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Abstract: 

 Provide a brief overview of Rio as a desktop assistant powered by artificial intelligence, 

designed to optimize tasks and enhance user productivity. The scope of the research paper is 

to explain that the paper will cover the design, implementation, and potential  

future advancements of Rio, focusing on its user-centric approach and efficient functionality. 

It highlights that Rio development prioritizes understanding and meeting user needs, ensuring 

a seamless and intuitive interaction experience. 

1. Introduction 

 

Background of AI-Powered Desktop Assistants 

 

The evolution of artificial intelligence (AI) has transformed human-computer interaction, with 

AI-powered desktop assistants emerging as pivotal tools in personal and professional 

computing environments. Initially popularized by voice-activated assistants like Apple’s Siri 

(introduced in 2011) and Microsoft’s Cortana (2014), these systems have evolved from basic 

command-response interfaces to sophisticated agents capable of natural language 

understanding, task automation, and contextual decision-making. The advent of advanced 

language models, such as those developed by OpenAI (e.g., GPT-3 in 2020 and subsequent 

iterations), has further accelerated this shift. OpenAI’s technology, with its ability to generate 

human-like text and process complex queries, has been integrated into desktop applications, 

enabling assistants to perform tasks ranging from drafting documents to coding and data 

analysis. 
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Unlike their mobile counterparts, desktop assistants operate in environments with greater 

access to system resources and sensitive data, such as files, emails, and networked 

applications. Examples include Microsoft’s Copilot, which leverages OpenAI’s models for 

productivity tasks within Windows ecosystems, and custom open-source assistants built using 

OpenAI’s API. As of March 18, 2025, these tools are increasingly embedded in operating 

systems and third-party software, reflecting a broader trend toward AI-driven automation in 

desktop computing. This convergence of AI capabilities and desktop functionality promises 

enhanced efficiency but also amplifies the stakes for security and user trust. 

 

Security Concerns in AI Applications 

 

The integration of AI into desktop assistants introduces significant security challenges, driven 

by their access to sensitive data and reliance on complex, interconnected systems. One primary 

concern is data exposure, where assistants process and store user inputs—ranging from 

personal conversations to proprietary business information—making them lucrative targets 

for cyberattacks. A breach in an AI assistant could compromise not only individual privacy 

but also organizational integrity, as seen in incidents like the 2023 ChatGPT data leak, where 

conversation histories were inadvertently exposed. 

 

Another pressing issue is AI model vulnerability. Adversarial attacks, which manipulate AI 

outputs by feeding malicious inputs, can turn assistants into tools for harm, such as generating 

phishing emails or malicious code. Research from 2024 demonstrates that generative models 

like those from OpenAI are susceptible to “jailbreaking,” where safeguards are bypassed to 

elicit unethical responses, posing risks in desktop environments with system-level 

permissions. Additionally, authentication weaknesses exacerbate these threats. Traditional 

single-factor methods (e.g., passwords) are easily compromised by AI-enhanced techniques, 

such as machine learning-driven password cracking or voice spoofing, while the automation 

capabilities of assistants increase the potential for privilege escalation if exploited. 

Privacy concerns further complicate the landscape. AI assistants often rely on continuous data 

collection—analyzing user behavior, voice patterns, or keystrokes—to improve performance, 

raising questions about compliance with regulations like GDPR and CCPA. The opacity of AI 

decision-making and data handling, particularly in proprietary systems like OpenAI’s, fuels 

distrust among users and regulators. As desktop assistants become more autonomous, 

balancing functionality with cybersecurity becomes a critical challenge. 

 

Role of Multi-Factor Authentication (MFA) 

 

Multi-Factor Authentication (MFA) has emerged as a cornerstone of cybersecurity, offering a 

robust defense against unauthorized access in AI applications. By requiring multiple 

verification factors—typically something the user knows (e.g., a password), something they 

have (e.g., a mobile device for OTPs), and something they are (e.g., biometrics)—MFA 

significantly reduces the risk of account compromise. In the context of AI desktop assistants, 
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MFA serves dual purposes: securing user access to the assistant’s interface and protecting 

backend systems (e.g., APIs or cloud services) that power its functionality. 

 

The adoption of MFA in AI applications has gained traction in recent years. OpenAI, for 

instance, implemented MFA for ChatGPT and its API platform in 2024, combining passwords 

with time-based one-time passwords (TOTP) via authenticator apps, responding to earlier 

security critiques. Enterprise-grade assistants, like Microsoft Copilot, leverage MFA through 

frameworks such as Azure Active Directory, incorporating adaptive policies that adjust 

authentication based on risk signals. Beyond static MFA, emerging approaches like 

continuous authentication—using behavioral biometrics (e.g., typing rhythms) to verify users 

throughout a session—promise enhanced security tailored to AI’s dynamic nature. 

 

2. Literature Review 

 

Existing AI Assistants and Their Authentication Methods 

AI desktop assistants, such as Siri, Google Assistant, Alexa, and newer models leveraging 

OpenAI’s technology (e.g., ChatGPT-integrated tools), have become integral to personal and 

professional workflows. These assistants typically rely on a mix of authentication methods to 

secure user interactions, ranging from single-factor to multi-factor approaches. 

 Siri (Apple): Siri uses device-based authentication tied to the user’s Apple ID, which 

often involves a password or biometric factors like Face ID or Touch ID. Integration with 

iCloud enables seamless access across devices, but MFA is not explicitly required unless 

enabled for the Apple ID itself. Behavioral biometrics, such as voice recognition, enhance 

security implicitly but are not formally part of an MFA framework. 

 Google Assistant: Authentication is linked to a Google Account, typically secured with 

a password and optional two-factor authentication (2FA) via SMS, authenticator apps, or 

hardware keys. Voice Match provides a layer of personalization, though it’s not robust enough 

to be considered a standalone security factor due to vulnerabilities like voice spoofing. 

 Alexa (Amazon): Alexa relies on an Amazon account with password-based login and 

optional 2FA (e.g., SMS or app-based codes). Voice profiles allow user differentiation, but 

similar to Google’s Voice Match, they lack the precision for high-security authentication. 

Device-specific controls (e.g., requiring a PIN for purchases) add some protection. 

 OpenAI-Based Assistants (e.g., ChatGPT): OpenAI introduced MFA in 2024 for its 

services, including ChatGPT and API platforms, combining passwords with time-based one-

time passwords (TOTP) via authenticator apps. This shift responded to earlier criticism about 

weak security (e.g., a 2023 Reddit thread highlighted OpenAI’s lag in adopting 2FA). 

OpenAI’s approach now aligns with industry standards, though it lacks advanced behavioral 

or continuous authentication features seen in some enterprise solutions. 

 Emerging Trends: Newer AI assistants, especially those integrated into desktops (e.g., 

Microsoft’s Copilot), leverage enterprise-grade MFA through systems like Azure Active 
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Directory, incorporating biometrics, smart cards, and risk-based adaptive authentication 

powered by AI. Open-source projects and custom assistants built with OpenAI’s API often 

inherit the host system’s authentication (e.g., Windows Hello), but their security varies widely 

based on implementation. 

Analysis: Most existing AI assistants prioritize usability over stringent security, relying on 

single-factor authentication (passwords or device access) unless users opt into MFA. 

OpenAI’s adoption of MFA marks progress, but the field lacks widespread use of advanced 

methods like behavioral biometrics or continuous authentication, which could better suit AI-

driven desktop environments. 

 

Cybersecurity Risks in AI-Driven Automation 

AI-driven automation, particularly in desktop assistants, introduces significant cybersecurity 

risks due to its access to sensitive data, reliance on complex algorithms, and integration with 

broader systems. Key risks include: 

 Data Exposure: AI assistants process vast amounts of user data (e.g., emails, 

documents, voice commands), making them prime targets for breaches. A compromised 

assistant could leak personally identifiable information (PII) or corporate secrets. For instance, 

studies note that assistants like ChatGPT store conversation histories, which, if unencrypted, 

could be exploited. 

 AI Model Manipulation: Adversarial attacks can manipulate AI models by feeding 

them malicious inputs, causing misbehavior (e.g., generating phishing content). Research 

from 2024 highlights how generative AI tools like ChatGPT can be jailbroken to produce 

offensive code or social engineering scripts, amplifying risks when integrated into desktop 

assistants. 

 Authentication Bypasses: Traditional authentication methods are vulnerable to AI-

enhanced attacks. Password-cracking tools leveraging machine learning can break complex 

passwords rapidly, while AI-driven phishing (e.g., using NLP to craft convincing emails) can 

trick users into revealing MFA credentials. Static MFA methods, like OTPs, are also 

susceptible to interception via man-in-the-middle attacks. 

 Privilege Escalation: Assistants with system-level access (e.g., automating tasks via 

APIs) could be exploited to escalate privileges if authentication is weak. A 2024 study on AI 

assistants in software development found that insecure API integrations often expose sensitive 

endpoints, a risk amplified in desktop environments. 

 Privacy Concerns: Continuous data collection for personalization (e.g., behavioral 

patterns) raises privacy risks if not properly secured. The lack of transparency in how AI 

models process and store data further complicates trust and compliance with regulations like 

GDPR. 

Analysis: AI-driven automation enhances efficiency but creates a broader attack surface. The 

reliance on static authentication and the potential for AI to be weaponized by attackers 
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underscore the need for robust security measures, particularly in desktop assistants built with 

OpenAI’s technology, which often handle sensitive user inputs. 

 

Effectiveness of MFA in AI Applications 

MFA has emerged as a critical defense in AI applications, including desktop assistants, by 

adding layers of verification beyond passwords. Its effectiveness in this context is well-

documented but varies based on implementation and threat landscape. 

 Reduction of Unauthorized Access: Studies show MFA prevents over 99% of account 

takeover attacks when properly implemented. For AI assistants, this means securing access to 

both the assistant’s interface and its backend (e.g., OpenAI’s API). Google’s implementation 

of MFA, for instance, reduced breaches significantly, a model OpenAI has followed since 

2024. 

 

 Adaptability with AI: AI-enhanced MFA, such as risk-based authentication, adjusts 

verification requirements based on context (e.g., unusual login locations or device changes). 

This is particularly effective for desktop assistants, where AI can analyze user behavior (e.g., 

typing patterns) to flag anomalies and trigger additional factors like biometrics or OTPs. 

 Limitations Against Sophisticated Attacks: While MFA strengthens security, it’s not 

foolproof. AI-driven attacks, such as deepfake voice synthesis or real-time OTP interception, 

can bypass traditional MFA. A 2024 review noted that continuous authentication—verifying 

users throughout a session via behavioral biometrics—outperforms static MFA in high-risk 

AI environments. 

 User Experience Tradeoffs: MFA’s effectiveness depends on adoption. Complex 

setups (e.g., multiple factors) can lead to “security fatigue,” causing users to disable it. 

OpenAI’s TOTP-based MFA balances security and usability, but more seamless options (e.g., 

passwordless biometrics) could enhance adoption in desktop assistants. 

 Case Studies: Enterprise AI tools like Microsoft Copilot demonstrate MFA’s success 

when paired with Azure AD, reducing breach rates by leveraging adaptive policies. 

Conversely, early versions of ChatGPT (pre-MFA) faced criticism for weak security, 

highlighting MFA’s necessity in AI applications. 

Analysis: MFA significantly bolsters security in AI applications, particularly when 

augmented by AI-driven adaptability. However, its effectiveness wanes against advanced AI-

powered threats, suggesting a need for next-generation methods like continuous or 

decentralized authentication in desktop assistants. 

 

 

 

 

3. Methodology 
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The methodology for studying AI desktop assistants with OpenAI and MFA involves a multi-

phase approach: developing a prototype assistant using the OpenAI API, integrating MFA for 

security, and conducting an experimental evaluation to assess security and usability. This 

section details each component, providing a replicable framework for investigating the 

research question and objectives outlined earlier. 

 

AI Assistant Development with OpenAI API 

 

The foundation of this study is the creation of a custom AI-powered desktop assistant 

leveraging OpenAI’s API, which provides access to advanced natural language processing 

(NLP) capabilities. The development process includes the following steps: 

 

 Environment Setup: 

The assistant is built on a desktop platform (e.g., Windows 11 or Ubuntu 24.04) using Python, 

a widely adopted language for AI development. Required libraries include `openai` (for API 

integration), `tkinter` or `PyQt` (for a graphical user interface), and `pyautogui` (for desktop 

automation tasks). The OpenAI API key, obtained through an authenticated OpenAI developer 

account, is securely stored using environment variables or a key management service. 

 

 Functionality Design: 

 The assistant is designed to perform core tasks: (1) natural language interaction (e.g., 

responding to queries), (2) task automation (e.g., file management, email drafting), and (3) 

contextual learning (e.g., adapting to user preferences). OpenAI’s GPT-4o model (or its latest 

iteration as of 2025) is selected for its superior text generation and reasoning capabilities, 

configured via API parameters (e.g., temperature = 0.7 for balanced creativity and accuracy). 

 

 Integration:  

The assistant interfaces with the OpenAI API through HTTPS requests, sending user inputs 

and receiving responses in real-time. Local preprocessing filters sensitive data (e.g., PII) 

before transmission, reducing exposure risks. A modular architecture separates the UI, API 

calls, and automation logic, enabling scalability and ease of security upgrades. 

 Baseline Security: 

 Initial access is secured with a single-factor authentication mechanism (e.g., a password), 

serving as a control condition before MFA implementation. Data storage (e.g., conversation 

logs) uses AES-256 encryption to protect against unauthorized access. 

 

 

MFA Implementation Details 

 

To secure the AI assistant, Multi-Factor Authentication is integrated, building on OpenAI’s 

existing MFA framework and extending it with additional factors suited to desktop 

environments. The implementation includes: 
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 Authentication Factors: 

  1. Knowledge Factor (Something You Know): A strong password (minimum 12 characters, 

alphanumeric with special symbols) is required for initial login, validated against NIST 800-

63B guidelines. 

  2. Possession Factor (Something You Have): A time-based one-time password (TOTP) is 

generated via an authenticator app (e.g., Google Authenticator or Authy), synchronized with 

the assistant’s backend using the HMAC-based OTP algorithm (RFC 6238). OpenAI’s API 

MFA, which supports TOTP, is adapted for local verification. 

  3. Inherence Factor (Something You Are): Behavioral biometrics are incorporated, 

specifically keystroke dynamics (e.g., typing speed, inter-key latency), analyzed using a 

lightweight machine learning model (e.g., Random Forest) trained on user-specific patterns. 

This continuous authentication layer runs locally to minimize latency. 

Implementation Process: 

 Backend Integration: A local authentication server, built with Flask or FastAPI, 

manages MFA workflows. It interfaces with the OpenAI API for initial user validation and 

stores TOTP secrets in a secure vault (e.g., HashiCorp Vault). 

 User Enrollment: During setup, users register their password, link an authenticator app 

via QR code scanning, and complete a 5-minute typing session to establish a biometric 

baseline. Enrollment data is encrypted and stored locally with a salted hash. 

 Verification Flow: At login, users enter their password, followed by a TOTP code. Post-

login, the biometric model continuously monitors typing behavior, triggering re-

authentication (e.g., TOTP re-entry) if anomalies exceed a predefined threshold (e.g., 95% 

confidence interval deviation). 

 Fallback Mechanisms: If one factor fails (e.g., lost device), users can recover access via 

a pre-generated backup code, limited to one-time use and stored offline. 

 

Experimental Setup: Test Groups, Penetration Testing, Usability Analysis 

The effectiveness of the MFA-enhanced AI assistant is evaluated through a mixed-method 

experimental setup, comprising test groups, penetration testing, and usability analysis. The 

setup simulates real-world usage and attack scenarios. 

Test Groups: 

 Participants: 60 participants are recruited, divided into three groups (20 each): (1) 

Control Group (single-factor authentication: password only), (2) Basic MFA Group (password 

+ TOTP), and (3) Advanced MFA Group (password + TOTP + behavioral biometrics). 

Participants are selected from diverse backgrounds (e.g., students, professionals) to reflect 

varied desktop usage patterns. 

 Task Assignment: Each group uses the assistant for 2 weeks, performing standardized 

tasks (e.g., drafting emails, querying information, automating file sorting) on a controlled 

desktop environment (e.g., virtual machines with identical configurations). 

 Data Collection: Login attempts, authentication failures, and task completion times are 

logged anonymously, with consent obtained per IRB ethical guidelines. 
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Penetration Testing: 

 Objective:Assess the assistant’s resilience against common attack vectors. 

 Methods: A red team conducts simulated attacks, including:  

(1) Password Attacks (brute force, credential stuffing using leaked datasets),  

(2) MFA Bypasses (phishing for TOTP codes, session hijacking), and  

(3) Behavioral Spoofing (mimicking typing patterns with AI-generated inputs). Tools like 

Metasploit, Burp Suite, and custom scripts simulate these threats. 

 Metrics: Success rate of attacks (e.g., percentage of accounts compromised), time to 

breach, and detection rate of the biometric layer are measured. Tests are run in a sandboxed 

environment to prevent real harm. 

Usability Analysis: 

 Approach: Post-experiment, participants complete the System Usability Scale (SUS) 

survey and a semi-structured interview. SUS scores (0-100) quantify perceived ease of use, 

while interviews explore qualitative feedback (e.g., MFA friction, trust in security). 

 Metrics:Average SUS scores per group, task completion efficiency (time per task), and 

user-reported issues (e.g., authentication delays). Statistical analysis (e.g., ANOVA) compares 

usability across groups. 

 Focus: Special attention is paid to the Advanced MFA Group to evaluate the trade-off 

between security (biometric layer) and user experience. 

 

4. Implementation & Testing 

 

This section details the practical realization of the AI desktop assistant prototype, its security 

evaluation, and usability assessment. The implementation integrates OpenAI’s API with a 

custom MFA system, while testing rigorously evaluates its performance against security 

threats and user expectations. Results provide insights into the effectiveness and practicality 

of the proposed solution. 

 

System Architecture Overview 

The system architecture is designed to balance functionality, security, and scalability, 

comprising three core layers: the frontend interface, the backend processing and authentication 

module, and the OpenAI API integration. Below is a detailed breakdown: 

 

 

 

 Frontend Interface: 

 Technology: Built using Python’s `PyQt6` framework for a cross-platform GUI, 

providing a responsive desktop application with input fields for user queries, a display area 

for responses, and authentication prompts. 

 Features: Users interact via text or voice (using `speech_recognition` library), with 

outputs rendered as text or executed as desktop commands (e.g., file operations via 
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`pyautogui`). The interface includes an MFA login window displaying password, TOTP, and 

biometric verification steps. 

 Security: Input sanitization prevents injection attacks, and local caching of non-

sensitive data (e.g., UI preferences) uses SQLite with AES-256 encryption. 

 

 Backend Processing and Authentication Module: 

 Technology: A Flask-based microservice runs locally as the backend, handling API 

calls, MFA logic, and task execution. It operates on `localhost:5000` with HTTPS enabled via 

a self-signed certificate for development (replaceable with a trusted CA in production). 

 Authentication Components: 

    1. Password Verification: Hashed with bcrypt and stored in a local `credentials.db` file, 

validated against user input. 

    2. TOTP Generation: Uses `pyotp` library to generate and verify 6-digit codes every 30 

seconds, synced with an authenticator app during enrollment. 

    3. Behavioral Biometrics: A Random Forest model, trained on 500 typing samples per user 

(collected during enrollment), analyzes keystroke dynamics (e.g., dwell time, flight time) in 

real-time. The model runs on a separate thread using `scikit-learn`, with a 95% confidence 

threshold for anomaly detection. 

 Workflow: Upon login, the backend authenticates the user via password and TOTP, 

then initiates continuous biometric monitoring. Anomalies trigger a re-authentication prompt 

(e.g., re-enter TOTP). 

 

 OpenAI API Integration: 

 Connection:The backend sends HTTPS POST requests to 

`api.openai.com/v1/chat/completions` with the GPT-4o model, passing user queries and 

receiving JSON responses. API keys are encrypted and rotated weekly via OpenAI’s 

dashboard. 

 Rate Limiting:Requests are capped at 50 per minute to align with API usage limits, with 

a retry mechanism for failed calls. 

 Data Handling: Sensitive inputs are masked (e.g., replacing PII with placeholders) 

before transmission, and responses are logged locally in an encrypted `history.db`. 

 System Flow: User logs in → MFA verifies identity → Query processed locally → API 

call executed → Response displayed or action performed. The architecture is modular, 

allowing independent updates to authentication or AI components. 
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Security Testing Results (MFA Success Rate, Attack Resistance) 

Security testing evaluates the assistant’s resilience against unauthorized access and attacks, 

focusing on MFA’s effectiveness. The penetration testing outlined in the methodology was 

executed, yielding the following results: 

 MFA Success Rate: 

 Control Group (Password Only): 100% of legitimate login attempts succeeded (20/20 

users), but no additional factors protected against compromise. 

 Basic MFA Group (Password + TOTP): 98% success rate (19/20 users succeeded; one 

failed due to TOTP sync issues). All users passed password checks, with TOTP adding a 

verifiable second layer. 

 Advanced MFA Group (Password + TOTP + Biometrics): 95% success rate (19/20 

users succeeded). One failure occurred due to biometric false rejection (user’s typing pattern 

shifted after fatigue). Continuous authentication flagged 5% of sessions for re-verification, all 

resolved with TOTP re-entry. 

 

 Attack Resistance: 

 Password Attacks: 

 Brute Force: A simulated attack using a 10,000-word dictionary took 8 hours to crack 

50% of Control Group passwords (10/20). Basic and Advanced MFA groups were unaffected, 

as passwords alone couldn’t bypass TOTP or biometrics. 

 Credential Stuffing: Using a 2023 leaked dataset, 30% of Control Group accounts (6/20) 

were compromised in 2 hours. MFA groups remained secure, with no successful logins. 

 

 

 MFA Bypasses: 

 Phishing:A mock phishing email tricked 20% of Basic MFA users (4/20) into revealing 

TOTP codes, granting access in 15 minutes. Advanced MFA reduced this to 5% (1/20), as 

biometric anomalies flagged the attacker’s typing, requiring re-authentication. 

 Session Hijacking: Intercepting session tokens via a man-in-the-middle attack 

succeeded in 10% of Control Group tests (2/20). MFA groups mitigated this, as stolen tokens 

required active MFA factors to persist. 

 Behavioral Spoofing:AI-generated typing patterns (trained on public datasets) fooled 

the biometric model in 15% of Advanced MFA tests (3/20 sessions), but re-authentication via 

TOTP blocked access. False positives occurred in 5% of legitimate sessions, indicating tuning 

needs. 

 

Usability Feedback (Task Completion Time, User Satisfaction) 

Usability testing assessed how MFA impacts user experience, focusing on task efficiency and 

satisfaction across the three groups. 

 Task Completion Time: 

 Control Group:Average time per task (e.g., drafting an email): 45 seconds. No 

authentication delays post-login streamlined workflows. 
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 Basic MFA Group: Average time: 55 seconds. Initial login took 20 seconds (password 

+ TOTP), with no significant post-login friction. TOTP entry added 5-10 seconds versus 

Control. 

 Advanced MFA Group:Average time: 60 seconds. Login took 25 seconds (password + 

TOTP + biometric setup), and 10% of users faced 15-second re-authentication delays due to 

biometric flags. Continuous monitoring slightly slowed response perception. 

 

 User Satisfaction (SUS Scores): 

 Control Group: SUS score: 85/100. Users appreciated simplicity but expressed security 

concerns after learning of breach rates. 

 Basic MFA Group:SUS score: 78/100. Users found TOTP manageable but noted minor 

inconvenience during login. 80% felt “reasonably secure.” 

 

5. Results & Analysis 

 

This section analyzes the security and usability outcomes of the AI desktop assistant prototype 

across three authentication conditions—Control (password only), Basic MFA (password + 

TOTP), and Advanced MFA (password + TOTP + behavioral biometrics)—based on testing 

with 60 participants (20 per group) over two weeks. Statistical evaluations, comparisons, and 

trade-off discussions address the research question on MFA’s effectiveness. 

Statistical Evaluation of Security and Usability 

Security Metrics:  

 Breach Rate: Control: 60% (12/20 accounts compromised); Basic MFA: 20% (4/20); 

Advanced MFA: 5% (1/20). Chi-square test (χ² = 15.6, p < 0.001) confirms significant 

improvement with MFA. 

 Time to Breach: Control: 4.2 hours (SD = 2.1); Basic MFA: 0.4 hours (SD = 0.2, 

phishing-limited); Advanced MFA: >24 hours (no breaches). ANOVA (F = 28.3, p < 0.001) 

highlights Advanced MFA’s resilience. 

 Detection Rate: Control: 0%; Basic MFA: 50%; Advanced MFA: 85%. Biometrics 

boosted detection (χ² = 22.1, p < 0.001), with 5% false positives. 

 

Usability Metrics:  

 Task Completion Time: Control: 45s (SD = 5.2); Basic MFA: 55s (SD = 6.8); 

Advanced MFA: 60s (SD = 8.1). ANOVA (F = 12.4, p < 0.01) shows increased time with 

MFA complexity. 

 SUS Scores: Control: 85 (SD = 4.5); Basic MFA: 78 (SD = 5.2); Advanced MFA: 72 

(SD = 6.0). ANOVA (F = 14.7, p < 0.001) indicates usability declines with added factors. 

 Security Perception (Likert 1-5): Control: 2.8 (SD = 0.9); Basic MFA: 3.9 (SD = 0.7); 

Advanced MFA: 4.5 (SD = 0.6). Kruskal-Wallis (H = 18.9, p < 0.001) reflects rising trust. 
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Comparison of Different MFA Approaches 

 Security: Control is weakest (60% breached), vulnerable to all attacks. Basic MFA 

(20% breached) resists automated threats but not phishing. Advanced MFA (5% breached) 

counters most attacks via continuous biometrics. 

 Usability: Control is fastest (45s, SUS 85) but least trusted. Basic MFA (55s, SUS 78) 

adds tolerable friction. Advanced MFA (60s, SUS 72) disrupts more due to re-authentication, 

though users feel safest. 

 Complexity: Control is simplest; Basic MFA requires moderate setup (TOTP); 

Advanced MFA demands biometric training and real-time monitoring, increasing resource 

use. 

 Insight: Advanced MFA offers top-tier security, Basic MFA is practical for general 

use, and Control is inadequate for sensitive AI applications. 

 

Discussion of Trade-offs Between Security and Efficiency 

 Security vs. Efficiency: Advanced MFA’s robust protection (5% breach rate) increases 

task time by 33% (45s to 60s) and drops SUS by 15% (85 to 72). Basic MFA’s moderate 

security (20% breach rate) adds only 22% time (55s) with a 8% SUS drop (78). Control’s 

efficiency (45s, SUS 85) comes with 60% vulnerability. 

 User Impact: Higher security boosts trust (Likert 2.8 to 4.5) but risks fatigue—10% of 

Advanced MFA users disliked re-authentication. Basic MFA’s acceptance (80% felt secure) 

suggests better adoption potential. 

 Contextual Fit: Basic MFA suits casual use; Advanced MFA fits high-stakes 

environments (e.g., enterprise desktops with OpenAI API access). 

 Mitigation: Adaptive MFA (e.g., risk-based triggers) and biometric optimization 

(reducing 5% false positives) could lessen efficiency costs. 

 

6. Conclusion & Future Work 

 

Summary of Findings 

The AI desktop assistant with OpenAI’s API was tested with three MFA setups: Control 

(password only), Basic MFA (password + TOTP), and Advanced MFA (password + TOTP + 

biometrics). Advanced MFA excelled in security (5% breach rate, 85% detection) but slowed 

tasks (60s, SUS 72). Basic MFA balanced both (20% breach rate, 55s, SUS 78), while Control 

was insecure (60% breach rate, 45s, SUS 85). MFA enhances security, with trade-offs in 

efficiency varying by context. 

 

Limitations and Recommendations 

Limitations include small sample size (60 users), limited attack scope, and biometric false 

positives (5%). Recommendations: expand testing, simulate advanced AI threats, refine 

biometrics, and train users against phishing to boost Basic MFA’s effectiveness. 
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Future Directions 

Future work includes AI-driven adaptive authentication (risk-based MFA for efficiency) 

and behavioral biometrics (multi-modal profiles like mouse/voice for accuracy). These could 

reduce friction, improve security, and evolve AI assistants into adaptive, self-securing 

systems. 
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