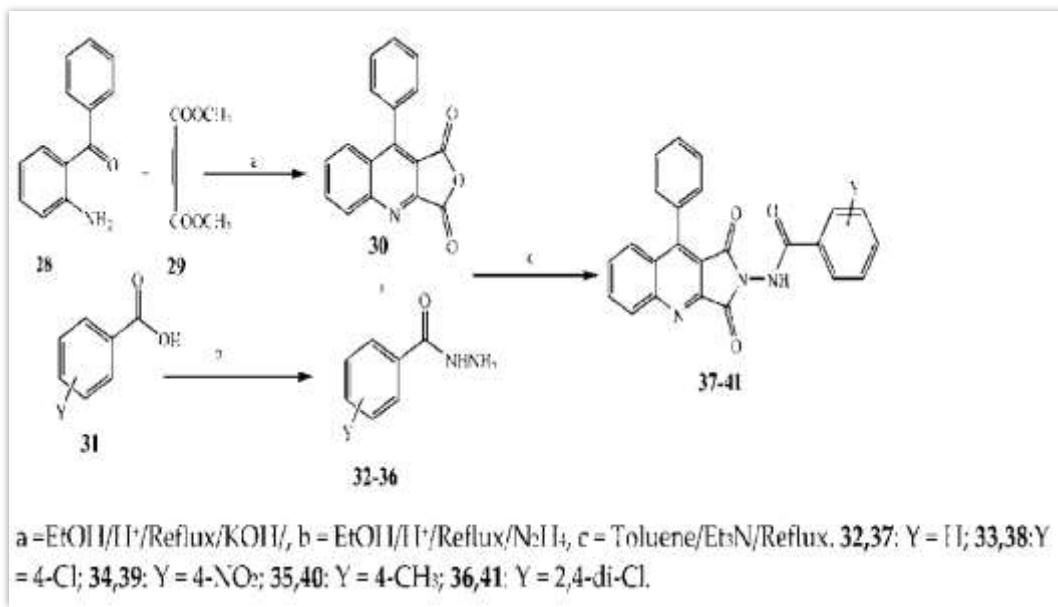


Figure 5: For the production of pyrroles, quinolin-2(3H)-ylbenzamide derivatives are involved [3, 4-b]. [12]

Antifungal activity:-

Fungi are creatures with one or more cells. The majority of them are found in plant wastes or on land, yet they can be found in any habitat. Only a tiny percentage of fungi may infect animals and cause illness. An antifungal treatment aims to kill fungal cells by altering their membrane, which kills the contents of the cell or allows them to leak out. S.V. Blokhina et al. synthesized novel (1H-1, 2, 4)-triazol and thiazole [4, 5-d]. pyrimidine derivatives then used fluconazole as the positive control to examine the antifungal activity of these compounds against various cultures *in vitro*.

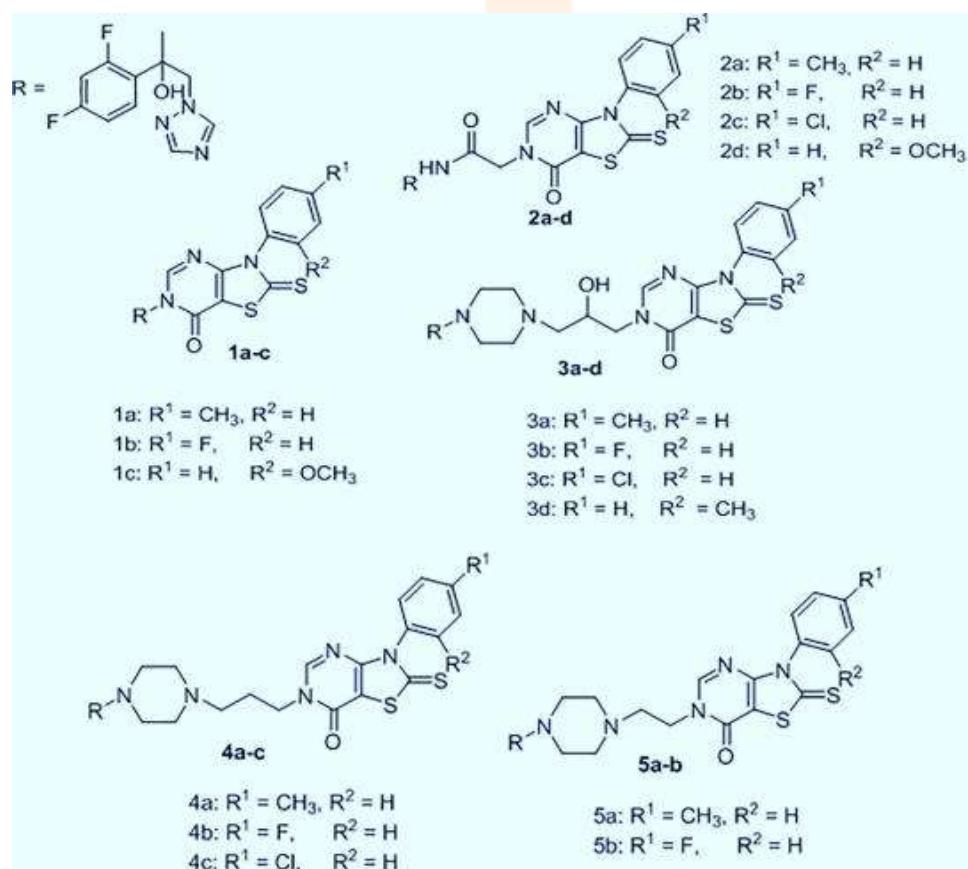


Figure 6: Illustrated the synthesis of recently identified thiazole [4, 5-d] pyrimidine analogues and (1H-1, 2, 4)-triazol. [13]

Chitra, along with others, synthesized bio polymeric hydrogels made from indole-3-acetic acid, which also exhibit actions taken against fungal infections. *Aspergillus fumigates*, *Rhizopus oryzaeas* and *Candida albicans* were tested in different amounts for their antifungal activity, with DMSO (methyl sulfoxide) employed as the negative control agent and ketoconazole as the positive control. When compared with rutin, whose antioxidant efficiency increased in DPPH greater than NO radical, the cytotoxicity study proved the antioxidants' harmless nature. [14] Antimicrobial action of 1, 2, and 4-triazole analogues against microbes antimicrobial medication resistance is a problem that medicine increasingly has to deal with nowadays. This highlights the necessity of introducing novel BAS compounds possessing antibacterial activities. The subject of the molecule's selectivity in its action against the pathogenic flora is the most crucial one in the development of such medications. In this case, the BAS's low toxicity is required. The chemical properties of 1, 2, and 4-triazoles are given below. The antibacterial capability of triazoles has been covered here. The compounds exhibit low toxicity and a wide range of antibacterial actions, according to a review of the literature. From this, it can be inferred that molecules contain an unsubstituted amino group that occupies 1, 2, or 4-triazole's fourth position. cycle nucleus are the best predictors of biological action. Additionally, Schiff bases based on the 1, 2, and 4-triazole matrix have worked as highly efficient antibacterial BAS. [14]

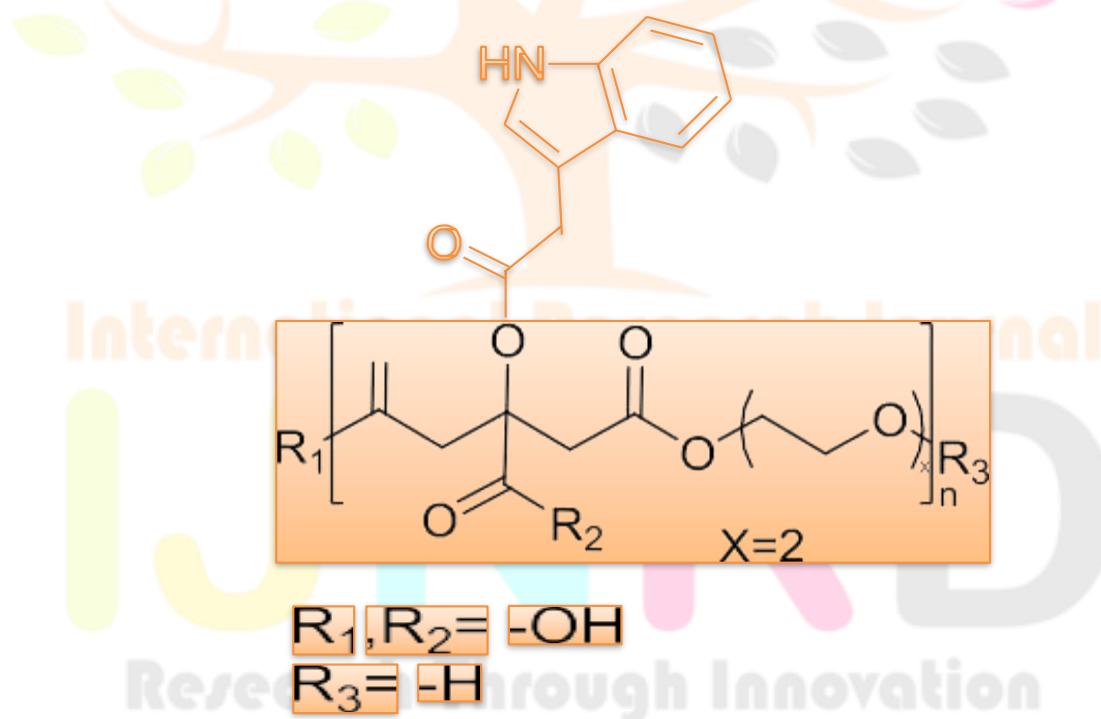


Figure 7: treatment of many medical diseases is biopolymeric hydrogels based on indole 3-acetic acid.

Anticancer activity:-

The class of diseases referred to as cancers is identified by the growth of abnormal cells that may invade or migrate to different parts of the body. Numerous sources, including chemical compounds and radiation energy, are responsible for this sickness. Numerous medications are used to treat this illness, either by stopping the growth of cancer cells or by killing them. We'll go over the most recent synthetic substances that are employed in this way.

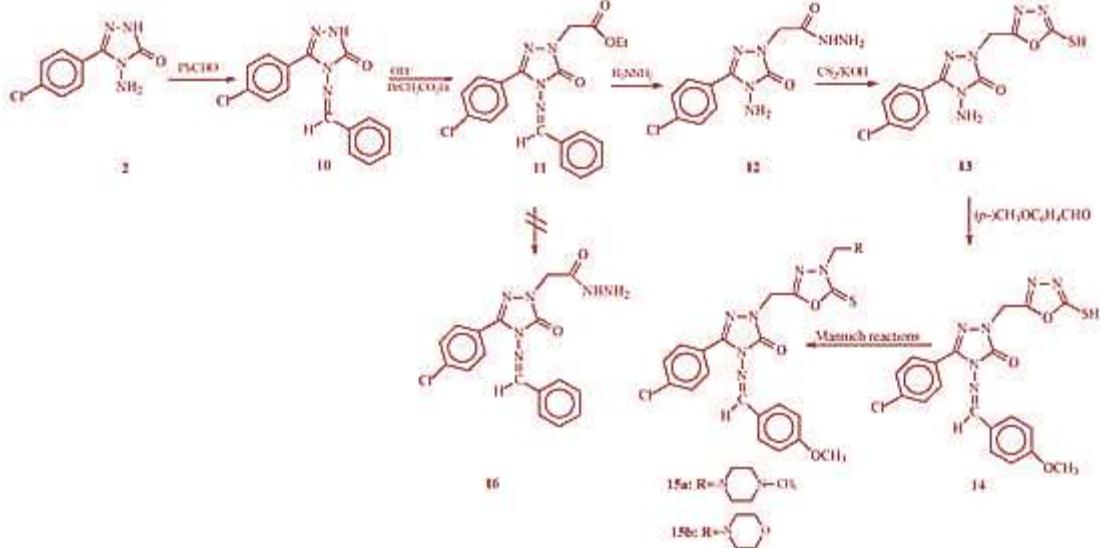


Figure 8: Investigated how effective triazoles 1, 2, and 4 are against bacteria.[15]

Chemically and physiologically, heterocyclic substances containing pyrazole rings fused to pyrimidine, pyridine, and imidazole rings are of interest. In addition, pyrazolopyrimidine-fused heterocycles have drawn a lot of interest, particularly derivatives of pyrazolo[4,3-e][1, 2, 4]triazolo[4,3-a]pyrimidines. 12, 13 Moreover, it has been demonstrated that 1H-pyrazolo [4, 3-c] pyridine possesses extraordinary biological and therapeutic value. [16] Since lipophilic prodrugs participate inside lipid metabolic routes and are able to elude the process of hydrolysis while exhibiting enhanced contacts with cellular membranes, they are additionally employed to accomplish prolonged medication release. Moreover, certain membrane proteins have emerged as viable therapeutic targets for cancer treatments because their activity could be altered through variations within the composition of lipids in the membrane. A new strategy known as "membrane lipid therapy" has surfaced recently. It's predicated on the notion that applying certain lipids can alter the structure and composition of cancer membranes. This has the ability to deconstruct the architecture of the vessel made of lipids as well as modify the location concerning the role of proteins linked with membranes, upsetting downstream processes that are needed for tumour cells to proliferate. One significant anticancer medication that is used in clinics is doxorubicin (DOX). It is a medicinal drug used to treat various tumours, including leukemia. At least three methods exist for altering the structure of doxorubicin: C-3' position (through amide connection fixing during the primary amine group's reaction (NH2)), C-13' position (Hydrazone Connector 'formation within the carbonyl group C O reaction), and Location C-14 (hydroxyl group OH creating an ester link).

Research Through Innovation

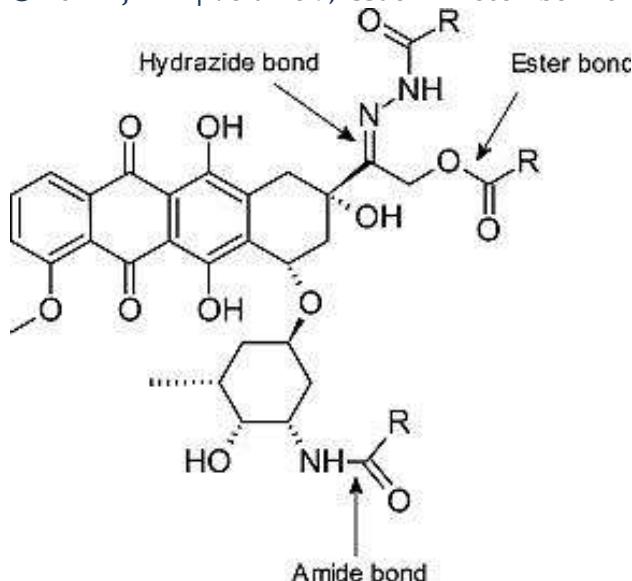


Figure 9: An integral part of conjugates of doxorubicin. [17]

Nowadays, most cancer treatments available are cytotoxic, or cell-killing chemicals that function by tampering with a cell's DNA. Because of the minute alterations that might turn a healthy cell malignant, cytotoxic medicines can be extremely detrimental to the organism. Maybe they are extremely selective for malignant cells. The medications used to treat cancer can be divided into two categories, as shown in the figure.

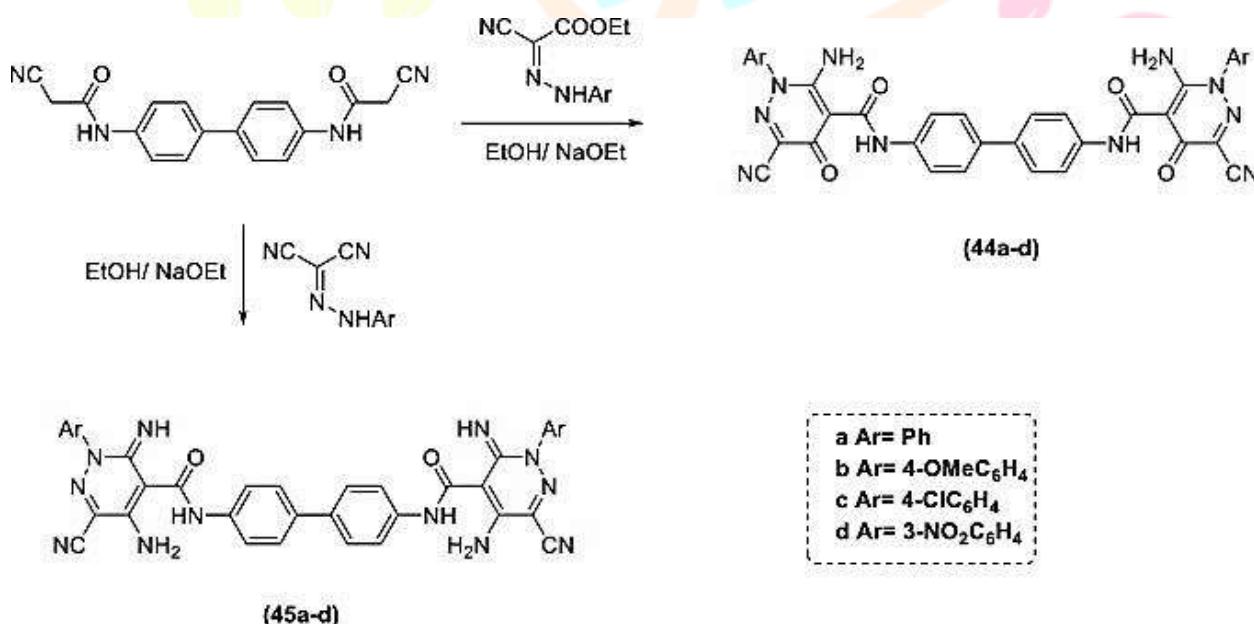


Figure 10: The development of materials with anticancer capabilities [18]

Since the beginning of medicine, secondary metabolic products derived from plant extracts have been routinely employed to treat a wide range of illnesses, including cancer. The most significant components of essential oils made by extracting medicinal herbs are specifically monoterpenes, which include limonene, carvone, verbenone, camphor, carvacrol, and thymol. One of the most significant monoterpene chemicals found in aromatic herbs like thyme and oregano is thymol (2-isopropyl-5-methylphenol). Numerous biological activities are demonstrated by this chemical, including anti-inflammatory, antibacterial, antidiarrheal, antioxidant, and anticancer properties. The literature has recognized thiosemicarbazones as a significant class of compounds having several biological processes, among them the prevention of cancer. Triapine A, for example, is a derivative of thiosemicarbazone with strong anticancer activity that has been thoroughly studied during clinical trial phases I and II.

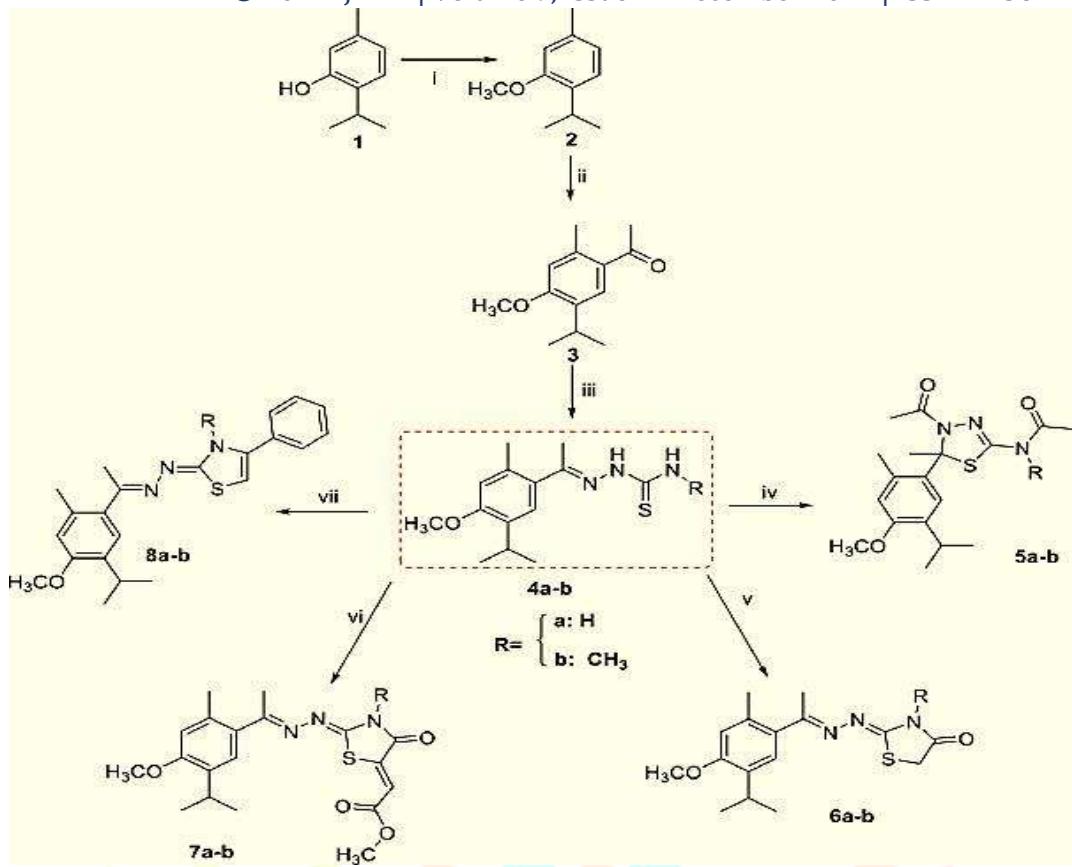


Figure 11: Evaluation of recently developed heterocyclic compounds using thymol[19]

Herbicidal activity:-

Many medications have the ability to eradicate unwanted plants and certain grasses without harming food crops. We will go over some of the more modern synthetic chemicals that have this property, including certain heterocyclic derivatives. A newly developed N-(arylmethoxy)-2-chloronicotinamide class was synthesized by Chen-Sheng Yu et al., and its considerable herbicidal effect was investigated. On the other hand, compound 87f (2-chloro-N-(3, 4-dichlorobenzyl) oxy)-nicotinamide provides a considerable IC50 value. Clomazone and propanil showed IC50 values of 125 and 2 M, respectively, whereas *Lemna paucicostata* had an IC50 value of 7.8 M.

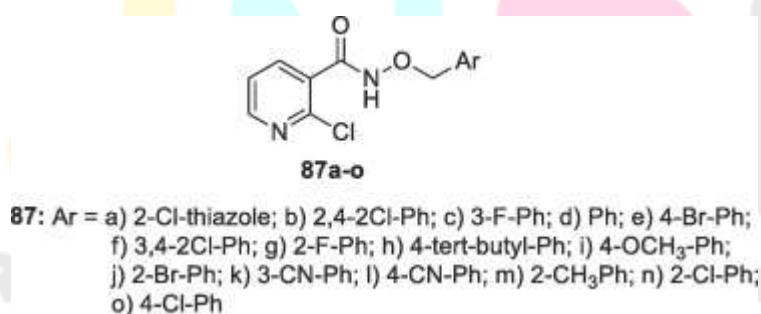


Figure 12. Configurations of N-(arylmethoxy)-2-chloronicotinamides.[13, 20]

HPPD herbicides offer low mammalian toxicity and strong herbicidal effects during pre- and post-emergence treatments against various kinds of grass and broadleaf weeds. More importantly, only a few types of weeds are resistant to herbicides containing HPPD. The pesticide industry is paying more attention to these positive attributes. Rhône-Poulenc agriculture Limited created isoxaflutole (IFT), an HPPD herbicide. Previous research has provided clear information on IFT's herbicidal action, root uptake and translocation, and plant and soil metabolism. IFT is a prodrug in and of itself; in plants and soil, it is transformed into the active ingredient diketonitrile (DKN). Despite being a very efficient herbicide, IFT's complicated structure necessitates a longer synthesis process and higher

production costs.

Additionally, IFT's crop selectivity and weed spectrum aren't quite good enough.

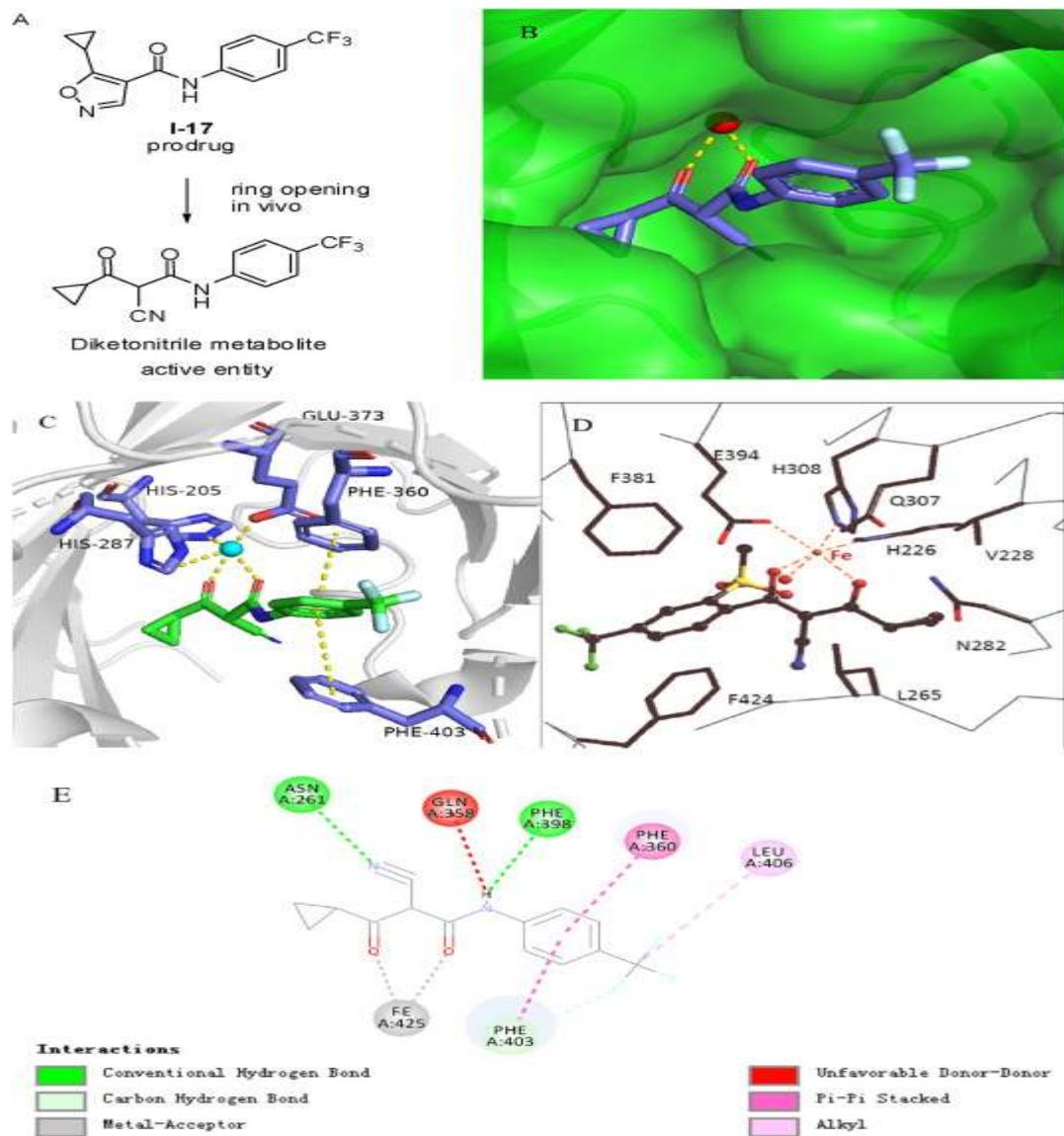


Figure 13: Synthesis of 5-Cyclopropyl-N-phenylisoxazole-4-carboxamide is investigated, as its herbicidal effects [21]

Anticonvulsant:-

These substances fall into a number of categories and can be referred to as pharmacological agents that treat epileptic seizures or antiepileptic medicines. These medications may be referred to as antiseizure or antiepileptic medications. The drug's mechanism of action revealed that it either enhances the function of γ -aminobutyric acid (GABA) or blocks sodium channels. Many articles concentrate on the newly synthesized versions of these medications. Among the current class of anticonvulsants, gamma-aminobutyric acid (GABA) derivatives include categorized into distinct group. Of these, pregabalin, progabide, vigabatrin, and gabapentin are among the drugs used to treat different ailments and are the most commonly used medications. The mechanisms of action of the chemicals in this group vary greatly, and some of them are not entirely understood. The GABA analogues, gabapentin and pregabalin, do not directly affect GABA transport or metabolism, nor do they bind to GABA receptors (Uchitel et al. 2010). These substances function as inhibitors of voltage-dependent calcium channels (VDCCs) that contain the auxiliary $\alpha 2\delta$ subunit because they are ligands of this location (Calandre et al. 2016). An example of an enzyme is gamma-amino butyric acid aminotransferase, which catabolizes GABA. Vigabatrin

is an irreversible inhibitor of the process underlying this enzyme, which raises neurological GABA levels (Rogawski and Löscher 2004). GABA's prodrug and analogue is pregabide. Progabide functions in the capacity of a GABA receptor agonist by way of conversion into GABA (Fromm et al., 1985). [17]

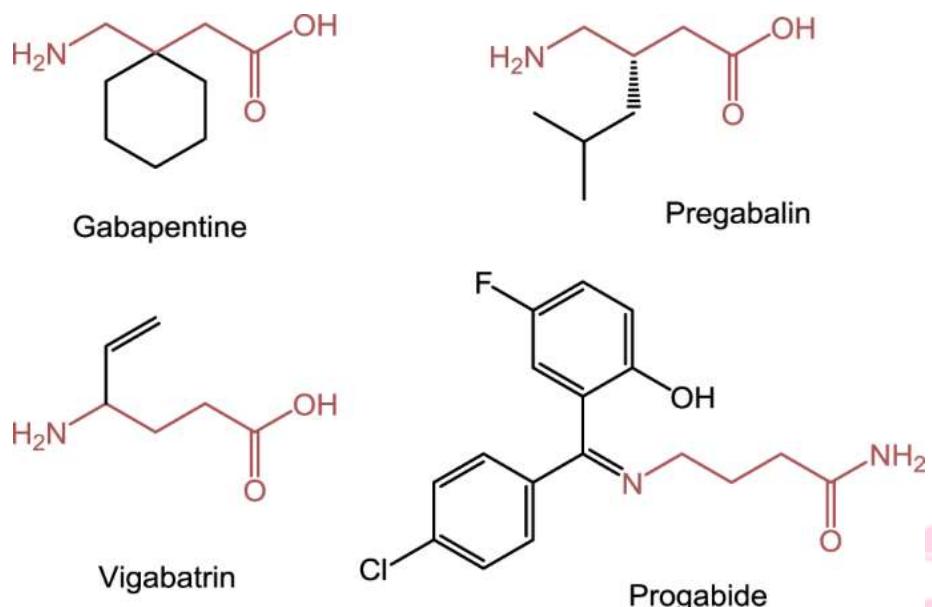


Figure 14: Indicates anticonvulsant drugs, such as GABA [22]

Tricyclohexyltin hydroxide has been reacted in combination with 1, 3-phenylenedioxydiacetic acid (L1) or 3-(N, N'-dicarboxymethyl) amino phenoxyacetic acid (L2) to produce two tricyclohexyltin aryloxyacetates (C1, C2).

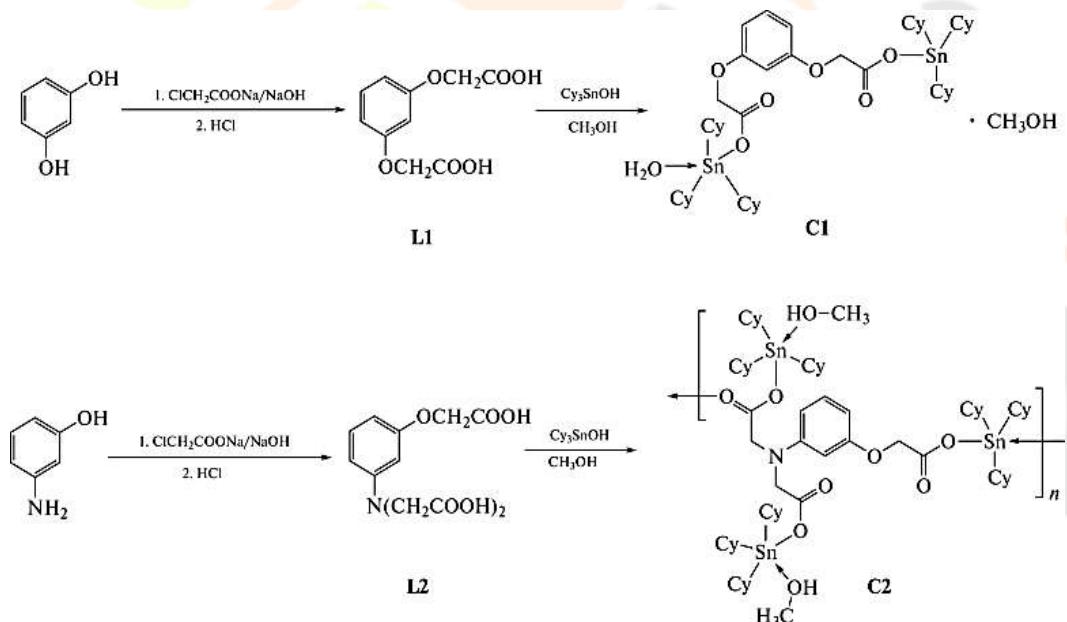


Figure 15: Non-sulfuric acid-like characteristics are displayed by the tricyclohexyltin aryloxy acetates (C1, C2) [23]

Activity of antioxidants:-

Antioxidants can also be categorized according to the kinds of chemical interactions they can go through. Wright, Johnson, and DiLabio claimed such antioxidant tests can be separate into two parts: Hydrogen atom transfer (HAT)-based analysis and Electron transfer (ET)-based analysis, depending on the kinds of chemical interactions antioxidants go through. In the first scenario, it is determined whether potential antioxidants have the ability to

remove an electron and decrease specific substances, such as metals, radicals, and carbonyls. The ability of an electrons donation antioxidant to eliminate free radicals is tested in the second scenario (HAT).[24]

Oxidation is a chemical process that can form free radicals and harm cells by setting off a series of negative reactions. The word "antioxidant" describes two distinct classes of substances: compounds added to products to prevent oxidation and naturally occurring molecules being in food also bodily tissue that are thought to enjoy favourable health benefits. These substances include thiols and ascorbic acid (vitamin C), which have the ability to halt these chain reactions and shield cells from harm. We'll look at a handful of the numerous scientists who have tried to make chemical compounds with this kind of biological activity. Moreover, because of the pharmacological significance of the 1,3,4-oxadiazole ring, an azole class molecule, researchers frequently concentrate on the creation of innovative drugs.

Anticonvulsant, depressive, antipsychotic, antibacterial, antimycobacterial, anti-inflammatory, antiallergic, and antitumor, antiviral, and antitubercular properties have all been reported for consists of compounds the 1,3,4-oxadiazole ring in the literature. With a 1,3,4-oxadiazole ring in its structure, thiodazosin causes hypertension. Today's active antibiotics include furamisol, vasodilator, and nesapidil.

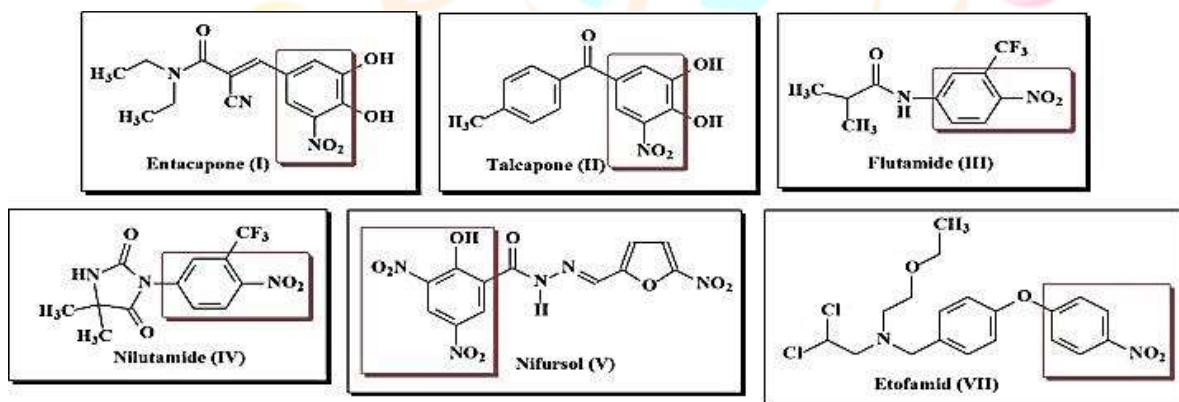


Figure: 16: Heterocyclic compound's antioxidative properties [25]

Its ability to synthesise various heterocyclic rings in biology, including pyrazole, cyanopyridine, flavanones, and di-aryl cyclohexanones^{6, 7, 8} is attributed to the rings' chemical elastic and torsion, as shown in Fig. 1(I). Examples of these rings include Epirizole (II), a nonsteroidal anti-inflammatory drug, and Letrazole (III), an aromatase inhibitor used after breast cancer surgery^{10,11}, as well as the flavonoid Catechin (IV) antioxidant drug from plants¹².

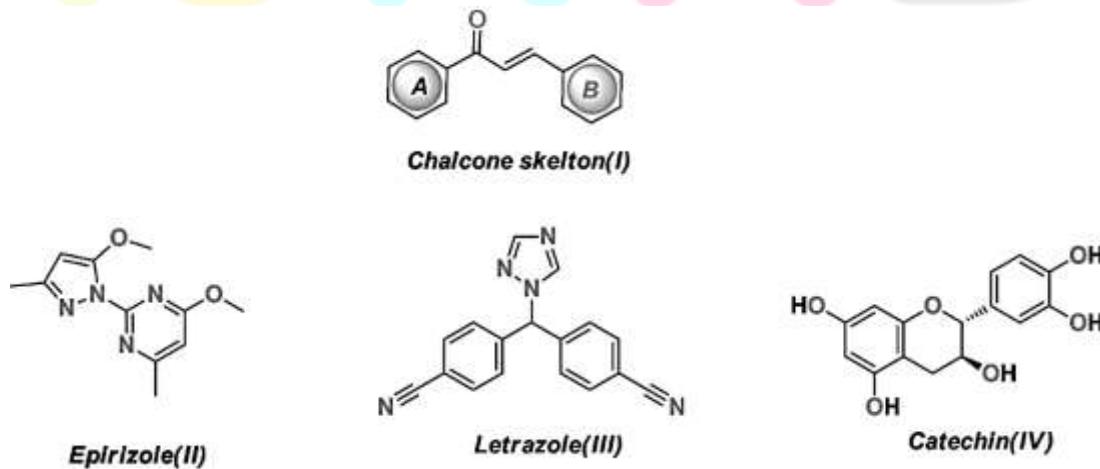


Figure 17: Pharmacological structures of chalcones and other substances have various heterocyclic rings [26]

Anti-allergicactivity:-

Numerous heterocyclic compounds that have been synthesised have demonstrated antiallergic efficacy in tests. Using an inexpensive titanium catalyst, piperidone and a tricyclic ketone were combined to give a range of carbonyl groups and several target substances having a yield of about 25%. The artificial approach is set apart by its easy operation, good flexibility, and gentle reaction conditions.

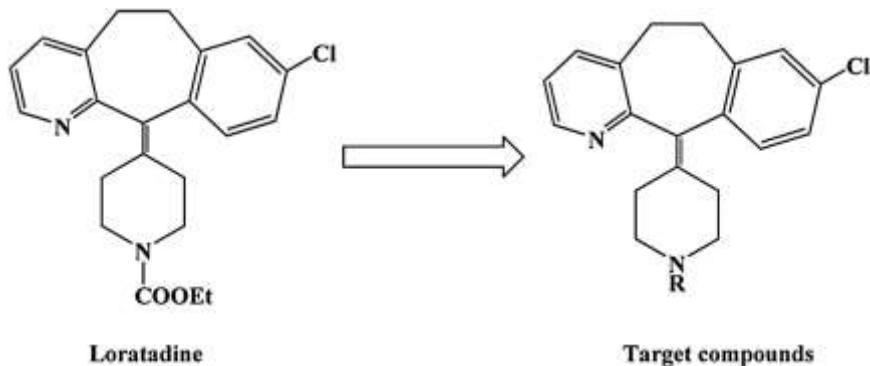


Figure 18: Analogues of loratadine and their structural alteration

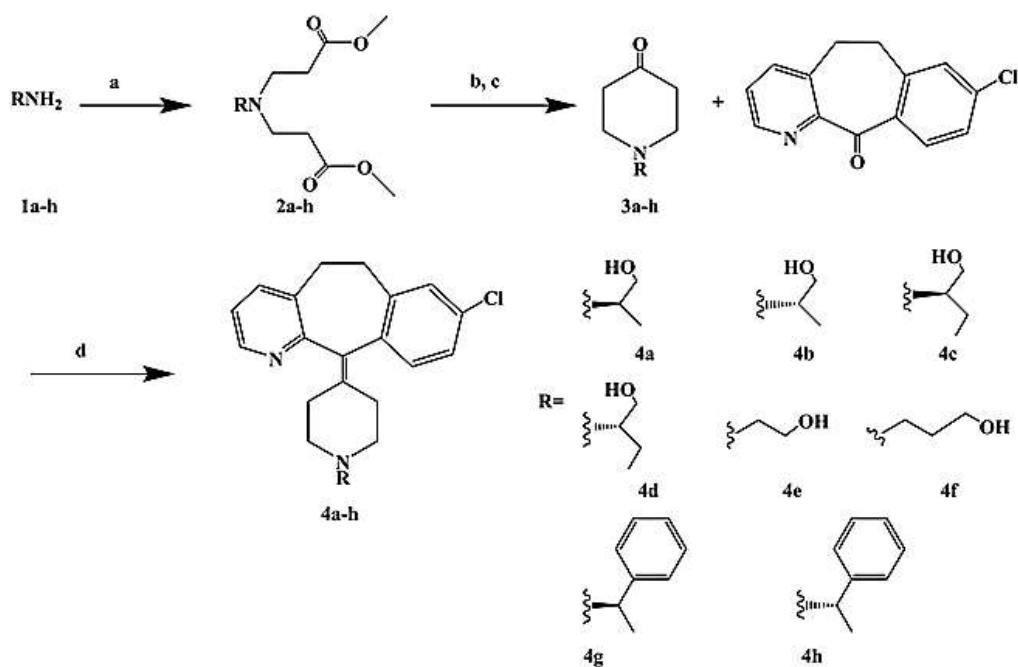


Figure 18: The general method of creating compounds containing loratadine

Conditions and agents: Methyl acrylate and MeOH at 40 °C for 12 hours; MeONa/MeOH 30% aq. and toluene at 110 °C for 5 hours; HCl at 100 °C for 5 hours; and TiCl4/Zn and THF dry at 70 °C for 17 hours. [27] One significant arbitrator of localised Histamine causes hypersensitivity reactions. From a medical perspective, allergic reactions involve a wide range of effector cells and mediators.

The pathogenic mechanism states that common allergic reactions, or Allergy-mediated IgE responses and non-Allergy-mediated IgE responses are the two main categories of hypersensitivity responses. Allergies can cause a wide range of clinical symptoms, such as peptic ulcer, diarrhoea, allergic dermatitis, asthma, allergic rhinitis, and discomfort in the digestive, respiratory, and cardiovascular systems. Using one of the four as an attachment recognised the histamine sensors, antihistamines demonstrate their activity. Hepatocytes, nerve cells, smooth

muscles in the airways and arteries, and immunological neutrophils, eosinophils, DC, T, and B cells, among other types of cells all express these receptors.



Figure 19: A substance that opposes allergies [28]

SCOPE OF THE REAGENT:

The broad uses of heterocyclics are as numerous as they are diverse, and they are outside the purview of this quick discussion. The alkaloids constitute a significant category of chemicals that are heterocyclic, occur naturally, and contain a variety of biological activities. Basic nitrogen atoms are present in the majority of alkaloids. The results of several investigations show that the sulphur heterocyclic framework is an essential component of many synthetic analogues that possess an extensive array of medicinal uses.

In order to maximise atom efficacy, productivity, purity, and rate of synthesis of different heterocyclic rings, including lactams, 1,2,3-triazoles, imidazoles, pyrazoles, pyrazolines, indoles, pyrroles, and pyridines, MAOS methods have been used. All of these structures have numerous relevant medicinal applications. [21]

Data availability

Upon request, all data can be obtained from the respective author. General information, substrate and reagent synthesis, biological activity, and the heterocyclic compound's medicinal significance are all included in the available supplemental information. This work is supplied with source data.

Results and Discussion:

Furthermore, following ACS, there is an unfavourable correlation between the levels of circulating inflammatory markers, such as intercellular adhesion molecule-1, dissolve CD40 ligand (sCD40L), lipoprotein-associated phospholipase A2, also called Lp-PLA2, and the CRP.

which, in fact, raised. 29–32 Statins have quick anti-inflammatory effects in vitro and might have an equally quick effect in vivo following ACS. The global health of people is at risk due to the rise in antibiotic resistance in pathogenic bacteria, which is driving research to find new antimicrobial medicines that can replace existing ones. In this sense, CAMPs are promising antimicrobial agents because, unlike traditional antibiotics, they use a

technique to kill bacteria by disrupting the bacterial membrane.

It has been established that some triazole derivative groups exhibit strong antibacterial and antifungal action based on extensive research into their microbiological activity. The development of synthetic herbicides has long been linked to and a major factor in weed management, as it has reduced the labour-intensive nature of agriculture. However, the emergence of widespread herbicide resistance has brought attention to weeds' ability to persist in spite of herbicide technology. Excellent herbicidal efficacy was demonstrated by the synthesized compounds against dicotyledonous weeds. Through the breakdown or structural alteration of enteral antigens, the stabilisation of aberrant microbiota, the enhancement of gut-barrier function, the control of proinflammatory mediator release, and the immune system's growth, probiotics may demonstrate antiallergic effects.

Anticonvulsant medications may increase the threshold for depolarization of the pain fibre in the same way as they lower seizure activity in central neurons.

Conclusion:-

The unique properties of heterocyclic substances, such as their ability to combat inflammation, bacteria, fungal, cancer, herbicidal, anticonvulsant, antioxidant, and anti-allergic effects, make them an important class of organic molecules in pharmaceutical chemistry that are used to treat a variety of diseases.

REFERENCES:-

- [1] Josef Jampilek 1, 2, Heterocycles in Medicinal Chemistry doi: 10.3390/molecules 24213839
- [2] Tanzeela Qadir, Andleeb Amin, Praveen Kumar Sharma, Ishtiaq Jeelan, and Hitoshi Abe A Review on Medicinally Important Heterocyclic Compounds, DOI: 10.2174/18741045-v16-e2202280
- [3] Daniele Castagnolo, Paramita Sarkar Dani Schultz Looking back and moving forward in medicinal chemistry: 10.1038/s41467-023-39949-6
- [4] Sahanasree Arella¹, Paddana Thanyasri², Paka Bhavana³, and M. Sunitha Reddy, Review on Bioactive Heterocyclic Compounds, DOI: 10.36713/epra2016
- [5] Nasiara Karim Inamullah Khan, Waheed Khan, Imran Khan, Ajmal Khan, and Sobia Ahsan Halim Hizbulah Khan, David Hussain Ahmed Al-Harrasi⁴ Anti-nociceptive and Anti-inflammatory Activities of Asparacosin A Involve Selective Cyclooxygenase 2 and Inflammatory Cytokines Inhibition: An *in-vitro*, *in-vivo*, and *in-silico* Approach
<https://doi.org/10.3389/fimmu.2019.00581>
- [6] Zhen-Zhu Zhao, Bao-Yu Ji, Zhen-Zhen Wang, Ying-Ying Si, Yan, Jun Sun, Hui Chen, Wei-Sheng Feng, Xiao-Ke Zheng, Ji-Kai Liu, Lanostane triterpenoids with anti-proliferative and anti-inflammatory activities from medicinal mushroom Ganoderma lingzhi, <https://doi.org/10.1016/j.phytochem.2023.113791>
- [7] Bhoomika Gajjar Hiral Shah Panchal Dhruv Seema Kher A Review of Recent Developments in N-Heterocyclic Molecules and Their Biological Applications DOI:10.2015/IJIRMF/ 202302022
- [8] Emranul Kabir, Monir Uzzaman A review on the biological and medicinal impact of heterocyclic compounds <https://doi.org/10.1016/j.rechem.2022.100606>
- [9] Małgorzata Strzelecka and Piotr Świśatek 1,2,4-Triazoles as Important Antibacterial Agents

[10] Abbas Al-Mulla, A Review: Biological Importance of Heterocyclic Compounds

[11] Mohammad Aatif, Muhammad Asam Raza, Khadija Javed, Swah Mohd. Nashre-ul-Islam, Mohd Farhan and Mir Waqas Alam Potential Nitrogen-Based Heterocyclic Compounds for Treating Infectious Diseases: A Literature Review <https://doi.org/10.3390/antibiotics11121750>

[12] Emranul Kabir, Monir Uzzaman A review on the biological and medicinal impact of heterocyclic compounds <https://doi.org/10.1016/j.rechem.2022.100606>

[13] G. Chitra D.S. Franklin S. Sudarsan M. Sakthivel S. Guhanathan Indole-3-acetic acid/diol-based pH-sensitive biological macromolecules for antibacterial, antifungal, and antioxidant applications <https://doi.org/10.1016/j.ijbiomac.2016.11.068>

[14] Hakan Bektaş, Nesrin Karaali, Deniz Şahin, Ahmet Demirbaş, Şengül Alpay Karaoglu and Neslihan Demirbaş Synthesis and Antimicrobial Activities of Some New 1,2,4-Triazole Derivatives, <https://doi.org/10.3390/molecules15042427>

[15] Y. Hassana, M. A. Mohamedb, A. Abdel-Aziema, and A. O. Hussaina Synthesis and Anticancer Activity of Some Fused Heterocyclic Compounds Containing Pyrazole Rings DOI: 10.1080/10406638.2020.1764984

[16] Michał Jóźwiak, Anna Filipowska, Ferdinando Fiorino, Marta Struga, Anticancer Activities of Fatty Acids and Their Heterocyclic Derivatives, <https://doi.org/10.1016/j.ejphar.2020.172937>

[17] Mohammed Hadi Ali Al-Jumaili, Anas Abdullah Hamad, Heba E. Hashem, Abdulhakeem D. Hussein, Mohammed J. Muhamdi, Mohammad Abdaljabbar Ahmed ^F, Ali Hussein Alwan ALBANAA, Farhan Siddique, and Ekhlas Aziz Bakr A comprehensive review of the bis-heterocyclic compounds and their anticancer efficacy <https://doi.org/10.1016/j.molstruc.2022.133970>

[18] Yassine Laamari, Abdoullah Bimoussa, Mourad Fawzi, Ali Oubella, Taoufik Rohand, Luc Van Meervelt, My Youssef Ait Itto, Hamid Morjani, and Aziz Auhmani Synthesis, crystal structure, and evaluation of the anticancer activities of some novel heterocyclic compounds based on thymol: <https://doi.org/10.1016/j.molstruc.2023.134906>

[19] Xinlin Sun, Zhenmeng Ji, Shaopeng Wei, and Zhiqin Ji Design, synthesis, and herbicidal activity of 5-cyclopropyl-*N*-phenylisoxazole-4-carboxamides <https://doi.org/10.1016/j.molstruc.2020.128628>

[20] G. V. Mokrov S. A. Litvinova T. A. Voronina L. N. Nerobkova I. S. Kutepova I. G. Kovalev T. A. Gudasheva A. D. Durnev1, Design, Synthesis, and Anticonvulsant Evolution of 4-Gaba-3 Nitrocoumarines, 1-Thiocoumarines, Qunolones-2-Ones, and Their Derivatives <https://doi.org/10.1007/s00044-019-02422-5>

[21] Yuxing Tan, Wujiu Jiang, Yonglan Feng, Jiangxi Yu, and Daizhi Kuang, Synthesis, Characterization, and Herbicidal Activity of Two Tricyclohexyltin Aryloxyacetates, <https://doi.org/10.1134/S003602362260294X>

[22] Mekuanint Lewoyehu & Meareg Amare Fatih Yildiz Comparative evaluation of analytical methods for determining the antioxidant activities of honey: A review <https://doi.org/10.1080/23311932.2019.1685059>

[23] Hacer Bayrak, Asmaa M. Fahim, Fatma Yaylaci Karahalil, Imane Azafad, Gülsüm Merve Boyracı, Ebru Taflansynthesis, antioxidant activity, docking simulation, and computational investigation of novel heterocyclic compounds and Schiff bases from picric acid

[24] Mona A. Shalaby, Asmaa M. Fahim, and Sameh A. Rizk Microwave-assisted synthesis, antioxidant activity, docking simulation, and DFT analysis of different heterocyclic compounds doi: 10.1038/s41598-023-31995-w

[25] Shiyang Zhou and Gangliang Huang, Synthesis of anti-allergic drugs, DOI: 10.1039/C9RA10659F

[26] Shanshan Zhang, Yi Liu, Ansar Javeed, Cuiqin Jian, Jinlyu Sun, Shandong Wu, Bingnan Han, Treatment of allergy: Overview of synthetic anti-allergy small molecules in medicinal chemistry <https://doi.org/10.1016/j.ejmech.2023.115151>

