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Chapter 1 Introduction 

 
Clustering is a common and significant technique in various fields of data analysis. The general goal of 

clustering is to aggregate similar instances (also called ‘object- s’ interchangeably in this thesis) into a 

certain number of groups while ensuring dissimilarity between these groups [67] [68]. 

Clustering analysis can be roughly categorised into two types according to the type of processed data set: 

numerical data clustering and categorical data clus- tering. Most clustering techniques focus on numerical 

data clustering because nu- merical features (also called ‘attributes’ interchangeably in this thesis) have 

exact values with well-defined distances and are thus more convenient for various types of manipulation, 

including normalisation, attribute weighting/selection, and distance measurement. The most well-known 

and commonly used numerical data partition- al clustering algorithm is the k-means algorithm [93], and 

many variants of this algorithm have been published (see [66] [28] [29] [30] [131] [132] [71]). In contrast, 

because the possible values of a categorical attribute are categories rather than exact numerical values, the 

distances between the categories are generally not well-defined [8], which makes the clustering of 

categorical data more challenging than the cluster- ing of numerical data. The most popular categorical 

data clustering algorithm in the literature is the k-modes algorithm [63]. Attribute-weighted k-modes [62] 

and other variants of the k-modes algorithm have also been published, but the distance metric they adopt 

only assigns binary distances to categories during clustering (i.e., “1” for unequal categories and “0” for 

identical categories), which cannot reasonably distin- guish the degrees of similarity or dissimilarity 

between pairs of categories. Although some other categorical data clustering algorithms that adopt more 

reasonable sim- ilarity metrics or measures have been proposed (e.g., [15] [85] [73]), they do not consider 

the difference between nominal and ordinal attributes, both of which are very common in categorical data 

sets. Unlike nominal attributes, ordinal attributes have naturally ordered categories, so treating them in the 

same way as nominal ones may have an enormous influence on the correctness of the clustering results. 

Therefore, one focus of this thesis is the design of a categorical data distance metric that is suitable for 

distance measurement of both nominal and ordinal attributes. 

From the perspective of the clustering manner, clustering analysis can be roughly categorised into another 

two types: partitional clustering and hierarchical clustering [97]. The former type separates objects into a 

certain number of clusters by maximis- ing the intra-cluster similarity and minimising the objects’ inter-

cluster similarity, whilst the latter type first assigns each object into an individual cluster and then gradually 

merges the current most similar cluster pair until the number of clus- ters reaches a pre-set value. In general, 

the partitional type is more efficient and has been commonly adopted for data analysis tasks. The 

hierarchical type involves more computation, but it provides nested relationships among data objects and 

is thus more suitable for finer data analysis [32]. Both partitional and hierarchical clustering clearly have 
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their own merits. However, as far as we know, the existing hierarchical clustering algorithms either have 

high time complexity (i.e., O(N 2) for the data set with N data objects) or the quality of the constructed 

hierarchy is unsatisfactory. Moreover, most fast hierarchical clustering approaches are not ap- plicable to 

categorical data clustering. Therefore, another focus of this thesis is the design of a fast and accurate 

hierarchical clustering algorithm that is suitable for hierarchical clustering analysis of categorical data.  

Section 1.1 - 1.4 provides an in-depth introduction to the research background and motivations. Section 

1.5 then reports the main contributions of this thesis. Finally, Section 1.6 provides a brief overview of this 

thesis. 

 

Ordinal and Nominal Attributes 
 
The attributes that comprise categorical data can be classified into two types: nominal attributes and ordinal attributes [74] [6]. 

The relationships amongst var- ious data types and attribute types are illustrated in Figure 1.1 One character- 

Categorical Numerical 
 

 

      
Ordinal 
 
 

 

 

Nominal 
 

 

 

 

 
Figure 1.1: Relationships among different data types. 

 
 

istic common to both nominal and ordinal attributes is that their possible val- ues (also called ‘categories’ 

interchangeably in this thesis) are not exact numerical values and thus are not suitable for processing with 

arithmetic operations [139]. Therefore, the distances between the categories of both nominal and ordinal 

at- tributes are generally poorly defined. The most significant difference between nom- inal and ordinal 

attributes is that the categories of a nominal attribute are un- ordered (e.g., attribute “gender” with 

categories {male, female}, attribute “shape” with categories {circle, square, star}, etc.), whereas the 

categories of an ordinal attribute are naturally ordered (e.g., attribute “restaurant rating” with categories 

{very-poor, poor, marginal, good, very-good}, attribute “paper acceptance/rejection decision” with 

categories {reject, weak-reject, neutral, weak-accept, accept}, etc). These two types of attributes yield three 

types of categorical data: those that com- prise only nominal attributes (also called ‘nominal data’ 

interchangeably in this thesis) and those that comprise only ordinal attributes (also called ‘ordinal data’ 

interchangeably in this thesis) and those that comprise both nominal and ordinal attributes (also called 

‘mixed categorical data’ interchangeably in this thesis). The
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table 1.1: fragment of ta evaluation data set. 

 

 

# Instances 

Attribute 1 

(Helpful) 

Attribute 2 

(Professional) 

Attribute 

(Course) 

3 Attribute 

(Type) 

4 

1 Agree 
Disagree 

Marginal 

Agree 

Agree Agree 
Agree 

Marginal 

Culture 
Oral 

Culture 

Finance 

Lecture Tutorial 
Practice 

Lab 2 

3 

4 

 

categorical data in data analysis tasks commonly comprise both nominal and ordi- nal attributes. Many 

benchmark data sets in the UCI machine learning repository [37], which is the most commonly used 

database in the field of machine learning and data analysis, contain mixed-categorical data. Table 1.1 

demonstrates a fragment of a mixed categorical data set collected from a teaching assistant evaluation 

system, in which the two ordinal attributes (“Attribute 1” and “Attribute 2”) record the helpfulness and the 

professional level of each Teaching Assistant (TA), respectively, and the two nominal attributes (“Attribute 

3” and “Attribute 4”) record the course served by each TA and the corresponding course type, respectively.  

Obviously, a desirable clustering algorithm should be able to simultaneously account for the common 

categorical data characteristics of nominal and ordinal attributes and the differences between the nominal 

and ordinal attributes for reasonable clustering analysis. 

 

 

Categorical Data Clustering 
 
Clustering categorical data is a very common data analysis task. Representative cat- egorical data 

partitional clustering algorithms include the k-modes algorithm [63], the attribute-weighted k-modes 

algorithm [62] and the attribute-weighted OCIL algorithm [70]. Representative hierarchical clustering 

approaches include single- linkage, complete-linkage, and average-linkage-based hierarchical clustering 

[96]. Al- though these hierarchical approaches were not designed for categorical data, they 

 
Table 1.2: An example of TA performance evaluation. 

 

TA Name Year 2017 Year 2018 Progress Made 

Jason 

Alex 

very-bad good 

good very-good 

more 

less 

 

can be modified for categorical data clustering by replacing their adopted Euclidean distance metric with 

existing categorical data distance/similarity metrics. As far as we know, all existing clustering algorithms 

that can be applied to categorical data perform clustering analysis under the hypothesis that categorical 

data comprise only nominal attributes, which is usually unreasonable from a practical view-point. 

A simple example of TA performance evaluation is shown in Table 1.2 to explain intuitively the problems 

of treating ordinal attributes as nominal ones. This example demonstrates the performance evaluation 

results of two TAs named Jason and Alex in 2017 and 2018. The results clearly show that Jason made more 

progress than Alex. Before the evaluation results are even analysed, we can recognise that the results are 

ordinal; therefore, we are actually analysing the results on an ordinal scale (i.e., 

{very-good, good, neutral, bad, very-bad}). On this scale, Jason has progressed by 

three grades from “very-bad” to “good”, whilst Alex has progressed by just one grade from “good” to 

“very-good”. However, if we treat the results as nominal values, we can determine only that the evaluation 

results for both Jason and Alex have changed from 2017 to 2018, but we have no idea how much they have 

changed or in which direction (i.e., progress or regression). 
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Because existing partitional and hierarchical categorical data clustering approach- es both treat ordinal 

attributes as nominal attributes by default during clustering analysis, they will surely twist the natural order 

information of ordinal attributes and are thus unsuitable for clustering categorical data that comprise ordinal 

at- tributes. In general, categorical data clustering algorithms rely on the distance measurement of data 

objects for clustering analysis [72]. As a result, the adopted distance/similarity measures/metrics dominate 

their clustering performances and are the fundamentals that render them incompetent for the clustering 

analysis of 

categorical data with ordinal attributes. 

 

 

Categorical Data Metrics 
 
The existing categorical data metrics can be categorised into intra-attribute met- rics and inter-attribute 

metrics. Intra-attribute metrics measure distances between categories from the same target attribute without 

considering the relationship be- tween the target attribute and the others, whilst the inter-attribute metrics 

extract and exploit valuable information from attributes that are correlated to the target attribute for distance 

measurement. The Hamming distance metric [58] is the most popular and simplest of the existing intra-

attribute metrics. It simply assigns the distance “1” to any pair of different categories and assigns the 

distance “0” to iden- tical categories. Because it cannot distinguish the degrees of dissimilarity for various 

category pairs and it ignores the relationships between interdependent attributes, the distances it yields are 

somewhat unreasonable. To overcome the drawbacks of the Hamming distance metric, several inter -

attribute metrics have been proposed, including association-based distance metric [80], Ahmad’s distance 

metric [10], and context-based distance metric [64] [65]. However, these distance metrics treat the 

information extracted from each correlated attribute equally, which is usually un- reasonable. Moreover, 

because none of them account for the target attribute’s s- tatistical information, they may fail to measure 

distances when the attributes are all independent of each other.   Therefore, Jia’s distance metric [72] was 

proposed to simultaneously account for the intra- and inter-attribute information for distance measurement. 

It also weights the various attributes according to the amount of information they offer.  

Nevertheless, the above-mentioned metrics are proposed under the hypothesis that categorical data 

comprise only nominal attributes. By adopting them for cate- gorical data clustering analysis, the natural 

order information of ordinal attributes will be twisted and thus result in unsatisfactory clustering 

performance. We there- fore study the distance measurement problems of ordinal attributes and present an 

ordinal data distance metric that is suitable for the clustering analysis of ordinal 

data in this thesis. In addition, we further propose a unified categorical data dis- tance metric that is 

expected to 1) inherit the advantages of existing categorical data metrics, 2) have the ability to reasonably 

exploit the order information of ordinal attributes, 3) measure the distances of nominal and ordinal 

attributes in a uniform way, and 4) show suitability for the clustering analysis of any type of categorical 

data, including nominal data, ordinal data, and mixed categorical data. 

 

 

 

 

 

 
 

Fast and Incremental Hierarchical Clustering 
 
Another problem encountered in categorical data clustering is that the time com- plexity of hierarchical 

clustering approaches is usually very high (i.e., O(N 2) for a data set with N objects). This drawback makes 
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most of the existing hierarchi- cal clustering approaches, including single-linkage-based, average-linkage-

based, and complete-linkage-based hierarchical clustering approaches, laborious in the cluster- ing analysis 

of large-scale or streaming categorical data. 

To cope with the problems of large-scale categorical data hierarchical clustering, fast hierarchical 

clustering algorithms have been proposed to reduce the computation cost of the agglomeration process, 

which is the most computationally expensive part of hierarchical clustering approaches. A potential-based 

hierarchical clustering algorithm [91] was proposed to accelerate the agglomeration process with a minimal 

spanning tree. However, this algorithm saves only a certain computation cost, but its time complexity is 

still O(N 2). Hashing-based [77], random projection-based [109], and summarisation-based hierarchical 

clustering approaches [22] [21] [98] [107] 

[141] were proposed to improve the time complexity. However, each of these fast hierarchical clustering 

approaches sacrifices the quality of the constructed hierarchy. Specifically, hashing-based and random 

projection-based approaches may sacrifice clustering accuracy because their performance is very sensitive 

to the parameter setting. Summarisation-based approaches construct hierarchies by treating data groups as 

basic data units; therefore, the detailed hierarchical relationships between specific data objects are lost.  

An incremental hierarchical clustering algorithm [121] was proposed to efficient-ly tackle the problem of 

streaming categorical data clustering analysis.  Because this algorithm can dynamically update the 

constructed hierarchy according to new inputs, it is very efficient for streaming data hierarchical clustering. 

However, be- cause it does not guarantee a balanced hierarchy, its time complexity is still O(N 2). 

Moreover, because it approximates a single-linkage-based hierarchical clustering ap- proach, it has bias 

for certain types of data distribution. 

Because none of the existing hierarchical clustering algorithms can achieve both satisfactory efficiency 

and hierarchy quality in the clustering analysis of categori- cal data, another focus of this thesis is to design 

a fast and accurate hierarchical clustering approach. It is expected to have lower time complexity than O(N 
2); it should not sacrifice the hierarchy quality in comparison with the state-of-the-art fast hierarchical 

clustering approaches; and it should be efficient for clustering analysis of streaming categorical data.  

 

 

Main Contributions 
 
This thesis focuses mainly on two significant issues in categorical data clustering analysis: distance 

measurement of categorical data, especially categorical data that comprise ordinal attributes, and fast and 

accurate hierarchical clustering of large- scale and streaming categorical data. The main contributions of 

this thesis can be summarised from four aspects. 
 

An ordinal data distance metric, which can reasonably quantify the distances between ordinal categories 

from the same attribute according to both the or- der relationship among the categories and the statistical 

information of the target attribute, was designed from the perspective of information theory. It uses the 

entropy values of categories to indicate their information amount and simulates human thinking procedures 

to quantify the distances according to the categories’ entropy values. For this simulation, we quantify the 

distance between two categories according to the cumulative entropy values of these two categories and 

all the other categories ordered between them. In this way, the proposed metric can correctly preserve the 

order relationship between the categories during the distance measurement. It is parameter-free and easy 

to use, and experimental results have illustrated its effectiveness. 

To handle the mixed categorical data clustering problem, we further propose a unified distance metric that 

defines distances for ordinal and nominal at- tributes in a uniform manner to avoid the information loss 

caused by combin- ing the distances measured for ordinal and nominal attributes to obtain the distances 

between data objects. To achieve a more reasonable distance mea- surement, we also provide a unified 

attribute weighting mechanism to weight the importance of each attribute. Therefore, the concepts of 

distance and at- tribute weight are unified for both nominal and ordinal attributes. The unified metric 

remains parameter-free as the proposed ordinal data distance metric. More importantly, it is suitable for 

any type of categorical data clustering and has the same time complexity as most state-of-the-art categorical 

data distance/similarity metrics. Experimental evaluations demonstrate that the unified distance metric is 

competitive in the clustering analysis of nominal da- ta, and it obviously outperforms the existing metrics 

in the clustering analysis of ordinal data and mixed categorical data. 
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To achieve fast and accurate hierarchical clustering of categorical data, a Grow- ing Multi-layer Topology 

Training (GMTT) algorithm is proposed that  can train a topology to efficiently represent the structure of 

a data set. The topol- ogy is self-organised, and its number of layers and nodes depends on the cor- 

responding data set. In the topology, each node represents a group of similar data objects, and the nodes 

are linked and located in various layers of the topology, which indicates the similarity level of various pairs 

of object groups. The most important property of the GMTT topology is that the data objects in the same 

group represented by a node located in a deeper layer of the topol- ogy have more similarity to each other, 

which is consistent with the expected hierarchy of hierarchical clustering approaches.   Thus,  GMTT 

topology can be used to guide the rapid search of the most similar cluster pair during the agglomeration 

procedure of hierarchical clustering. That is, the most similar pair of clusters can be identified by locally 

searching the similarity between data objects represented by a same node and the similarity between the 

object groups indicated by the nodes in the same layer from the bottom to the top of the topology. In this 

way, the most computationally expensive process, that is, finding and merging the most similar pair of 

clusters, can be converted from a global search task to a local one. The GMTT-based fast hierarchical 

cluster- ing approach has less time complexity O(N 1.5) than most existing hierarchical clustering 

approaches. Moreover, experimental results have demonstrated the effectiveness and efficiency of a 

GMTT-based approach. 
 

To cope with the problem of large-scale streaming categorical data hierarchi- cal clustering, an incremental 

version of the GMTT algorithm (i.e., IGMTT algorithm) is further proposed. The difference between 

GMTT and IGMTT is that IGMTT uses the former part of streaming inputs to train a coarse topology and 

that the hierarchy of the present inputs is constructed according to the coarse topology. The topology is 

then updated dynamically and locally according to each of the following inputs. Meanwhile, the hierarchy 

of the inputs is also updated dynamically and locally according to the topology. In this manner, 

restructuring of the whole hierarchy is not required after adopting each new input. Instead, only a small 

part of the hierarchy is updated when this part is detected to violate the construction rule of the expected 

hierarchy. The time complexity of the IGMTT-based incremental hierarchical cluster- ing approach 

remains O(n1.5), and experimental results demonstrate that its clustering performance is competitive with 

each of the hierarchical clustering approaches, including the GMTT-based approach. 

 

 

Organisation 

 
The remainder of this thesis is organised as follows. Chapter 2 introduces the existing studies related to categorical data 

clustering, including partitional and hierarchical clustering algorithms, intra- and inter-attribute categorical data distance 
measures, nominal and ordinal inter-attribute dependence measures, and validity indices for performance evaluation of 

categorical data clustering. Chapter 3 examines the dis- tance measurement problems of ordinal attributes, and provides a 

distance metric for ordinal data clustering. In Chapter 4, the ordinal data distance metric is further generalised into a unified 

metric for ordinal-and-nominal-attribute categorical data clustering. A unified interdependence measure is also presented to 

weight the contri- butions of various attributes. Chapter 5 then proposes a GMTT topology training algorithm and its incremental 

version for rapid and incremental hierarchical cluster- ing. By adopting the distance metric proposed in Chapter 4, these two 

algorithms can be utilized for the hierarchical clustering of any-type of categorical data. Final- ly, Chapter 6 concludes this 

thesis and discusses some potential directions for future research. 

clustering algorithms, intra- and inter-attribute categorical data distance measures, nominal and ordinal 

inter-attribute dependence measures, and validity indices for performance evaluation of categorical data 

clustering. Chapter 3 examines the dis- tance measurement problems of ordinal attributes, and provides a 

distance metric for ordinal data clustering. In Chapter 4, the ordinal data distance metric is further 

generalised into a unified metric for ordinal-and-nominal-attribute categorical data clustering. A unified 

interdependence measure is also presented to weight the contri- butions of various attributes. Chapter 5 

then proposes a GMTT topology training algorithm and its incremental version for rapid and incremental 

hierarchical cluster- ing. By adopting the distance metric proposed in Chapter 4, these two algorithms can 

be utilized for the hierarchical clustering of any-type of categorical data. Final- ly, Chapter 6 concludes 

this thesis and discusses some potential directions for future research. 
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t=1 

Chapter 2 
 

Literature Review of Related Works 

 
In this chapter, existing categorical data clustering algorithms, categorical data metrics, inter-categorical-

attribute dependence measures that are related to the pro- posed methods, and validity indices for 

performance assessment are reviewed. The common definitions and notations are also provided. Other 

specific notations and definitions about the proposed methods are presented in each chapter accordingly.  

 

 

Categorical Data Clustering 
 
Existing related partitional clustering algorithms (i.e., k-modes [63], attribute-weighted k-modes [62], and 

attribute-weighted OCIL [70] algorithms) and hierarchical clus- tering algorithms (i.e., potential-based 

[91], random projection-based [109], and in- cremental hierarchical clustering algorithms [121]) that are 

applicable to categorical data clustering are introduced in this section. 

 
 

Partitional Categorical Data Clustering Algorithms 
 
This part reviews the representative partitional algorithms proposed for categorical data clustering, 

including k-modes [63], weighted-k-modes [62], and weighted OCIL 

[70] algorithms. Common notations and general description of partitional clustering are presented as 

follows. Given a data set X with N  data objects {x1, x2, ..., xN }, 

and the number of clusters k, the goal of partitional clustering is to maximise the value of the objective 

function Z with variable Q: 

k N 

Z(Q) = 
Σ Σ 

qi,t · Sim(xi, Ct), (2.1.1) 

 

where Q = qi,t with i ∈ {1, 2, ..., N } and t ∈ {1, 2, ..., k}, is an N × k matrix. qi,t = 1 

(qi,t = 0) indicates that data object xi belongs (does not belong) to cluster Ct. Thus, 

each row of Q satisfy 
Σk 

qi,t = 1.  Sim(xi, Ct) is a function, which measures the 
 

similarity between data object xi and cluster Ct. 

 

K-Modes Clustering Algorithm 

 
The most famous and commonly used partitional clustering algorithm is k-means [93]. A lot of variants of 

it have been presented in the literature, see [63] [15] [28] 

[85] [62] [29] [30] [73]. Among these variants, k-modes [63] is the most popular one for categorical data 

clustering.  It initializes k modes U = {u1, u2, ..., uk} from the data set X, and partition the whole data set 

according to the k modes. The goal of 

k-modes is to minimise the objective function Z with variable Q and U: 
 

k N 

Z(Q, U) = 
Σ Σ 

qi,t · Dist(xi, ut). (2.1.2) 

This objective function is minimised by solving the following two problems: 1) fix 

t=1 i=1 

t=1 i=1 
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r 

t 
h 

h 

r i t 

U  =  U
ˆ 

,  solve  the  minimisation  problem  Z(Q, U
ˆ 

),  and  2)  fix  Q  =  Q
ˆ 

,  solve  the 

minimisation  problem  Z(Q
ˆ 

, U). To  solve  the  first  problem,  each  data  object  is assigned to a cluster 

Ct, where t is decided by 
 

t = argmin Dist(xi, um). (2.1.3) 

m 
 

According to Eq. (2.1.3), we assign qi,t = 1 for each object xi. In this way, the whole data  set  is  partitioned  

into  k  clusters,  and  the  optimal  Q  is  obtained  based  on  U
ˆ 

. 

After the partition, each mode is updated according to the present Q
ˆ  

by 

 

ut  = argmax σor (xi ∈ Ct), (2.1.4) 

r h 
h 
 

 

Algorithm 1 K-modes Clustering Algorithm 
 

1: Input: Data set X and number of clusters k. 

2: Output: k clusters described by Q. 

3:  /*initialize the values of Q and U*/ 

4: Randomly select k modes U = {u1, u2, ..., uk} from the data objects of X; 

5: Set Change = 1; 

6: while Change = 1 do 

7: Set all values in Q to 0; 

8: /*partition the whole data set once*/ 

9: for i = 1 to N do 

10: Find the mode ut with shortest distance to xi according to Eq. (2.1.3); 

11: Assign qi,t = 1; 

12: end for 

13: /*judge if the data set should be partitioned again*/ 

14: if the present Q equals to the Q obtained in the last partition epoch then 

15: Change = 0; 

16: else 

17: Update U according to Eq. (2.1.4); 

18: end if 

19: end while 
 

 

 

where ur is the rth value of ut, and σor (xi ∈ Ct) counts the number of objects xi in 

Ct with their rth values equal to or . In this way, the optimal U is obtained based 

on  Q
ˆ 

.   These  two  problems  are  solved  iteratively  until  convergence.   K-modes  is 
 

summarised as Algorithm 1. 

 

 

 

Attribute-Weighted Clustering Algorithms 

 

K-modes treats each attribute equally, which is not always reasonable. To solve this problem, attribute-

weighted versions of k-modes [62] [73] [31] are presented in the literature. Here, we review the most 

representative one proposed in [62]. Its objective function incorporates the weights of attributes by 
 

k N d 

Z(Q, U, W) = 
Σ Σ Σ 

qi,t · wβ · Dist(xr, ur), (2.1.5) 

 

o 

t=1 i=1 r=1 
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 0, if  Dr = 0 

where W = {w1, w2, ..., wd} are the weights of attributes. Similar to the k-modes, this objective function is 

minimised by solving the following three problems: 1) fix 

U  =  U
ˆ  

and  W  =  W
ˆ  

,  solve  the  minimisation  problem  Z(Q, U
ˆ 

, W
ˆ  

),  2)  fix  Q  =  Q
ˆ

and  W = W
ˆ  

,  solve  the  minimisation  problem  

Z(Q
ˆ 

, U, W
ˆ  

),  and  3)  fix  Q = Q
ˆ
 

and

U = U
ˆ 

, solve the minimisation problem Z(Q
ˆ 

, U
ˆ 

, W).  The former two problems can be solved in the 

same way as k-modes, and the third problem is solved by 
 

wr = 

  Σ 

 

1 
1    , if Dr 0, 

 

(2.1.6)

− 
d s=1 
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( Dr ) β 1 
Ds 

i t 

d 

r
 
r 

i  
Σ  

i 

i 

Σ  

      
r,t √ 

 

where 

k N 

Dr = 
Σ Σ 

qi,t · Dist(xr, ur). (2.1.7) 

 
Subspace Clustering Algorithms 

 
K-modes and attribute-weighted k-modes assume that each attribute has identical contribution in forming 

different clusters, which is usually not the case in practice. Therefore, subspace partitional clustering 

algorithms are proposed in the litera- ture, including hard subspace clustering algorithms [5] [27] [3] [4] 

[126] [87] and soft subspace clustering algorithms [95] [47] [38]. However, all the above-mentioned sub- 

space clustering algorithms are proposed for numerical data only. Recently, more subspace clustering 

algorithms have been proposed for categorical data, including hard approaches, see [50] [76] [51] [129] 

[70], and soft approaches, see [14] [23] [26]. Here, we discuss the attribute-weighted OCIL proposed in 

[70], which is the most comprehensive one among the state-of-the-art subspace clustering algorithms that 

are applicable to categorical data. Under the scenario of categorical data clustering, the objective function 

of WOCIL is 

k N 

Z(Q, W) = 
Σ Σ 

qi,t · Sim(xi, Ct), (2.1.8) 

where Sim(xi, Ct) is defined as 

Sim(x , C ) = 
1 Σ 

w · Sim(x , C ). (2.1.9)

i t 

 
 

Sim(xr, Cr) is defined as 

d 

r=1 

r,t i t

i t 
 

Sim(xr, Cr) =
 σxr 

(xj  ∈ Ct)
, (2.1.10)

i t N 

j=1 

qj,t

 

where σxr (xj ∈ Ct) counts the number of objects xj belonging to cluster Ct with their rth values equal to xr. 

wr,t is defined as 

w =
 Fr,t · Mr,t 

, (2.1.11)

r,t d s=1 Fs,t · Ms,t

 

where Fr,t and Mr,t indicates the inter-cluster difference and intra-cluster similarity, 

respectively. Fr,t is defined as
‚
.Σvr 

  !2 

F = 
,
 σor   (xi ∈ Ct) − σor   (xj  ∈/ Ct) 

, (2.1.12)

t=1 i=1 

t=1 i=1 

 

  

2 m=1 
Σ  Σ  

1 
m 

N 
i=1 qi,t 

m 
N −  N 

j=1 qj,t 
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m 

Σ  = i=1 i t . (2.1.13) 

where vr is the number of categories of attribute Ar, and or  is the mth category of 
 

Ar. Fr,t is actually the Hellinger distance derived from the Bhattacharyya coefficient 

[18] for quantifying the dissimilarity between two probability distributions [101] [17]. 

Mr,t is defined as 
ΣN    

(qi,t · Sim(xr, Cr)) 

 
Attribute-weighted OCIL is summarised as Algorithm 2. 

 

 

Fast Hierarchical Clustering Approaches 

This section will give an overview of the representative fast hierarchical clustering approaches, including 

potential-based [91], random projection-based [109], and in- cremental [121] hierarchical clustering 

approaches. Common notations and general description of hierarchical clustering tasks are provided as 

follows. Given a data set X with N data objects {x1, x2, ..., xN }, each data object is assigned into an indi- 

vidual cluster by C1 = x1, C2 = x2, ..., CN = xN . The most similar pair of clusters Ca and Cb are selected out 

according to a certain criteria and are merged to form 
 

 

Algorithm 2 Attribute-weighted OCIL Clustering Algorithm 
 

1: Input: Data set X and number of clusters k. 

2: Output: k clusters described by Q. 

3:  /*initialize the values of Q and U*/ 

4: Randomly select k modes U = {u1, u2, ..., uk} from the data objects of X; 

5: Set Change = 1; 

6: while Change = 1 do 

7: Set all values in Q to 0; 

8: /*partition the whole data set once*/ 

9: for i = 1 to N do 

10: Find the cluster ct that is the most similar to xi according to Eq. (2.1.9); 

11: Assign qi,t = 1; 

12: end for 

13: /*judge if the data set should be partitioned again*/ 

14: if the present Q equals to the Q obtained in the last partition epoch then 

15: Change = 0; 

16: else 

17: Update W according to Eq. (2.1.11); 

18: end if 

19: end while 
 

 

a new cluster C{a,b}, which can be expressed as C{a,b} = Ca ∪ Cb. This merging process is repeated until  all 

the clusters are merged to form one cluster  C{1,2,...,N}, or a pre-set number of clusters k is reached. The 

merging process is recorded by H, called hierarchy or dendrogram, which is usually visualized with a tree. 

 

 

Potential-based Hierarchical Clustering 

 
The approach proposed in [91] converts the distance between data objects into po- tential values to measure 

the density levels of data objects. Having the potential value of each object, an Edge Weighted Tree (EWT) 

is constructed, and the hier- archy can be easily read off from it. Specifically, given two objects xi and xj 

with

q i,t M r,t N 
i=1 
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−  

λ 

N 

distance Dist(xi, xj), the potential value of xi received from xj and the potential value of xj received from xi 

are the same, which is given by

 
θxi,xj 

 
= θxj,xi   = 

  1  

Dist(xi,xj ) 

if Dist(xi, xj) ≥ λ  
(2.1.14)

 − 1 
if Dist(xi, xj) < λ,

 

where the parameter λ is used to avoid the singularity problem when the value of 

Dist(xi, xj) is too small. The total potential value of a data point xi is defined as 
 

ϑxi = 
j=

Σ
1,j=/ 

 

θxi,xj , (2.1.15) 

i

which is the sum of xi’s potential values received from all of the other data objects. Potential value of an 

object indicates its density level among all the objects. That is, an object with closer neighbors locates in a 

high-dense region in the data set [140] [84] [90]. According to the potential values of objects, an EWT is 

constructed by linking objects to its closest neighbor with a higher potential value. Then, the hierarchy of 

the data set can be read off from the EWT by sequentially merging the linked pair with the closest distance. 

The potential-based approach is summarised as Algorithm 

3. The most computationally expensive procedure of hierarchical clustering (i.e., searching the most similar 

pair of clusters) is accelerated by PHC, because the very dissimilar pairs of clusters are ignored during the 

EWT-based searching. However, time complexity of PHC is still O(n2), which is the same as conventional 

hierarchical clustering algorithms. 

 

Random Projection-based Hierarchical Clustering 

 
Random projection-based hierarchical clustering approaches [109] improved the time complexity of 

hierarchical clustering to O(n(log n)2). It partitions the entire data set into small-enough subsets, and 

guarantees that the data objects inside a same subset are very similar to each other. According to these 

subsets, the most similar pair of clusters can be found locally to reduce the computation cost of hierarchical 

clustering. To obtain the subsets, data objects are randomly projected onto different lines for splitting [134] 

[118]. After each projection, the original object set is split into two smaller subsets.  The splitting is stopped 

when the number of objects of
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Algorithm  3  Potential-based Hierarchical Clustering Algorithm 
 

1: Input: Data set X and number of clusters k. 

2: Output: Hierarchy H. 

3: /*compute potential values for each data object*/ 

4: for i = 1 to N do 

5: Compute potential ϑxi by Eq. (2.1.15); 

6: end for 

7: /*link all the data objects to form an EWT*/ 

8: for i = 1 to N do 

9: Link xi and xp, where xp is the nearest one to xi among all the objects with higher potential value than 

xi; 

10: end for 

11: /*merge data objects according to EWT to form H*/ 

12: Assign each data object with an individual cluster; 

13: for m = 1 to N − k do 

14: Find the pair of clusters Ca and Cb with the shortest edge in EWT; 

15: Merge the two clusters to form a new one by C{a,b} = Ca ∪ Cb; 

16: Remove the edge between Ca and Cb from EWT; 

17: end for 

18: Visualize the merging process as a hierarchy H. 
 

 

each subset is smaller than a pre-set parameter minPts. After the splitting, each subset contains only a small 

number of very similar objects. It is guaranteed that each pair of the closest objects that will be found for 

merging during the hierarchical clustering process are partitioned into the same subset. Finally, all the 

intra-subset similarity values between object pairs are ranked, and objects are merged according to the 

similarity ranking. Procedures of the random projection-based framework with single-linkage merging 

strategy is summarised as Algorithm 4. Average-linkage can also be chosen as the merging strategy for the 

random projection-based frame- work. However, an improper parameter minPts may make random 

projection-based framework fail to produce a hierarchy with pre-set number of clusters. Thus, a 
 

 

Algorithm 4 Random Projection-based Single-linkage Algorithm 
 

1: Input: Data set X, number of clusters k, and threshold minPts. 

2: Output: Hierarchy H. 

3: /*partition X into small subsets with very similar data objects*/ 

4: Perturb the data objects; 

5: while subset with number of objects larger than minPts exists do 

6: Partition this subset using random projection; 

7: end while 

8: /*form the similarity ranking of object pairs*/ 

9: Compute similarity for all the intra-subset object pairs; 

10: Sort all the computed similarities; 

11: /*merge data objects according to the similarity ranking*/ 

12: Assign each data object with an individual cluster; 

13: for m = 1 to N − k do 

14: Merge the pair of clusters with their similarity ranked first in the similarity ranking; 

15: Remove the similarity ranked first in the similarity ranking; 

16: end for 

17: Visualize the merging process as a hierarchy H; 

 
parameter-free versions of random projection-based framework has also been pro- posed in [109]. It solves 

the parameter selection problem by repeatedly performing the random projection-based hierarchical 
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clustering with different minPts values, until the desired hierarchy is correctly produced. However, this 

approach is designed for numerical data only and cannot be applied for fast categorical data hierarchical 

clustering. 

 

Incremental Hierarchical Clustering 

 
To cope with streaming data, several clustering approaches have been proposed in 

[81] [44] [45] [19] [40] [121]. Among these works, only the approach presented in [121] focuses on the 

hierarchical clustering of streaming data.  This approach processes each input data object in the following 

three steps: 1) search the known objects to find the one that is closest to the new input, 2) start from the 

found object, the present hierarchy is detected in a bottom-up manner to find a proper node to accept the 

new input, and 3) detect the inhomogeneous region of the hierarchy, and restructure it in a top-down 

manner. Specifically, for a new input xi, its nearest neighbor xj is found from the leaf nodes of the present 

hierarchy. Then, the upward searching is performed to xj’s parent node Vp. If the distance Dist(xi, xj) 

between xi and xj  is smaller than the upper limitation and larger than the lower limitation of Vp, Vp is 

judged to be homogeneous after accepting xi. In this case, xi can be simply inserted under Vp. If Dist(xi, xj) 

is smaller than the lower limitation of Vp, it indicates that xi and xj form a region with higher density among 

the nodes or objects under Vp. In this case, a new node should be inserted under Vp to be the parent node 

of xi and xj in order to maintain the homogeneity of the hierarchy. If xi and xj form a region with lower 

density among the nodes or objects under Vp (i.e. Dist(xi, xj) is larger than the upper limitation of Vp), 

detection should be performed on Vp’s parent node, grandparent node, and so on until reaching a node, 

which can accept xi without influencing its homogeneity. Then, downward inhomogeneous detection and 

recovery are performed to guarantee that the whole hierarchy is homogeneous after accepting xi. The 

incremental hierarchical clustering algorithm is summarised in Algorithm 5. Since the merging strategy of 

the incremental algorithm approximates the traditional single-linkage, the incremental algorithm is biased 

towards certain types of data distribution. The incremental algorithm is sensitive to the input ordering of 

the streaming data, and still has time complexity O(N 2) in the worst case (i.e., the produced hierarchy is 

extremely imbalanced). Moreover, this approach is designed for numerical data only and cannot be applied 

for streaming categorical data hierarchical clustering. 

 

Distance Measurement 

 
Five distance metrics (i.e., Hamming distance metric [58], association-based dis- tance metric [80], 

Ahamd’s distance metric [10], context-based distance metric [64]
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1 2 vr 
i i i 

i 1 2 v1 i 1 2 v2 i 1 2 vd 

 

 

Algorithm  5  Incremental Hierarchical Clustering Algorithm 
 

1: Input: Streaming data set X and initialized hierarchy H. 

2: Output: Hierarchy H. 

3: for i = 1 to N do 

4: /*find a proper node from the present hierarchy to accept each new input*/ 

5: Find the nearest neighbor (i.e., xj under a node Vp) of xi from the leaf nodes of the present H; 

6: while xi and xj cause a low-dense region do 

7: Perform upward searching by treating Vp as the nearest neighbor of xi; 

8: end while 

9: /*insert each new input under the proper node*/ 

10: if xi and xj cause a high-dense region then 

11: Create a new node under Vp as the parent node of xi and xj; 

12: else 

13: Directly insert xi under Vp; 

14: end if 

15: /*adjust the present hierarchy to make it homogeneous*/ 

16: Detect inhomogeneous regions of the present H; 

17: Recover the inhomogeneous regions of H, and obtain the homogeneous H. 

18: end for 
 

 

 
[65], and Jia’s distance metric [72]) proposed for the distance measurement of cat- egorical data are 

discussed in this section. Common notations and general de- scription of categorical data distance 

measurement are provided as follows.  Giv- en a data set X with N  data objects {x1, x2, ..., xN } represented 

by d attributes 

A1, A2, ..., Ad.    Each  attribute  has  a  certain  number  of  categories  (e.g.,  Ar  has 

vr  categories  {or, or, ..., or }).    Each  data  object  is  described  by  d  values  (e.g., 

xi = {x1, x2, ..., xd}), each value is a possible value (category) of an attribute (i.e.,

x1  ∈ {o1, o1, ..., o1 }, x2 ∈ {o2, o2, ..., o2 }, ..., xd ∈ {od, od, ..., od }).   The distance

between the rth values of two objects xi and xj is expressed as Dist(xr, xr), and the 

i j 

overall distance between the two objects is expressed as Dist(xi, xj).
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Dist(xr, xr) = 

 

1, if  xr 

/= xr 

i j  

d 

i j 

i 

j 
d 

i j 

Hamming Distance Metric 

 
Hamming distance metric [58] is simple and popular for categorical data analysis. It uniformly assigns 

distance “1” to a pair of different values while assigns distance “0” to a pair of identical values. Specifically, 

the distance between the rth object values of xi and xj is defined as 

 

i j 
 
0, if xr = xr. 

 

 

Dist(xi, xj) = 
Σ 

Dist(xr, xr). (2.2.17) 
 

Because Hamming distance metric only produces two distance values (i.e., “0” and “1”), it is incapable to 

distinguish the distance between different pairs of categories, and will thus completely ignore the order 

relationships among ordinal categories. Moreover, it treats each attribute equally, and does not consider 

the relationships among the attributes, which are unreasonable from the practical view-point [127] [13]. 

 

Association-based Distance Metric 

 
To extract valuable information from correlated attributes for more accurate dis- tance measurement, 

association-based distance metric is proposed in [80]. It adopts the idea that if the probability distributions 

of the corresponding values from an- other attribute of two categories are dissimilar to each other, distance 

between the two categories will be larger. Specifically, distance between two object values xr and 

xr is calculated by 
 

Dist(xr, xr) = 

Σ  
Dist(cpd(As|Ar = xr), cpd(As|Ar = xr)) (2.2.18) 

 

 s=1,s r 

i j 

(2.2.16) 

Accordingly, the distance between two objects xi and xj is obtained by 

r=1 
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i j 

i j 

i j 
i j 

Σ  Σ  

      h     i  

i 

i h i 

d j 

i 

 

where cpd(As|Ar = xr) and cpd(As|Ar = xr) are the conditional probability distribu- 

tions of the co-occurred values from As of xr and xr, respectively. Dist(cpd(As|Ar = 

xr), cpd(As|Ar = xr)) is the distance between the two probability distributions.  In 

practice, Kullback-Leibler divergence method [79] [78] is utilized to compute the 

distance between two probability distributions.   Accordingly,  Dist(xr, xr) can be 

i j 

written as

vs      

 

 

p(os |xr) 
 

 

 

p(os |xr)  
 

Dist(xr, xr) = p(os |xr) log 
h i    

+p(os |xr) 

log 

h j  
(2.2.19)

i j  h i 2  
p(os |xr) 

h j 2   
p(os |xr)

where  p(os |xr)  is  the  conditional  probability  obtained  by  p(os |xr)  =  
σos ∧xr 

(X) 
.

i h i σxr (X) 
i

σxr (X) is an operation fetches the number of objects in X with their rth  values 

equal to xr, and σos ∧xr (X) fetches the number of objects in X with their rth values 

equal to xr and sth values equal to os . 

h 

Ahmad’s Distance Metric 

Later, Ahmad’s distance metric [10] is proposed based on the definition of similarity  

given by [1].   In essence, it adopts the same basic idea as the association-based 

distance metric. The difference is, Ahmad’s distance metric calculates the distance 

between two categories according to their separating power [116] [33] [9], which 

makes Ahmad’s distance metric more powerful in distinguishing the distances among 

similar categories. Specifically, the distance between two object values xr and xr is

calculated by 

r r 
   1 

Σ
 

i j 

xr xr 
!

Dist(xi , xj ) = 
d − 1 s=1,s max(p i (µ) + p j (∼ 

µ) − 1) 

r 

, (2.2.20)

where µ is a set of categories comprise A ’s categories, called supporting set. pxr (µ) 

s i
 

(pxr (∼ µ)) is the occurrence probabilities of data objects in X with their rth values 

equal to xr (xr) and sth values equal (unequal) to a category in µ. By finding the 

xr xr 

supporting set that makes the value of p i (µ) + p j (∼ µ) − 1 reaches the maximum, 

the distance between two object values xr and xr can be obtained. 

i j 

Context-based Distance Metric 

All the above-mentioned metrics treat each attribute equally, which is not always 

reasonable. Therefore, context-based distance metric is proposed in [64] [65] to

s=1,s/=r h=1 

d 
h j 

h i 

j 
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r s 
E(A ) + E(A ) 

Σ  

h m h m h 

E(Ar) = −  p(or )log(p(or )) (2.2.23) 

Σ  

calculate distance between two categories from a target attribute according to the selected relevant 

attributes, which are called context. In practice, attributes belong- ing to the context of a target attribute Ar 

is selected according to the symmetrical uncertainty defined in [128]. For two attributes Ar and As, the 

symmetrical uncer- tainty of them is defined as

SU (A  , A  ) = 2 · 
    IG(Ar|As) 

 
 

(2.2.21)

r s 
 

where E(Ar) and E(As) are the entropy of attributes Ar and As, respectively. IG(Ar|As) is the information 

gain, which is given by 

IG(Ar|As) = E(Ar) − E(Ar|As) (2.2.22) 

where E(Ar) and E(Ar|As) are defined as 

vr

 

 

and 

 

m m 

m=1 

 
 

vs vr

E(Ar|As) = − 
Σ 

p(os ) 
Σ 

p(or |os ) log(p(or |os )), (2.2.24) 
 

respectively. Subsequently, the context of an attribute Ar is selected out by 

Cont(A  ) = {A  |s =/ r, SU (A  , A  ) ≥ β · 
Σs,s=/   r  SU (Ar, As)

}, (2.2.25) 

r s r s d − 1

 

where β is a parameter in the interval [0, 1]. Then, the distance between two object 

values xr and xr is calculated according to the context by 

i j 

.
‚ 

Σ vs 

 

 

Dist(xr, xr) = , 
(p(xr|os ) − p(xr|os ))

2 
(2.2.26)

Jia’s Distance Metric 

 
Association-based, Ahmad’s, and context-based metrics measure distances between categories according 

to the other attributes. Therefore, when the attributes are independent of each other, they may fail to 

measure the distances. To solve this problem,  Jia’s distance metric is proposed in [72],  which measures 

the distances by simultaneously considering the target attribute and the other attributes that

As∈Cont(Ar ) h=1 

h=1 m=1 

i j i h j h 
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Σ  Σ  m h 

p(or  )p(os ) 

m h 

m h m h 

r s
 r
 s 

Dist((xr, xs)(xr, xs)) = p((xr, xs) = (xr, xs)) if xr /= xr 

i j 

are highly dependent with the target one. Specifically, the dependence degree be- tween two attributes Ar 

and As is measured by calculating their interdependence redundancy, which is defined as 

R(A , A ) =  
I(Ar, As) 

, (2.2.27) 
r s E(A , A ) 

r s 

where I(Ar, As) is the mutual information [92] between Ar and As, which is defined 

as

vr vs 
 

 

   
p(or , os )

 

   

Here, p(or ) (p(os )) is the occurrence probability of the objects in X with their rth 

m h 

(sth) values equal to or (os ). p(or , os ) is the occurrence probability of objects in X 

m h m h 

with their rth values equal to or   and sth values equal to os .  E(Ar, As) is the joint 
 

entropy, which is utilized to normalise mutual information [41]. E(Ar, As) is defined 

as 

vr vs 

E(Ar, As) = − 
Σ Σ 

p(or , os ) log  p(or , os ). (2.2.29) 
 

The values of the interdependence redundancy between each pair of attributes are maintained in a d × d 

relationship matrix R.  An element R(r, s) in R is obtained 

by R(r, s) = R(Ar, As).  For a target attribute Ar, the other attributes that are 

obviously dependent to it are selected out by 
 

Sr = {Ar|R(r, s) > β, 1 ≤ s ≤ d} (2.2.30) 

where β is a parameter in the interval [0, 1]. Subsequently, the distance between two object values xr and 

xr can be obtained by 

i j 

Dist(xr, xr) =  
Σ 

R(r, s)Dist((x , x )(x , x )), (2.2.31)

 

where 

i j 

As∈Sr 

i i j j

 
     

i i j j  
δ(xs, xs) · p((xr, xs) = (xr, xs)) if  xr = xr.

i j 

 
 

The function δ(xs, xs) is 

defined as 

i i j j j 

(2.2.32)

i j 
 
1 if  xs /= xs 

 

i j 
 
0 if xs = xs.

I(Ar, As) = 

m=1 h=1 m h 

i i j j i j 

p(or , os ) log . (2.2.28) m h 

m=1 h=1 

δ(xs, xs) = (2.2.33) 
 

i j 
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This metric also weights the contributions of different attributes based on the idea that uncommon 

categories offer more valuable information for the distance measure- ment. As far as we know, Jia’s 

distance metric is the most comprehensive one among the existing metrics that are proposed for the distance 

measurement of categorical data. 

 

 

Inter-Attribute Dependence Measurement 
 
Two interdependence measures (i.e., symmetric uncertainty [128] and interdepen- dence redundancy [72]) 

are designed for nominal attributes and three interdepen- dence measures (i.e., Kendall’s rank correlation 

[75], Spearman’s rank correlation [115], and rank mutual information [60]) are designed for ordinal 

attributes. These two types of measures are discussed in the following because all of them can be applied 

to measure the interdependence degrees between attributes of categorical data. 

 
 

Nominal Measures 

 
Symmetric uncertainty [128] and interdependence redundancy [72] are two interde- pendence measures 

adopted by two of the existing categorical data metrics proposed in [65] and [72], respectively. Since the 

technical details of these two measures have been reviewed in Section 2.2.4 and 2.2.5, we mainly discuss 

their differences and common characteristics here. 

Both the symmetric uncertainty and interdependence redundancy are symmet- rical, and both of them 

calculate dependence degrees between categorical attributes from the perspective of information theory. 

The difference is that, the symmetric uncertainty adopts information gain, and the interdependence 

redundancy adopts mutual information. Actually, the concepts of information gain and mutual infor- 

mation are equivalent to each other in the scenario of inter-attribute dependence measurement [34]. These 

two measures actually differ from each other in how they compensate for the bias of information gain and 

mutual information toward at-tributes with more categories. Symmetric uncertainty divides the information 

gain of two attributes by their total entropy, while interdependence redundancy divides the mutual 

information of two attributes by their joint entropy. However, both of them are inappropriate for ordinal 

attributes because they cannot take the natural order information of ordinal attributes into account for inter-

attribute dependence degree measurement. 

 

Ordinal Measures 
 

Kendall’s Rank Correlation 
 
Kendall’s rank correlation [75] is presented to measure the association degree be- tween two value lists in 

terms of the orders of the values. It counts the number of concordant pairs and discordant pairs of 

observations. The concepts of concordant and discordant are defined as follows. 

Definition 1. Given a data set X with N objects represented by two attributes A1 

and A2.  If a pair of unequal objects xi and xj  satisfy sign(x1 − x1) = sign(x2 − x2), 

i j i j 

it is said that xi and xj are concordant to each other. 

 

Definition 2. Given a data set X with N objects represented by two attributes A1 

and A2. If a pair of unequal objects xi and xj satisfy sign(x1 − x1) sign(x2 − x2), 

http://www.ijrti.org/


                              © 2024 IJNRD | Volume 9, Issue 1 January 2024 | ISSN: 2456-4184 | IJNRD.ORG 

  

  

IJNRDTH00101 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 
313 

i j i j 

it is said that xi and xj are discordant to each other. 

 

Here,  sign(·)  fetches  the  sign  of  the  value  inside  its  brackets.   When  the  number 

of concordant object pairs (discordant object pairs) is very large, it indicates a higher agreement 

(disagreement) degree between the two attributes [2]. Specifically, dependence degree between two ordinal 

attributes Ar and As measured according 

to Kendall’s rank correlation can be written as
Σ

N −1 
Σ

N (1 · sign(xr − xr) · sign(xs − xs))

Rr,s 
= i=1 j=i+1 j i j i .

 (2.3.34) 

N (N − 1)/2
 

Values of Kendall’s rank correlation are in the interval [-1,1], where “-1” indicates perfect disagreement 

of two value lists, while “1” indicates perfect agreement of two value lists.
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i i 

Spearman’s Rank Correlation 
 
Spearman’s rank correlation [115] measures the order correlation between two value lists in four steps: 1) 

sort each value list and assign integer order values to the list, 

2) jointly sort the two lists according to the order values of one list, 3) calculate the differences between 

the order values of the two lists, and 4) measure the correlation between the two lists according to the 

differences of their order values [130] [54]. Specifically, dependence degree between two ordinal attributes 

Ar and As measured by Kendall’s rank correlation can be written as

6 ΣN 

 

OD(xr, xs)2

R = 1   i=1 i i , (2.3.35) 

N (N − 1) 

where OD(xr, xs) calculates the order difference between xr and xs.    Suppose xr 

i i i i i 

ranked 10th among all the rth values of X, and xs ranked 2nd among all the sth 

values of X, OD(xr, xs) = 10 − 8 = 2.  Values of Spearman’s rank correlation are in 

the interval [0,1]. A larger value of Spearman’s rank correlation indicates that two value lists are more 

interdependent. 

 

Rank Mutual Information 

 
Rank mutual information [60] is originally proposed for monotonic classification. It exploits the order 

information of attribute values to measure the order correlation between an ordinal attribute and the 

decision. It can also be utilized for inter- attribute order correlation measurement. Rank mutual information 

can be viewed as an ordinal version of mutual information. The original mutual information cannot reflect 

the dependence between attributes in terms of the orders of their values, because mutual information is 

calculated by summing up the sub-entropies and sub- conditional entropies of ordinal categories of 

attributes. Rank mutual information extends mutual information by summing up the sub-entropies and sub-

conditional entropies of different dominance rough sets, and is therefore competent for indicating the 

dependence degree between two attributes in terms of their orders. Specifically, dependence degree 

between two ordinal attributes Ar and As measured by using ascending rank mutual information, and 

descending rank mutual information can

− r,s 
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N 
i i  

N 

i i 

CA = t=1 i t , (2.4.38) 

N 

be written as 
1 

Σ 
σ≥xr (X) · σ≥xs (X) 

Rr,s = − log , (2.3.36) 

N 

i=1 

N · σ≥xr ∧≥xs (X)

and 
1 

Σ 
σ≤xr (X) · σ≤xs (X) 

Rr,s = − log , (2.3.37) 

N 

i=1 
N · σ≤xr ∧≤xs (X)

respectively. The operators σ≥xr (X) and σ≤xr (X) count the number of data objects 

in the dominance rough sets {xj  ∈ X|xr  ≥ xr} and {xj  ∈ X|xr  ≤ xr},  respectively

 

[56] [35]. 

i j i

 

 

 

Validity Indices for Clustering Performance 

Assessment 
Four popular indices for partitional clustering performance assessment (i.e., clus- tering accuracy [120] 

[59],  rand index,  adjusted rand index [105] [108] [119] [52], and normalised mutual information [41] 

[34]) and a popular index for hierarchical clustering performance assessment (i.e., Fowlkes Mallows index 

[46]) are reviewed in this section. 

 

 
Clustering Accuracy 

 
Clustering Accuracy (CA) [120] [59] measures the percentage of the data objects that are correctly 

clustered. Specifically, CA is defined as 
Σk 

σ{x /=NULL}(xi ∈ C
J 

∩ Ct) 

 

 

where Ct
J 

is the tth benchmark cluster, and Ct is the corresponding produced cluster that is mapped to Ct
J 

. 

Before the calculation of CA, all the produced clusters are 

mapped to different benchmark clusters by using the Kuhn-Munkres algorithm [88]. CA has values in the 

interval [0,1], and a larger value indicates better clustering performance.

i i 

i i 
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{xi/=NULL} 
k k 

i t g i t g 

k 

Adjusted Rand Index 
 
Adjusted Rand Index (ARI) is a more powerful version of Rand Index (RI) [105] [108] 

[119] [52]. ARI measures the agreement between the benchmark clusters and the clusters obtained by the 

assessed clustering algorithm. Specifically, ARI is defined as 

ARI =
 RI − Ex(RI) 

, (2.4.39) 

Max(RI) − Ex(RI) 

where Ex(RI), and Max(RI) stand for expected value of RI, and maximum value of RI, respectively. RI is 

defined as

RI = TP + TN 
 

 

TP + FP + FN + TN 

, (2.4.40)

where TP, FP, FN, and TN stand for true positive, false positive, false negative, and true negative, 

respectively. ARI has values in the interval [-1,1] while RI has values in the interval [0,1]. If ARI value is 

less than 0, it indicates that the performance is lower than the expectation, and a larger ARI or RI value 

indicates better clustering performance. 

  

Normalised Mutual Information 
Normalised Mutual Information (NMI) [41] [34] measures the agreement between the benchmark labels 

and the obtained labels from the perspective of information theory, which is defined as 

MI 

NMI = √EJ × E, (2.4.41) 

where MI is the mutual information of obtained labels and benchmark labels, which can be written as 

MI =

Σ Σ σ (x  ∈ CJ ∩ C ) N · σ (x  ∈ CJ ∩ C )

N 

t=1 g=1 

σ{xi NULL}(xi  ∈ Ct
J 

) · σ{xi=/   

NULL}(xi  ∈ Cg ) 

(2.4.42)

EJ and E are the entropy values of benchmark labels and obtained labels, respec- tively, which are defined 

as

EJ = − Σ
t=1 

σ{xi/=

NULL} 

N 

(xi ∈ CJ
t) 

 

log 
σ{xi/=

NULL} 

N 

(xi ∈ CJ
t) 

 

(2.4.43

)

log . 
{xi 

NULL} 
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k 

N N 

r 

and 
E = − 

Σ σ{x
i
 

 

 

NULL}(xi  ∈ Cg ) log σ{xi=/   

NULL}(xi  ∈ Cg ). (2.4.44)

A larger NMI value indicates better clustering performance. 

 

 

Fowlkes Mallows Index 
 
Fowlkes Mallows Index (FMI) [46] is another commonly used index for evaluating the clustering 

performance of hierarchical clustering approaches. By using FMI, the constructed hierarchy H should be 

horizontally cut firstly to produce k clusters. Then, FMI is computed by

FM =  
TP 

TP + FP 
TP 

TP + FN 

 

, (2.4.45)

g=1 
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where TP is the total number of true positives, FP is the total number of false positives, and FN stands for 

false negative. If the k clusters produced by horizontally cutting H and the k benchmark clusters match 

completely, the value of FMI will take the maximum value 1. Values of FMI are in the interval [0,1], and 

a larger value indicates better clustering performance. 

 
 

Summary 
 
In this chapter, existing related works, including partitional clustering algorithm- s, hierarchical clustering 

algorithms, distance metrics, inter-attribute dependence measures, and validity indices, have been 

introduced with providing their inter- connections and potential limitations. Partitional clustering 

algorithms are popular for pre-processing and analysing categorical data sets. Because they cannot pro- 

vide a hierarchy for indicating the nested similarity relationship for data objects, analysing by using 

hierarchical clustering algorithms is also an effective way for understanding the unlabeled categorical data 

sets. Since conventional hierarchical clustering algorithms suffers from high time complexity (O(N 2)), fast 

hierarchical clustering algorithms have been proposed in the literature. However, all these fast algorithms 

are designed for numerical data only and cannot be directly applied for 

categorical data clustering analysis. Therefore, how to efficiently analysing categori- cal data by using 

hierarchical clustering technique is a significant unsolved problem. In general, a categorical data clustering 

algorithm adopts a certain categorical data distance metric to perform clustering analysis. In the literature, 

categorical data distance metrics are proposed for nominal data only, and the clustering algorithms adopting 

them will result in unsatisfactory clustering results for ordinal and mixed categorical data. Therefore, how 

to design dedicated distance metric for ordinal data and unified distance metric for mixed categorical data 

are also important unsolved problems.
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Chapter 3 

 

Distance Metric for Ordinal Data Clustering 

 
Introduction 

 
Ordinal data is a major type of categorical data, which is common in the field of data analysis, machine 

learning, pattern recognition and knowledge discovery [7]. As a major kind of categorical data, ordinal 

data has similar properties of both nominal and numerical data [12]. On the one hand, the categories of 

attributes in ordinal data are all qualitative and not suitable for arithmetic calculation. On the other hand, 

the categories of ordinal data are ordered and comparable. To use the ordinal data, domain experts (also 

called data designers) usually design the attributes and corresponding ordered categories first. Then, 

participants (also called data generators) provide their observations/answers (data objects) according to the 

categories of attributes to form the data set. Since both the designers and generators are human beings, who 

will be more or less subjective during the data generation, the distances of ordinal data will be different 

from case to case, which makes the distance measurement of ordinal data a challenging problem. 

Since ordinal data is a type of categorical data, the commonly used distance metrics for numerical data, 

including Euclidean distance [36] and Mahalanobis dis- tance [123], are not applicable to the distance 

measurement of ordinal data. On the opposite, some distance metrics proposed for categorical data (e.g., 

Hamming Distance Metric (HDM) [58], Ahmad’s Distance Metric (ADM) [10], Association- Based 

Distance Metric (ABDM) [80], Context-Based Distance Metric (CBDM) [64] [65], and Jia’s Distance 

Metric (JDM) [72]) can be directly applied to measure the distance for ordinal data sets. 

 
Among the existing categorical data distance metrics, HDM is the most conven- tional and popular one. 

Although HDM is easy to use, it assigns the same distance to all the pairs of different categories, which is 

unable to distinguish the distance levels between different pairs of ordinal categories or ordinal data objects. 

Later, ADM and ABDM are proposed adopting a similar basic idea that if the probability distributions of 

the corresponding values from the other attributes of two target cat- egories are more similar, the two target 

categories will also be more similar to each other. These two metrics are proved to be more reasonable in 

the distance measure- ment of categorical data, but they still do not have the ability to extract and exploit 

the order information of ordinal data for appropriate ordinal data distance measure- ment. Differing from 

ADM and ABDM, CBDM proposes to select more relevant attributes for the distance measurement of the 

target attribute, and performs better than ADM and ABDM in the clustering analysis of categorical data. 

However, all the ADM, ABDM and CBDM metrics have not considered the case that some at- tributes are 

independent of each other [102], and they have also not considered the case that categorical data comprise 

ordinal attributes. Recently, JDM is proposed, which considers the case that the attributes are independent 

of each other. It si- multaneously takes the intra-attribute statistical information and the inter-attribute 

relationship into account for more robust and reasonable distance measurement. To the best of our 

knowledge, JDM is the most comprehensive categorical data distance metric in the literature. However, 

since all the above-mentioned distance metrics are actually proposed under the hypothesis that categorical 

data comprise only nominal attributes, all of them are incapable for exploiting the order information of 

ordinal attributes and preserving the natural order relationship between ordinal categories for the distance 

measurement. Therefore, a distance metric, which can reasonably exploit the underlying order information 

of ordinal data for clustering analysis is in urgent need. 

In this chapter, we therefore propose a distance metric for ordinal data clustering [136]. From the 

perspective of information theory [69], each category in the data set contains a certain amount of 

information [94]. By simulating the thinking pro- cedure of human being when trying to change mind from 

a choice to another for a multiple choice question with ordered choices, distance between ordered 

categories can be viewed as the thinking cost for changing mind from one category to anoth- er. More 

http://www.ijrti.org/


                              © 2024 IJNRD | Volume 9, Issue 1 January 2024 | ISSN: 2456-4184 | IJNRD.ORG 

  

IJNRDTH00101 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 

320 

1 2 vr 
sc 

sc 

specifically, think about a choice (i.e., category in the scenario of ordinal data distance measurement) 

containing larger amount of information usually cost more thinking for a human being. Therefore, if the 

total information amount of the though categories is larger, then the distance between the original choice 

and the final decision will be larger. Accordingly, the distance between two target categories can be 

quantified by using the cumulative entropy of the categories ordered between them. To make the distances 

measured on different attributes with different distance scales comparable, we further provide an entropy-

based distance scale normalisation scheme. To prove the effectiveness of the proposed distance metric, and 

to study the relationship between the exploiting degree of order information and the clustering 

performance, three experiments are conducted on six real ordinal data sets. The main contributions of this 

chapter are summarised into three points: 
 

An entropy-based distance metric for ordinal data clustering is proposed. The proposed metric is the first 

ordinal data distance metric, which considers the underlying order relationship between ordinal categories. 

It is also parameter- free and easy to use. 
 

An entropy-based distance scale normalisation scheme is designed for making the distances between 

ordinal categories measured on different attributes com- parable, by which the inter-category distances can 

be directly combined for forming the distance between data objects. 
 

Relationship between the exploiting degree of order information and clustering performance is studied to 

prove the effectiveness of the proposed distance metric. This study also provides guidance for the research 

works that are related to ordinal data in the future. 
 

The rest of this chapter is organised as follows. Preliminaries of ordinal data dis- tance measurement are 

given in Section 3.2. In Section 3.3, details of the proposed distance metric are presented. In Section 3.4, 

how to apply the proposed metric for distance measurement in the clustering analysis is discussed, and the 

correspond- ing time complexity is analysed. Then, we conduct experiments in Section 3.5 to illustrate its 

effectiveness. Finally, we provide the summarisation of this chapter in Section 3.6. 

 

 

Preliminaries 
 
Given a data set X = {x1, x2, ..., xN } with N data objects represented by d ordinal attributes A1, A2, ..., Ad. 

Possible values of an attribute Ar are a set of naturally ordered categories {or, or, ..., or }, where vr is the 

number of categories of Ar. In this 

chapter, each category is represented in the form of osa, where, sa (sa ∈ {1, 2, ..., d})

stands for the sequence number of an attribute Asa 

that osa 

belongs to, and sc
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sc 

1 2 vr 

i1 i2 id 

(sc ∈ {1, 2, ..., vsa}) stands for the sequence number of the category osa, which ranked scth among the 

categories of Asa. For an attribute Ar, its categories satisfy 

or ≺ or ≺ ... ≺ or   where the symbol “≺” means that the categories on its left ranked 

lower (have smaller order values) than the categories on its right. In this thesis, the sequence numbers of 

the categories belonging to the same attribute indicate the order values of them.   A data object xi = {o1 , 

o2 , ..., od } is expressed by d 

categories from different attributes, where the sequence numbers i1, i2, ..., id indicate 

that the categories representing xi have order values i1, i2, ..., id among the categories belonging to A1, A2, 

..., Ad, respectively. 

For a reasonable ordinal data distance metric, the distances produced by it should consistent with the order 

relationships between the categories of each attribute. More specifically, the produced distances should 

satisfy the following two properties: 

 
Table 3.1: Frequently used notations of Chapter 3. 

 

Symbo

l 

Meaning 

or 

s 

≺ 

 
≤ 

 
Eor 

s 
 

por 

s 

 
 
 
 

σor (X) 
s 
 
 
 

S
Ar 

E
Ar 

A category belonging to Ar, and ranked sth among the categories of Ar. This 

symbol indicates that the categories on its left ranked lower (have smaller 

order values) than the categories on its right. 

This symbol indicates that the categories on its left ranked not higher than 

the categories on its right. 

Entropy value of a category or.  Eor   = −por  log por . 

s s s s 

Occurrence probability of the data objects in X with their rth values 

equal to or. p =
 σor 

(X) 
. 

s  

s or 

s N 

Occurrence frequency of the data objects with their rth values equal to 

or in X. 

s 

Standard information of Ar, see Sectino 3.3.2. 

Entropy of Ar, see Sectino 3.3.2. 

 
Dist(xi, xj) ≤ Dist(xi, xl), if the sequence numbers of all the categories representing xi, xj, and xl satisfy ir  ≤ 

jr  ≤ lr or lr  ≤ jr  ≤ ir where i, j, l ∈ {1, 2, ..., N }, ir, jr, lr ∈ {1, 2, ..., vr} and r ∈ {1, 2, ..., d}; 

Dist(xi, xj) ≤ Dist(xm, xl), if the sequence numbers of all the categories repre- senting xi, xj, xl, and xm satisfy 

max(mr, lr) ≥ max(ir, jr) and min(mr, lr) ≤ min(ir, jr) where i, j, l, m ∈ {1, 2, ..., N }, ir, jr, lr, mr  ∈ {1, 2, ..., 

vr} and r ∈ 

{1, 2, ..., d}; 

Frequently used notations in this chapter are sorted out in Table 3.1. 
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ir 

The Proposed Metric 

 

Basic Idea 
 
From the perspective of information theory, each category in the data set contain a certain amount of 

information, which can be measured according to the statistics of the data set. By simulating the thinking 

procedure of human being when trying to change mind from a choice to another for a multiple choice 

question with a certain number of ordered choices, it is reasonable to measure the distance between two 

ordinal categories according to the amount of their contained information. More specifically, if it costs 

more thinking for a human being to change his/her decision from a choice to another, it usually indicates 

that the two choices contain a large amount of information that needs to be though for making a decision. 

Thus, a larger amount of information that needs to be though for changing mind indicates a higher level of 

difference between the two choices in terms of their contained information. By treating each attribute with 

ordered categories as a multiple choices question with ordered choices, the distance between ordered 

categories can be measured according to the “thinking cost for changing mind” between them. For example, 

the thinking cost can be understood as the amount of thinking that is cost by a reviewer to change his/her 

decision from “neutral” to “strong accept” for a paper acceptance/rejection decision question with five 

naturally ordered choices (i.e., “strong accept”, “accept”, “neutral”, “reject”, and “strong reject”) in a 

review report. Because the choice “accept” is ordered between “strong accept” and “neutral”, it cannot be 

skipped by the reviewer during the thinking. “accept” choice with a larger information amount will cost 

more thinking for changing mind, and thus we measure the information amount of categories using 

Shannon entropy [69] [94], which has been commonly adopted for the information amount measurement 

in the analysis of categorical data. Therefore, the distance between two ordinal categories can be measured 

by the cumulative entropy of all the categories that are involved in the “thinking cost for changing mind” 

between them. 

 
 

EBDM: Entropy-Based Distance Metric 
 
When trying to select a choice from C and E for a question, all the choices between C and E including 

themselves (i.e., C, D, and E) should be considered as shown in Figure 3.1. It is obvious that the thinking 

cost for choosing the choice from two choices is not only related to the two choices themselves, but also 

related to the 

Question: ? 
 

Figure 3.1: An example of a multiple-choice question with ordered choices. 

 
choices ordered between them. That is, if choice D costs more thinking, it will be more difficult for a 

participant to decide a final answer from C and E. Moreover, choosing a choice from two choices by 

considering more choices will also cost more thinking. For instance, choosing a choice from C and E will 

cost more thinking than that from C and D, because one more choice (i.e., E) is involved in the former 

case. In addition, since all the choices are different from each other, each of them costs different amount 

of thinking.

Specifically, the distance between two categories or and or 

 
A B C D E 

Dist(C,E) 
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Σ  t 

t t t 

t t 

t 
t 

o E 
t 

from Ar with jr > ir
 

can be measured by estimating the cost contributed by all the the jr−ir+1 categories 

(i.e., or , or , ..., or ).  Accordingly, the distance between the rth values of two 

ir ir +1 jr 

objects (i.e., xi and xj) is defined as 

 
Dist(or , or ) = 

max(ir,jr ) 

t=min(ir,jr ) 

Eor ,  if ir jr  
(3.3.1)

ir jr  
0 , if  ir = jr 

where Eort 

is the entropy of category or, which can be 

measured by 

Eor   = −por  log por . (3.3.2)
 

por is the occurrence probability of or, which is defined as 

 σor (X) 

por  = t , (3.3.3) 

t N 

where the operator σor (X) counts the number of data objects in X with their rth 

values equal to or. 

 
 

Scale Normalisation 
 
A significant disadvantage of the distance defined by Eq. (3.3.1) is that the scales of the distances measured 

on different attributes are not unified. The attributes with larger numbers of categories may produce larger 

distances. Therefore, we normalise 

the scales of the distances measured on different attributes by

 
 

Dist(or , or ) = 

 
 

max(ir,jr ) t=min(ir,jr ) 
r
 

S
Ar 

,  if ir /= jr  

 

(3.3.4)

ir jr  
0 , if  ir = jr.

 

The denominator SAr is called standard information, which is defined as 

1 

SAr = − log v 

, (3.3.5)

 

where vr is the number of categories of attribute Ar. The standard information is the maximum entropy of 

an attribute when the occurrence probabilities of the categories belonging to Ar are all the same in X. We 

normalise the distance scales using the standard information instead of the entropy of attributes because 

the entropy of an attribute actually indicates the total information amount offered by the attribute, which is 

more suitable to be utilized for attribute weighting, but not scale normalisation [72]. 

Based on the distances between categories defined by Eq.(3.3.4), the distance between two ordinal data 

objects xi and xj can be written as 
‚
.,Σ

d

t 

Σ  

r 

Dist(xi, xj) = Dist(or , or )2. (3.3.6) ir jr 
r=1 
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o E 
t 

larger numbers of categories may produce larger distances. Therefore, we normalise 

the scales of the distances measured on different attributes by

 
 

Dist(or , or ) = 

 
 

max(ir,jr ) t=min(ir,jr ) 
r
 

S
Ar 

,  if ir /= jr  

 

(3.3.4)

ir jr  
0 , if  ir = jr.

 

The denominator SAr is called standard information, which is defined as 

1 

SAr = − log v 

, (3.3.5)

 

where vr is the number of categories of attribute Ar. The standard information is the maximum entropy of 

an attribute when the occurrence probabilities of the categories belonging to Ar are all the same in X. We 

normalise the distance scales using the standard information instead of the entropy of attributes because 

the entropy of an attribute actually indicates the total information amount offered by the attribute, which is 

more suitable to be utilized for attribute weighting, but not scale normalisation [72]. 

Based on the distances between categories defined by Eq.(3.3.4), the distance between two ordinal data 

objects xi and xj can be written as 
‚
.,Σ

d
 

 

Discussions 
 
In this section, we discuss: 1) the mathematical properties of EBDM, 2) how to use EBDM in the clustering 

analysis of ordinal data, and 3) the time complexity of the distance measurement using EBDM. 

 

Mathematical Properties 

 
Obviously, the distances between categories defined by Eq.(3.3.4) have the following five properties:  
 

Dist(or , or ) = Dist(or , or ); 

ir jr jr ir

Σ  

r 

Dist(xi, xj) = Dist(or , or )2. (3.3.6) ir jr 
r=1 

http://www.ijrti.org/


                              © 2024 IJNRD | Volume 9, Issue 1 January 2024 | ISSN: 2456-4184 | IJNRD.ORG 

  

  

IJNRDTH00101 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 
325 

ir jr 

≤ o ir 

lr lr jr ir 

ir jr ir lr ir jr 

jr lr lr jr ir 

ir 

ir jr lr lr jr ir 

ir jr lr lr ir jr mr 
mr 

0 ≤ Dist(or , or ) ≤ 1; 

Dist(or , or )  =  Dist(or , 

or ) + Dist(or , or ) − 

Eor 

       jr , iff or 

≤ or ≤ or  or

ir 

r r 

lr jr 

lr 

≤ or ; 

ir jr jr lr S
Ar 

ir jr lr

Dist(or , or ) ≤ 

Dist(or , or ), if or 

≤ or ≤ or , or or ≤ or ≤ or .

Dist(or , or ) ≤ Dist(or , or ), if or ≤ ∀{or , or } ≤ or , or or ≤ ∀{or , or } ≤

ir jr 

 

r mr 

mr lr mr ir jr lr lr ir jr

 
where i, j, l, m ∈ {1, 2, ..., N }, ir, jr, lr, mr ∈ {1, 2, ..., vr}, and r ∈ {1, 2, ..., d}. 

Moreover, the distances defined by Eq.(3.3.6) have the following five properties: 

 
Dist(xi, xj) = Dist(xj, xi); 

 
0 ≤ Dist(xi, xj) ≤ 1; 

Dist(xi, xl) ≤ Dist(xi, xj) + Dist(xj, xl) if the categories representing xi, xj,

and xl satisfy or ≤ or ≤ or , or or ≤ or ≤ or ;

 
Dist(xi, xj) ≤ Dist(xi, xl), if the categories representing xi, xj, and xl satisfy

or ≤ or ≤ or , or or ≤ or ≤ or ;

 
Dist(xi, xj) ≤ Dist(xm, xl), if the categories representing xi, xj, xl, and xm

satisfy or ≤ ∀{or , or } ≤ or , or or ≤ ∀{or , or } ≤ or   ,

 
where i, j, l, m ∈ {1, 2, ..., N }, ir, jr, lr, mr ∈ {1, 2, ..., vr}, and r ∈ {1, 2, ..., d}. These properties prove that 

EBDM is a distance metric. 

 
 

Distance Measurement 
 
The distance measurement algorithm of EBDM is shown in Algorithm 6. To save computation cost for the 

clustering procedures, we can record the distances between categories calculated according to Algorithm 

6 for each attribute using d distance matrices. In this way, the distances between data objects can be directly 

read off from the d matrices during clustering analysis.

o 

o , 
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      t=min(ir,jr )   ot ; 
S

Ar 

ir jr 

r=1 

s s+1 

s s+2 

 

 

Algorithm 6 Distance Measurement Using EBDM 
 

1: Input: Data objects xi and xj. 

2:  Output: D(xi, xj). 

3: for r = 1 to d do 

4: if ir /= jr then 

5: Calculate the distance between the rth values of xi and xj by Dist(or , or ) =
Σ

max(ir,jr )    E r 
ir jr

 
6: else 
 

 

 

 

 

 

 
7: Dist(orir , orjr ) = 0;  

8: 
 

9: 
 

10: 

end if 

end for 

calculate the distance 

 
 

 
between 

 
 

 
xi and 

 
 

 
xj 

 
 

 
by 

 
 

 
Dist(xi, xj) 

 
 

 
= 

qΣd 

 

Dist(or , or )
2
.

 
 

 

Time Complexity Analysis 
 
The computation procedures of EBDM-based distance measurement consists of three parts: 1) calculate 

the vr occurrence probabilities and entropy values of the cate- gories belonging to each attribute, 2) 

calculate distance matrices recording the dis- tances between categories of each attribute, and 3) read off 

the distance between two data objects according to the distance matrices. In clustering analysis, the com- 

putation of part 1 and 2 should be executed once, and then the distance matrices produced in part 2 are 

exploited in part 3 for distance reading off. We analyse the time complexity of these three parts as follows:  

The time complexity for calculating the occurrence probabilities and entropy values of vr categories 

belonging to attribute Ar is O(N + vr). For the total d 

attributes, the time complexity is O(Nd + 
Σd 

vr). 

 
To calculate the distances between categories of an ordinal attribute Ar, we can firstly calculate the 

distances between the vr−1 pairs of adjacent categories

(i.e., or and or with s ∈ {1, 2, ..., vr − 1}). Then, the distances 

between the

vr − 2 pairs of categories (i.e., or and or with s ∈ {1, 2, ..., vr − 2}) can be

r=1 
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2 

r=1 2 

r=1 

2 

max 

max 

obtained by simply adding Dist(or, or ) and the 

entropy value of or 

(i.e.,

s s+1 s+2
 
 

r s+2 
).   Therefore, the time complexity for producing the 

distance matrix of

an ordinal attribute Ar is O(vr 
(vr 

−1) 
). For the d attributes in total, the time

complexity is O(
Σd

 vr (vr −1) ).

 
Time complexity for reading off the distance between two data objects accord- ing to the produced distance 

matrices is O(d). 

According to the above analysis, we will further discuss if the time complexity of EBDM will influence 

the time complexity of clustering analysis. Time complexity

for calculating the distance matrices using EBDM 

is O(Nd + 
Σd

 
(vr  + vr (vr −1) )).

 

Since the numbers of categories may be different for the attributes, we use vmax = max(v1, v2, ..., vr), r ∈ {1, 

2, ..., d} instead of vr in the following analysis. By adopt- ing vmax, the time complexity of producing 

distance matrices using EBDM can be

re-written as O(Nd + vmaxd + v2 d).  Since vmax is usually a small constant sat-

isfying v2 < N for most of the real ordinal data sets, the time 

complexity can
 

be further modified to O(Nd). According to the produced distance matrices, the time complexity for 

partitioning the N data objects into k groups is O(kdNI) if the simplest k-modes clustering algorithm is 

adopted, where I is the number of learning iterations. Obviously, EBDM will not increase the overall time 

complexity of ordinal data clustering analysis. 

 

 

Experiments 
 
In this section, comparative experiments are conducted to prove the effectiveness of the proposed EBDM 

metric. 

 

Experimental Settings 

 

Data Sets 
 
Six ordinal data sets are collected for the experiments in this chapter. Among the data sets, Internship is 

collected from the students questionnaires of the Education

Eo 
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Table 3.2: Statistics of the six ordinal data sets. 

 

Data Set # Instance

s 

# Attribute

s 

# Class

es 

Internship 90 3 2 

Photo 66 4 3 

Employee 1,000 4 9 

Selection 488 4 9 

Lecturer 1,000 4 5 

Social 1,000 10 4 

 
University of Hong Kong, Photo is collected from the student questionnaires of the College of International 

Exchange of Shenzhen University, the remainder four (i.e., Employee, Selection, Lecturer, and Social) are 

collected from the website of Weka [122]. Statistics of the collected data sets are shown in Table 3.2.  

 

Counterparts 
 
Hamming Distance Metric (HDM) [58] is selected as a representative conventional distance metric of 

categorical data. Ahmad’s Distance Metric (ADM) [10], Association- Based Distance Metric (ABDM) 

[80], Context-Based Distance Metric (CBDM) [65], and Jia’s Distance Metric (JDM) [72] are selected as 

the other four state-of-the- art counterparts in this chapter. All the selected counterparts and the proposed 

Entropy-Based Distance Metric (EBDM) are embedded into the simplest k-modes clustering algorithm 

[63] for their performance evaluation. 

 

Validity Indices 

 
We have compared the clustering performance of the above-mentioned six distance metrics using two 

popular validity indices (i.e. Clustering Accuracy (CA) [59] [120] and Rand Index (RI) [105] [119]), which 

have been introduced in Chapter 2. To illustrate that the performance of ordinal data clustering analysis 

depends on if the corresponding distance metric can adequately exploit the order information for the 

distance measurement, we also propose a new validity index, called Order Consisten-
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Table 3.3: Clustering performance in terms of CA. 

 
Data Set HDM ADM ABDM CBDM JDM EBDM 

Internship 0.620±0.07 0.571±0.06 0.524±0.01 0.502±0.00 0.573±0.05 0.734±0.06 

Photo 0.514±0.07 0.503±0.04 0.538±0.08 0.541±0.06 0.486±0.07 0.614±0.05 

Employee 0.188±0.01 0.202±0.01 0.203±0.01 0.196±0.01 0.186±0.01 0.206±0.01 

Selection 0.380±0.04 0.396±0.04 0.400±0.05 0.412±0.03 0.348±0.04 0.402±0.04 

Lecturer 0.330±0.04 0.328±0.02 0.316±0.02 0.313±0.02 0.320±0.04 0.367±0.02 

Social 0.376±0.03 0.411±0.02 0.405±0.02 0.378±0.03 0.362±0.03 0.396±0.04 

 
cy Score (OCS) to evaluate the exploiting degree of order information for distance metrics. More details 

about OCS are introduced in Section 3.5.4. 

 

Experiments Design 
 
We compare the clustering performance of different metrics to evaluate the effec- tiveness of EBDM. To 

intuitively observe if the distances calculated by a metric are consistent with the orders of ordinal data, we 

use the compared metrics to produce distance matrices for each attribute of the six data sets. The distance 

matrices are compared by converting their normalised values into grey-scale maps. To evaluate the 

exploiting degree of order information of the selected metrics, we compare their OCS performance on 

different data sets. To verify that the exploiting of order infor- mation can make a metric performs well in 

the clustering analysis of ordinal data, we also study the correlation between the averaged OCS and the 

clustering performance of different metrics. All the results are averaged by 10 runs of the experiments. 

 

Comparative Studies 
 
Clustering performance of the six metrics are evaluated by CA and RI, and the corresponding experimental 

results are compared in Table 3.3 and 3.4, respective- ly. To evaluate the stability of each distance metric, 

standard deviation of their performance is also recorded in the two tables. Among the results of each data 

set, the best and the second best results are highlighted by boldface and underline, respectively.

http://www.ijrti.org/


                              © 2024 IJNRD | Volume 9, Issue 1 January 2024 | ISSN: 2456-4184 | IJNRD.ORG 

  

IJNRDTH00101 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 

330 

Table 3.4: Clustering performance in terms of RI. 
 

Data Set HDM ADM ABDM CBDM JDM EBDM 

Internship 0.620±0.07 0.571±0.06 0.524±0.01 0.502±0.00 0.573±0.05 0.734±0.06 

Photo 0.651±0.04 0.688±0.06 0.696±0.06 0.704±0.05 0.672±0.06 0.721±0.04 

Employee 0.819±0.00 0.822±0.00 0.823±0.00 0.821±0.00 0.819±0.00 0.824±0.00 

Selection 0.862±0.01 0.866±0.01 0.867±0.01 0.870±0.01 0.855±0.01 0.867±0.01 

Lecturer 0.732±0.02 0.731±0.01 0.726±0.01 0.725±0.01 0.728±0.02 0.747±0.01 

Social 0.688±0.01 0.706±0.01 0.702±0.01 0.689±0.02 0.681±0.02 0.698±0.02 

 

It can be observed from the results that the proposed EBDM metric outperforms the others on four of the 

six data sets (i.e., Internship, Photo, Employee, and Lec- turer).  For the Selection data set, even EBDM’s 

performance is the second best, the gap between it and the best one is very tiny (i.e., 0.01 and 0.003 in 

terms of CA and RI, respectively). For the Social data set, the gap between EBDM and the best performing 

ADM is around 0.01, which is still small.  The reason why EBDM has such competitive performance in 

the clustering analysis of ordinal data is that EBD- M exploits order information for ordinal data distance 

measurement, but the other five metrics do not. In conclusion, EBDM is obvious competent in comparison 

with the other distance metrics. In Section 3.5.3 and 3.5.4, we will further analyse the reasons why EBDM 

cannot outperform some of the counterparts on the Selection and Social data sets according to the 

experimental results. 

 
 

Distance Matrices Demonstration 

 
To intuitively observe the distance produced by different metrics, we demonstrate the distance matrices 

produced by all the compared metrics for Selection data set. All the values of the distance metrics are 

normalised into the interval [0, 1] and represented by grey-scale blocks as shown in Figure 3.2. In this 

figure, the distance matrices produced by ADM, ABDM, CBDM, and EBDM are shown in row 1, 2, 3, 

and 4, respectively. Distance matrices produced by JDM metric is not demonstrated because JDM does not 

produce the distances between categories. Instead, it directly computes the distances between data objects.
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Figure 3.2: Distance matrices of Selection data set. 

 

 
In this figure, pure black colour indicates distance “0” between two categories while pure white colour 

indicates distance “1”. Therefore, all the blocks on the diagonals from the left top corner to the right bottom 

corner are pure black. If a distance matrix can reasonably indicate the natural distances of an ordinal 

attribute, the right top block should be pure white and the other blocks toward the diagonal will be darker. 

This is because the distance between the two categories with the lowest and highest order values should be 

the largest and vice versa. Obviously, distance matrices produced by EBDM is closer to the natural distance 

structure of an ordinal data set. If we consider these distance matrices in combination with the performance 

demonstrated in Table 3.3 and 3.4, we can find that if the distance matrices produced by a distance metric 

are closer to the natural distances of an ordinal data set, its clustering performance will be better. This 

observation will be further studied in Section 3.5.4. 
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Σ  

d 

d 
r 

Evaluation of the Order Information Exploiting 
To study the relationship between exploiting degree of order information and clus- tering performance for 

the distance metrics, OCS index is proposed to quantify the consistent level between the distance matrices 

produced by a distance metric and the order of categories. Specifically, given a distance matrix of attribute 

Ar, an element of this matrix can be expressed as Mr(a, b) = Dist(or, or). The OCS of Ar is ob- 

a b 

tained by searching Mr and count the sum of the scores earned by each pair of Mr’s elements.  If two 

elements (i.e., Mr(a, b) and Mr(a, c)) satisfy Mr(a, b) < Mr(a, c) with a < b < c or c < b < a, this pair of 

elements will get a score, otherwise, their score will be 0. The score of a pair of elements is defined as

 
Sa,b,c = 

vr −(c−b)−1 vr −2 ,   if Mr(a, b) < Mr(a, c)  
(3.5.7)

0 , otherwise. Subsequently, OCS of Ar can be calculated by

OCSr = 
Sa,b,c 

, (3.5.8) 

T

r 

where Tr is the maximum score that Mr can get, which is utilized to normalise the value of OCSr into the 

interval [0, 1].  Accordingly, the overall OCS of an ordinal data set is computed by 

OCS = 
1 Σ 

OCS . (3.5.9) 

OCS of ADM, ABDM, CBDM and EBDM metrics on each attribute of all the six data sets are shown in 

Figure 3.3. HDM is not included because it is special, and its OCS is 0. It can be seen that attribute 6 of 

Social data set is not shown. It is because that attribute 6 of Social data set has only 2 categories, which is 

unavailable for the OCS measurement. It can be seen that EBDM outperforms all the other counterparts in 

terms of OCS.

r=1 
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Figure 3.3: OCS index on each attribute of the six data sets. 
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Figure 3.4: Averaged OCS of EBDM on all the six data sets. 

 
 

To study the relationship between order information exploiting and clustering performance, we first 

demonstrate the overall OCS of all the compared metrics on all the six data sets in Figure 3.4. In this figure, 
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Figure 3.5: OCS-CA correlation and OCS-RI correlation. 

 

 

 

 
Selection, Lecturer, and Social data sets are abbreviated as IQ, PE, ER, ES, LE, and SW, respectively, 

according to their full data set names. It can be found that the overall OCS performance of EBDM is always 

better than the others. 

 
Based on the overall OCS results, we evaluation the relationship between order information exploiting and 

clustering performance. OCS-CA correlation and OCS- RI correlation are demonstrated in Figure 3.5. We 

use one-sided T-test at 90% confidence level with degree of freedom equals to 2 to prove the significance 

of the correlation. Moreover, two commonly used critical values of correlation (i.e., “0.5” for normal 

correlation and “0.8” for strong correlation) are also adopted for reference. It can be observed that the 

correlations on all the six data sets pass the T-test, which means that the correlations are significant. In 

addition, four of tests are above the strong correlation level, and all of the tests are above the normal 

correlation level. To sum up, for a distance metric, its clustering performance on ordinal data sets is obvious 

in proportion to its exploiting level of order information. Therefore, EBDM outperforms its counterparts 

because it can better exploit the order information. Since all the ADM, ABDM, CBDM and EBDM have 

relative high order information exploiting degree on the Selection and Social data sets, their clustering 

performance shown in Table 3.3 and 3.4 are close to each other.

 

 

Corr(Acc.,OCS) 
Corr(RI,OCS) 

Normal (0.5) 

Strong (0.8) 

T-test (0.737) 
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Summary 
 
This chapter has presented an entropy-based distance metric for ordinal data clus- tering, which quantifies 

the distance between ordinal categories with considering the order relationship between them by using 

cumulative entropy. The proposed metric appropriately exploits the order information and outperforms the 

existing metrics for ordinal data clustering. In addition, the proposed metric is parameter-free and easy to 

use. Experimental results have shown the effectiveness of the proposed met- ric in the clustering analysis 

of ordinal data. In addition, we conduct a study of the relationship between order information exploiting 

and clustering performance, and prove that the performance of an ordinal data distance metric depends on 

its exploiting degree of the order information. 
 

 

 

 

 

 

Chapter 4 

 

Unified Distance Metric for Categorical Data 

Clustering 

 
Introduction 

 
In general, there are two common types of data sets (i.e., categorical and numerical data sets) as illustrated 

in Figure 4.1, in which “v-bad” and “v-good” indicate very- bad and very-good, respectively. Under the 

categorical class, there are two types of attributes, that are nominal and ordinal attributes. Ordinal attributes 

inherit some properties of nominal attributes [74][6] but are different from nominal attributes. Like nominal 

attributes, the categories of ordinal attributes are all qualitative and not suitable for arithmetic operations 

including mean, division, summation, and so on [8]. Unlike nominal attributes, the categories of an ordinal 

attribute are naturally ordered, and are comparable in terms of their order values. 

 

 
Data Types 

 
Categorical Numerical 

Nominal: male, famale 

Ordinal: v-bad, bad, good, 

v-good 
Interval: -1ºC, 0ºC, 5ºC, 5000ºC 

Ratio: 1m², 2m², 50m², 1000m²

 

 

 
Figure 4.1: Relationships among different data types. 

 
 

In many real categorical data analysis tasks, both nominal and ordinal attributes
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exist in data sets (e.g., the data obtained through questionnaires, evaluation system, and so on). By taking 

the fragment of a TA evaluation data set shown in Table 1.1 as an example, if we treat the two ordinal 

attributes “Helpful” and “Professional” as nominal ones, the preservation of their natural order relationship 

may not be guaranteed. For example, the distance between “Agree” and “Weak-agree” should be smaller 

than that between “Agree” and “Disagree”. But this order relationship will be ignored if we treat the 

categories as nominal ones. Therefore, it is more reasonable to treat ordinal attributes differently from 

nominal ones to take their order information into account for data analysis. 

In the literature, several works have been proposed for ordinal data regression 

[103] [57] [124], ordinal data classification [61] [110] [135] [104], and ordinal data ranking [25] [42] [83]. 

Nevertheless, all of them focus on ordinal data only. In fact, from the practical perspective, mixed 

categorical data are common as shown in Table 1.1. Unfortunately, as far as we know, the distance metric 

for such categorical data has yet to be well explored in the literature.   Therefore,  this chapter will study 

the distance measurement problem for such data within the framework of clustering analysis, which is 

generally a nontrivial task because the heterogeneous information offered by ordinal and nominal attributes 

should be simultaneously taken into account when assigning the data objects into the proper clusters.  

Over the past two decades, a number of clustering algorithms have been proposed for the categorical data, 

which are essentially applicable to nominal data only. A typical example is k-modes [63] algorithm, which 

seeks for a partition by iteratively assigning objects into their closest modes. Later, an extended k-modes 

is proposed in [62], which weight the contribution of different attributes during the data clustering process. 

After that, another improved version of k-modes has been presented in [73]. Instead of weighting the 

attributes for a whole data set, this version weights the contributions of different attributes for each cluster. 

Furthermore, the other examples are the entropy-based clustering algorithms (i.e., [15] and [85]), which 

provide that the information entropy of a cluster will not increase a lot after adopting an object if this object 

is similar to the cluster. In addition, paper [70] proposes a clustering algorithm, called attribute-weighted 

OCIL, which weights the attributes on each cluster by simultaneously considering their contributions in 

terms of intra- cluster similarity and inter-cluster difference. Although all the above-mentioned algorithms 

can be applied to mixed categorical data, their clustering results will degrade to a certain degree because 

the metrics adopted by these algorithms have not taken into account the order information of the ordinal 

attributes. 

In fact, as far as we know, most of the existing metrics proposed for categori- cal data are essentially 

designed for nominal data only [11]. Among these metrics, the commonly used simple matching distance 

(also called Hamming distance metric interchangeably [58]) simply assigns distance “1” to unequal 

categories and assign- s “0” to identical categories without considering the inherent relationships among 

attributes. Thus, association-based distance metric [80] and Ahmad’s distance met- ric [10] have been 

proposed provided that, for two intra-attribute categories, if the distributions of their corresponding values 

from the other attributes are similar to each other, the distance between the two categories will be shorter. 

However, both of these two metrics treat each attribute equally, which is usually unreasonable from the 

practical view-point. To address this problem, a context-based distance metric 

[65] has been proposed to measure the distance between two intra-attribute cat- egories according to the 

selected relevant attributes. Furthermore, categorical data distance metric proposed in [72] not only 

measures the distance according to the relevant attributes,  but also considers the occurrence probability of 

them. In this way, even all the attributes are independent of each other, this metric still works. N- 

evertheless, all the above-mentioned metrics are actually proposed for nominal data, which are surely not 

suitable for exploiting order information of ordinal attributes. 

In the literature, some other measures have been presented to measure similarity between two value lists 

according to the order of the values. For example, Kendall’s rank correlation [75] and Spearman’s rank 

correlation [115] measure the correlation degree between two variables according to the matching degree 

of their order values. However, most of the ordinal attributes in categorical data sets have a small number 

of possible values, which cannot provide valid order values for the computation of
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these two measures. Another measure, called rank mutual information (RMI), has been presented in [60] 

for monotonic classification. Similar to Kendall’s and Spear- man’s rank correlation, RMI is designed to 

measure the monotonic level between attributes. In fact, entropy-based metrics have been successfully used 

for nominal data clustering (e.g., see [15] [85] [73] [65]). Therefore, along this line, proposing an entropy-

based distance metric that can simultaneously exploit valuable information of ordinal and nominal 

attributes would be a feasible choice for mixed categorical data clustering. 

In this chapter, we propose a new categorical data distance metric that can exploit order information of 

ordinal attribute, and unify the heterogeneous informa- tion offered by ordinal and nominal attributes for 

mixed categorical data clustering [139]. To exploit the order information of ordinal data, we compute the 

distance between two ordinal categories according to the entropy values of all categories ordered between 

them (including themselves). This idea is analogous to making decision between two ordered choices as 

discussed in Chapter 3. For example, given a multiple-choice question with the ordered choices: {very-

good, good, neutral, bad, very-bad}, when we are comparing two choices (i.e., “neutral” and “very-good”) 

to make a final decision for this question, both of these two choices should be consid- ered together with 

another choice “good” because “good” is an intermediate choice and cannot be skipped. In this chapter, 

the proposed metric unifies the distance concepts of both ordinal and nominal attributes. Since the choices 

of a question are unordered in a nominal case, it is not necessary to consider the other choices when we are 

deciding the final choice from the two nominal choices. According to this, the concept of distance has a 

uniform definition, which is the “thinking cost” for all the choices that should be considered for making a 

decision between two choices, no matter the choices are ordered or not. Therefore, information offered by 

ordinal and nominal attributes can be quantified and combined for indicating the distance between two data 

objects of a mixed categorical data set. Furthermore, by taking into account the different contributions of 

attributes in the clustering task, we also present a unified attribute weighting scheme to adjust the 

contributions of different attributes. 
 

Experimental results on different real and benchmark data sets have shown the effectiveness of the 

proposed distance metric for mixed categorical data clustering. The main contributions of this chapter are 

summarised into three-fold: 

 
 

A unified metric featuring parameter-free, robust, and easy to use is developed, which unifies the distance 

concepts of both ordinal and nominal attributes. The unified distance metric can be applied for the distance 

measurement of any type of categorical data, including ordinal data, nominal data, and mixed categorical 

data. 

 
 

A unified attribute weighting scheme is also designed to weight the contri- butions of different categorical 

attributes for the distance measurement. It not only assigns a larger weight to the attributes offering more 

information for the distance measurement, but also unifies the distance scales of different attributes.  

 
 

Extensive experiments are conducted to evaluate: 1) the clustering perfor- mance of the proposed metric 

on ordinal, nominal, and mixed categorical data, 

2) the effectiveness of the order information exploiting scheme of the proposed metric, and 3) the 

effectiveness of the unified attribute weighting scheme of the proposed metric. 

 
 

The rest of this chapter is organised as follows. In Section 4.2, we formalize the problem of unified 

categorical data distance measurement, and provide common no- tations. Section 4.3 proposes a unified 

distance metric for both ordinal and nominal attributes. In Section 4.4, mathematical properties of the 

unified metric, how to use it for clustering analysis, and its time complexity, are discussed. Section 4.5 

presents the experimental results on both real and benchmark data sets. Finally, we summarise this chapter 

in Section 4.6. 
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i1 i2 i
dord idord+1 idord+2 id 

ord ord 

d 

dord+1 

 

Preliminaries 
 
Given a data set X = {x1, x2, ..., xN } with N data objects represented by d at- tributes, including dord ordinal 

attributes: A1, A2, ..., Adord and dnom nominal at- tributes: Adord+1, Adord+2, ..., Ad, where d = dord + dnom. In this 

chapter, it is as- sumed that the former dord attributes of a categorical data set are ordinal while the latter 

dnom are nominal. Ordinal data set can be viewed as a special case that dord = d and dnom = 0, while nominal 

data set is another special case that dord = 0 and dnom = d. In this chapter, all the settings about ordinal 

attributes are the same as that of Chapter 3. The difference between ordinal and nominal categories is that, 

the ordinal categories from one attribute are naturally ordered, and their sequence numbers are also the 

order values of them, while the sequence numbers of nominal categories do not indicate their order 

relationship. A data object xi is expressed by xi  = {o1 , o2 , ..., odord   , odord
+1 

, odord
+2 

, ..., od }, where the 

former dord 

are the categories of the dord ordinal attributes, while the latter dnom are the cat- egories of the dnom nominal 

attributes. For the nominal part of xi, the sequence numbers id    +1, id    +2, ..., id  indicate that the dord + 1th,  

dord + 2th,  ...,  dth  values

of object xi equal to the 

ith 

th 

dord+2 

, ..., ith categories of the dnom 

attributes

Adord+1, Adord+2, ..., Ad, respectively. 

Frequently used notations in this chapter are sorted out in Table 4.1. Since some of the frequently used 

notations have been introduced in Chapter 3, we do not repeatedly introduce them again here.  

 

 
 

The Unified Distance Metric 
 
In this section, we first discuss the main limitations of the EBDM metric proposed in Chapter 3. Then, the 

attribute weighting scheme and the unified distance metric for any type of categorical data clustering is 

proposed. Finally, we provide the math- ematical properties of the proposed metric, discuss how to use it 

in the categorical data clustering analysis, and analyse its time complexity.

, i 
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Table 4.1: Frequently used notations of Chapter 4. 

 

Symbo

l 

Meaning 

dord 

dnom 
ω

Ar ωI 

Ar 

 

ωS 

Ar 

R
Ar 

E
Ar 

Number of ordinal attributes in X. Number of nominal attributes in X. 

Weight of Ar, ωA   = ωI    · ωS  . 

r Ar Ar 

Importance weight of Ar. Scale weight of Ar. 

Reliability of Ar, RA = EAr . 

r 
S

Ar 

Shannon entropy of Ar, EA   = − 
Σvr      por  log por . 

r s=1 s s 

 

Limitations of EBDM 
 
In Chapter 3, EBDM metric is proposed for ordinal data clustering analysis. Exten- sive experiments have 

illustrated its effectiveness in the clustering of ordinal data. However, from the perspective of categorical 

data clustering analysis, it still has two main limitations, which are discussed as follows: 

 

Treat each  attribute  equally.  EBDM  has  not  considered  the  importance of different attributes. It 

treats the valuable information extracted from each attribute equally for the distance measurement, which 

is usually unreasonable from the practical view-point. 

 

Only applicable to ordinal data. Since EBDM is proposed for ordinal data clustering, it cannot measure 

distances between categories without knowing their order values. For the nominal categories without order 

values, EBDM is not applicable to the distance measurement. 

 

To solve the first problem, we present a attribute weighting scheme in Sec- tion 4.3.2. To make the EBDM 

metric applicable to the clustering analysis of mixed categorical data and nominal data, we generalise it to 

a nominal case, and com- bine it with the attribute weighting scheme to form a unified distance metric in 

Section 4.3.3.
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Σ  

Σ  
s s 

Ar 
Ar 

S I 

Σ  

Attribute Weighting 
From the perspective of information theory, higher entropy of an attribute means that this attribute offers 

more information [94]. Evidently, a decision made based on larger amount of information will be more 

convincible. Therefore, we weight the importance of the attributes according to the information amount 

they offer. Specifically, the weight value for weighting the importance of an attribute Ar is defined as

ωI = 
EAr

 
(4.3.1)

Ar d 

s=1 

E
As

where EAr stands for the entropy of Ar, which is defined as 

vr 

EAr  = − por  log por . (4.3.2) 

The attributes with larger number of categories may produce larger distance 

values, and will contribute more to the distance between two data objects. To avoid this, the weight value 

for weighting the scale of an attribute Ar is defined as 

   1 

ωS     =
 S

Ar  
(4.3.3)

A
r 

Σ
d 1  

s=1 SAs 

where the factor SAr   is the standard information, which has been defined by E- 

q. (3.3.5) in Chapter 3. 

To simultaneously weight the attributes using the two above defined weights ωI 

and ωS , the integrated weight of an attribute Ar can be written as 
ω

Ar Ar 
· ω

Ar 
. (4.3.4)

 

To explain the physical meaning of the integrated weight, we also define another concept called reliability, 

which is written as
R

Ar = 
EAr . (4.3.5) 

S

Ar 

The reliability indicates the percentage of the maximum information contained by attribute Ar. The higher 

RAr is, the more convincible the distances measured ac- cording to attribute Ar will be. Based on Eq. (4.3.5), 

the weight of Ar can be 

rewritten as

ω = 
RAr

 
. (4.3.6)

Ar d 

s=1 

R
As

s=1 

= ω 
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D 

C 

A B 

Since Eq. (4.3.6) is equivalent to the weight defined in Eq. (4.3.4), it is obvious that the defined attribute 

weight can simultaneously weight the importance and scale of an attribute. 

 

 

 

UEBDM: Unified Entropy-Based Distance Metric 
 
In this sub-section, we generalise the EBDM to make it capable for the distance measurement of categorical 

data with a mixture of nominal and ordinal attributes. For nominal data, we still treat the attributes as 

questions with multiple choices. The difference is that the choices are unordered. For example, there is a 

question “what is your favorite course?” in a questionnaire with four choices (i.e., “English”, “Machine 

Learning”, “Music”, and “Mathematics”). If a participant is trying to choose a choice from “English” and 

“Mathematics” as shown in Figure 4.2, where A - D stand for “English”, “Machine Learning”, “Music”, 

and “Mathematics”, re- spectively, he/she will not consider the other two choices (i.e., “Machine Learning” 

and “Music”) because there is no order relationship among the choices. 
 

Question: ? 
Dist(A,D) 
 

 

 

 
 

Figure 4.2: An example of multiple-choice question with nominal choices. 

 

 

 
Based on the above discussions, the concept of cost can be extended to a unified case. That is, the meaning 

of the cost is the thinking cost for all the choices that should be considered for choosing a choice from two 

choices, no matter the choices are ordered or not. Accordingly, the concept of distance induced by the 

concept of thinking cost can be unified for ordinal and nominal attributes. By combining the unified 

distance metric and the proposed attribute weighting scheme, the distance
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ir 
jr 

 ωAr   ·  

Σ
 

ir jr 

 

Ar s=ir,jr os r ord 

ir jr 

≤ o ir 

lr lr jr ir 

ir jr ir lr ir jr 

between two categories or and or can be written as

max(ir,jr ) s=min(ir,jr ) Eor 
 

 

,  if ir jr, 0 < r ≤ dord

Dist(or , or ) =  
ω · 

Σ

 
E  r 

,  if i j , d < r ≤ d (4.3.7)

 
0 ,  if ir = jr. 

Based on Eq. (4.3.7), the distance between categorical data objects can be written as 

 

Dist(xi, xj) = 

‚
.,Σ

d
 

 

Dist(or , or )
2
. (4.3.8)

ir jr 

r=1 
 
 

Discussions 
 
This sub-section discusses: 1) mathematical properties of UEBDM, 2) how to apply UEBDM for distance 

measurement in clustering analysis,  and 3) time complexity for clustering analysis using UEBDM. 

 

Mathematical Properties 
The generalised distance metric defined in Eq. (4.3.7) can be utilized for calcu- lating the distance between 

two categories, no matter they are ordinal or nominal. Given i, j, l, m ∈ {1, 2, ..., N }, ir, jr, lr, mr ∈ {1, 2, 

..., vr}, and r ∈ {1, 2, ..., d}, the generalised weighted distances have the following properties: 

 
Dist(or , or ) = Dist(or , or ); 

ir jr jr ir 

 
0 ≤ Dist(or , or ) ≤ 1; 

Dist(or , or ) = Dist(or , 

or ) + Dist(or , or ) − ωA 

Eor  , iff or ≤ or ≤ or  or

ir 

r r 

lr jr 

lr 

≤ or ; 

ir jr jr lr 
r 

jr ir jr lr

Dist(or , or ) ≤ 

Dist(or , or ), if or 

≤ or ≤ or , or or ≤ or ≤ or .

Dist(or , or ) ≤ Dist(or , or ), if or ≤ ∀{or , or } ≤ or , or or ≤ ∀{or , or } ≤

ir jr 

 

r mr 

mr lr mr ir jr lr lr ir jr

s 

r 

o 

o , 
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jr lr lr jr ir 

ir 

ir jr lr lr jr ir 

ir jr lr lr ir jr mr 
mr 

Calculate distance matrics and weight values for each attribute 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
  

Figure 4.3: Work flow of UEBDM. 

 

Accordingly, the object level distance defined by Eq. (4.3.8) has the follow- ing properties when i, j, l, m 

∈ {1, 2, ..., N }, ir, jr, lr, mr ∈ {1, 2, ..., vr}, and r ∈ 

{1, 2, ..., d}: 

 
Dist(xi, xj) = Dist(xj, xi); 

 
0 ≤ Dist(xi, xj) ≤ 1; 

Dist(xi, xl) ≤ Dist(xi, xj) + Dist(xj, xl) if the categories representing xi, xj,

and xl satisfy or ≤ or ≤ or , or or ≤ or ≤ or ;

 
Dist(xi, xj) ≤ Dist(xi, xl), if the categories representing xi, xj, and xl satisfy

or ≤ or ≤ or , or or ≤ or ≤ or ;

 
Dist(xi, xj) ≤ Dist(xm, xl), if the categories representing xi, xj, xl, and xm

satisfy or ≤ ∀{or , or } ≤ or , or or ≤ ∀{or , or } ≤ or   ,

 

 

Distance Measurement 
 
The work-flow of distance measurement by using UEBDM is shown in Figure 4.3, where ϑ in the figure 

indicates the category level distance. The corresponding dis- tance measurement algorithm is shown in 

Algorithm 7. To save computation cost in

 

  

  

 

A1 ..... 
..... 

Calculate the distance between 
two data objects 

A2 ..... 
..... x i 

ϑ 

Ad ..... 
..... 

Dist(xi ,xj ) 

ωA 
1 

ωA 
2 

xj 

ωA 
d 

...
 

 

Data 

A1    A2

 Ad 
x1  ... ... ... ... ... 
x2  ... ... ... ... ... 

 
 
xN ...   ...   ... ...   ... 

...
 

...
 

...
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Σ  

ir jr s=min(ir,jr ) 

ir jr r 
s 

r=1 ir jr 

 

 

Algorithm 7 Distance Measurement Using UEBDM 
 

1: Input: Data set X = {x1, x2, ..., xn}. 

2: Output: Dist(xi, xj) for i, j ∈ {1, 2, ..., n}. 

3: for r = 1 to d do

4: RAr = EAr ; 
S

Ar

5: end for 

6:  for r = 1 to d do 

7: ω = RAr ; 

Ar 

 

8:  end for 

d 
s=1 R

As

9: for r = 1 to dord do 

10: if ir /= jr then 

11: Dist(or , or ) = ωA 
 

 

Σ
max(ir,jr )  

 

 
Eor ;

13: Dist(or , or ) = 0; 

ir jr 

14: end if 

15: end for 

16: for r = dord + 1 to d do 

17: if  ir =/ jr  then 

18: Dist(or , or ) = ωA  · 
Σ

 
 

 

 

 
Eor ;

20: Dist(or , or ) = 0; 

ir jr 

21: end if 

22: end for

23:  Dist(xi, xj) = 
qΣd

 
 

Dist(or , or )
2
.

 
 

 

 

 

 

 

 

 
clustering analysis, distance matrices containing the distances between each pair of categories of each 

attribute can be calculated according to Algorithm 7 in advance. Then, distances between data objects can 

be easily read off from these matrices.

12:

 els
e 

19:

 els
e 

r 

s=ir,jr 
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r=1 

2 2 

r=1 2 

r=1 

Time Complexity Analysis 
The computation procedures of UEBDM-based distance measurement is composed of four parts: 1) 

calculate the vr occurrence probabilities and entropy values of the categories from each attribute Ar, 2) 

calculate a vr × vr distance matrix for each Ar according to the vr occurrence probabilities and entropy 

values, 3) calculate a weight value for each Ar according to the vr entropy values, and 4) read off the 

distance between two data objects according to the prepared distance matrices and attribute wights. In 

clustering analysis, the computation in part 1-3 should be executed once, and then the distance matrices 

and attribute weights produced by part 2 and 3 are exploited in part 4 for distance reading off. We analyse 

the time complexity of each of the four parts as follows: 

Time complexity for calculating the occurrence probabilities and entropy val- ues of vr categories 

belonging to an attribute Ar is O(N +vr). For d attributes, 

the time complexity is O(Nd + 
Σd 

vr). 

 
To calculate the distance between each pair of the vr categories of an ordinal attribute Ar according to Eq. 

(4.3.7), the time complexity is the same as an- alyzed in Section 3.4.3 of Chapter 3, which is O(vr 
(vr 

−1) 
). 

If Ar is a nominal 

attribute, distances of vr 
(vr 

−1)   
pairs of its categories can be directly calculated 

using Eq. (4.3.7) by adding up the two entropy values of each pair of the categories. This procedure has 

the same time complexity as calculating dis- tances for an ordinal attribute. Therefore, for d attributes in 

total, the time

complexity is O(
Σd

 vr (vr −1) ).

 
To calculate the weight value of Ar, we should firstly sum up the vr entropy values of Ar’s categories and 

divide it by the standard information of Ar ac- cording to Eq. (3.3.5) and (4.3.5) to obtain the reliability RAr 

of Ar.  Then the weight value of Ar can be obtained by dividing the reliability of Ar by the summation of 

the reliabilities of all the d attributes according to Eq. (4.3.6). 

Therefore, the time complexity for calculating the weight values of all the d

attributes is O(
Σd

 vr).
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r=1 2 

max 

max 

Time complexity for reading off the distance between two data objects accord- ing to the distance matrices 

and the weight values is O(d). 

According to the above analysis, we will further discuss if the time complexity of UEBDM will influence 

the time complexity of clustering analysis. Time complexity for calculating the distance matrices and 

weight values of all the d attributes is 

O(Nd + 
Σd 

(2vr + vr 
(vr 

−1) 
)).  Since the value of vr is different for each attribute, 

 

we use vmax = max(v1, v2, ..., vd) instead of vr in the following analysis.  Based on

vmax, the time complexity can be re-written as O(Nd 

+ vmaxd + v2 

d). Since vmax

is usually a small constant satisfying v2 < N in most of the real categorical data

 

sets, time complexity for calculating the distance matrices using UEBDM can be modified to O(Nd). If the 

distance matrices of all the attributes are given, the time complexity for partitioning the data objects into k 

clusters using the simplest k-modes is O(kdNI), where I is the number of iterations. Therefore, UEBDM 

still does not increase the overall time complexity of clustering analysis as EBDM. 

 

Experiments 
 
We embed the proposed UEBDM metric and its counterparts into different repre- sentative clustering 

algorithms. Their performance on different real and benchmark data sets is evaluated using several popular 

validity indices. Various experiments are conducted to illustrate the efficacy of UEBDM in categorical 

data clustering analysis. 

 

Experimental Settings 

 

Data Sets 
 
To comprehensively evaluate the performance of the proposed distance metric, the selected data sets should 

include ordinal, nominal, and mixed categorial data set- s with different sizes and numbers of attributes. 

Twelve data sets, including five real data sets (i.e., Internship, Photo, Assistant, Fruit, Pillow) and seven 

bench- mark data sets (i.e., Employee, Lecturer, Hayes, Nursery, Solar, Voting, Tictac), are
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Table 4.2: Statistics of the twelve data sets 

 

Data set Data type # Ins. # Att.(O

) 

# Att.(N

) 

# Cla

ss 

Internship Ordinal 90 3 0 3 

Photo Ordinal 66 4 0 3 

Employee Ordinal 1,000 4 0 9 

Lecturer Ordinal 1,000 4 0 5 

Assistant Categorical 72 2 2 3 

Fruit Categorical 100 3 2 5 

Hayes Categorical 132 2 2 3 

Nursery Categorical 12,96

0 

6 2 4 

Pillow Nominal 100 0 4 5 

Solar Nominal 323 0 9 6 

Voting Nominal 435 0 16 2 

Tictac Nominal 958 0 9 2 

 

 

 

 

 

 
 

collected for the experiments. Among the twelve data sets, four of them (i.e., Intern- ship, Photo, Employee, 

and Lecturer) are ordinal data sets. Another four of them (i.e., Assistant, Fruit, Hayes, and Nursery) are 

mixed categorical data sets. The Remainder four (i.e., Pillow, Solar, Voting, and Tictac) are nominal data 

sets. Em- ployee and Lecturer are collected from Weka website [122]. Hayes, Nursery, Solar, Voting, and 

Tictac are collected from the UCI Machine Learning Repository [37]. Internship is collected from the 

students’ questionnaires of the Education University of Hong Kong. Photo and Assistant are collected from 

the student questionnaires of the College of International Exchange of Shenzhen University. Fruit and 

Pillow are collected from the business survey of an advertising company. Statistics of the twelve data sets 

are shown in Table 4.2. “Att.(O)” and “Att.(N)” indicate ordinal and nominal attributes, respectively.
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Counterparts 
 

 

To compare the metrics, we embed them into different distance-based clustering algorithms, and then 

evaluate their clustering performance. The metrics, clustering algorithms, and validity indices are described 

as follows. 

The commonly used Hamming Distance Metric (HDM) [58] is selected as a base- line. In addition, 

Ahmad’s Distance Metric (ADM) [10], Association-Based Distance Metric (ABDM) [80], Context-Based 

Distance Metric [65] and Jia’s Distance Metric (JDM) [72] are selected as state-of-the-art counterparts in 

the experiments. 

K-Modes (KM) clustering algorithm [63], which is the most commonly used one for categorical data 

clustering, is selected as a baseline. The attribute weighting ver- sion of KM (i.e., WKM [62]), which can 

automatically weight the contributions of attributes for clustering, is also selected. In general, subspace 

clustering algorithm can achieve better performance than the conventional ones. Therefore, a represen- 

tative subspace clustering algorithm (i.e., Entropy Weighting k-means (EW) [73]) and a state-of-the-art 

subspace clustering algorithm (i.e., Weighted OCIL (WOC) [70]) are also selected. Besides the above four 

distance-based clustering algorithms, a representative evaluation-based clustering algorithm (i.e., Entropy-

Based Clustering (EBC) algorithm [85]) is also chosen. 

 

 

 

 

 

Validity Indices 
 

 

For each data set, the performance of different metrics embedded in different clus- tering algorithms is 

averaged on 10 runs. The clustering performance is evaluated using three powerful and popular validity 

indices (i.e., Clustering Accuracy (CA) 

[120] [59], Adjusted Rand Index (ARI) [105] [108] [119] [52], and Normalised Mutual Information (NMI) 

[41] [34]). 

Clustering Performance on Ordinal and Mixed Cate- gorical Data 

To prove the superiority of the proposed UEBDM in clustering categorical data set- s with ordinal 

attributes, we embed UEBDM and all its counterparts (i.e., HDM, ADM, ABDM, CBDM, and JDM) into 

the four selected clustering algorithms (i.e., KM, WKM, EW, and WOC) and compare the clustering 

performance of them and the EBC clustering algorithm on the four ordinal data sets (i.e., Internship, Photo, 

Employee, and Lecturer) and the four mixed categorical data sets (i.e., Assistant, Fruit, Hayes, and 

Nursery).  In WKM, EW, and WOC clustering algorithms,  dis- tance between intra-attribute categories 

should be calculated to update the weights of attributes. Because JDM directly calculates distance between 

objects, and can- not calculate the distance between intra-attribute categories, JDM is not embedded into 

them for experiments. WOC with its original object-cluster similarity measure is also compared in this 

experiment. In addition, since EBC is not a distance-based algorithm, we directly compare it with the other 

algorithms without embedding metrics into it. 

Clustering performance in terms of CA, ARI, and NMI on the four ordinal data sets are compared in Table 

4.3 - 4.5. Hereinafter, experimental results highlighted by boldface and underline indicate the best and the 

second best results, respectively. 

 

It can be observed that the performance of UEBDM is the best on almost all the ordinal data sets no matter 

which clustering algorithm is utilized. Only its CA performance on Employee data set and NMI 

performance on Internship data set by using WKM is not the best.  But it is still the second best and the 
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gap between it and the best result is very tiny (i.e., 0.005 in terms of CA on Employee and 0.003 in terms 

of NMI on Internship).  Among all the compared metrics, only UEBDM has the mechanism to specially 

exploit order information of ordinal attributes. This is the reason why UEBDM is superior to the other 

existing metrics for ordinal data clustering. 

To further evaluate the performance of UEBDM on categorical data sets com- 

 
Table 4.3: Averaged CA on four ordinal data sets. 

 

Alg. Metric Internship Photo Employee Lecturer 

 UEBD

M 

0.582±0.06 0.614±0.05 0.208±0.01 0.370±0.03 

 HDM 0.562±0.06 0.514±0.07 0.190±0.01 0.344±0.03 

KM ADM 

ABDM 

0.533±0.01 

0.528±0.01 

0.503±0.04 

0.538±0.08 

0.208±0.01 

0.200±0.01 

0.313±0.03 

0.316±0.02 

 CBDM 0.507±0.01 0.541±0.06 0.198±0.01 0.308±0.03 

 JDM 0.558±0.02 0.486±0.07 0.189±0.01 0.331±0.04 

 UEBD

M 

0.571±0.04 0.535±0.09 0.195±0.01 0.364±0.03 

 HDM 0.559±0.05 0.486±0.09 0.192±0.01 0.339±0.04 

WK

M 

ADM 0.503±0.01 0.506±0.08 0.200±0.01 0.340±0.06 

 ABDM 0.517±0.03 0.512±0.07 0.200±0.01 0.332±0.06 

 CBDM 0.502±0.01 0.465±0.07 0.200±0.01 0.326±0.01 

 UEBD

M 

0.608±0.07 0.609±0.06 0.207±0.01 0.377±0.04 

 HDM 0.558±0.03 0.532±0.06 0.193±0.01 0.344±0.04 

EW ADM 0.529±0.02 0.530±0.06 0.205±0.01 0.317±0.03 

 ABDM 0.562±0.04 0.529±0.05 0.205±0.01 0.325±0.02 

 CBDM 0.516±0.01 0.544±0.07 0.202±0.01 0.310±0.02 

 UEBD

M 

0.640±0.12 0.586±0.08 0.203±0.01 0.362±0.03 

 HDM 0.563±0.05 0.542±0.10 0.187±0.01 0.332±0.06 

WOC ADM 

ABDM 

0.508±0.02 

0.500±0.00 

0.498±0.08 

0.515±0.08 

0.201±0.01 

0.198±0.01 

0.325±0.02 

0.337±0.01 

 CBDM 0.500±0.00 0.568±0.04 0.197±0.01 0.318±0.02 

 - 0.553±0.06 0.521±0.09 0.196±0.01 0.331±0.03 

EBC - 0.566±0.06 0.512±0.08 0.196±0.01 0.348±0.03 

 

 

posed of both ordinal and nominal attributes, clustering performance in terms of CA, ARI, and NMI on the 

four mixed categorical data sets are compared in Table 4.6 - 4.8. 
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Table 4.4: Averaged ARI on four ordinal data sets. 

 

Alg. Metric Internship Photo Employee Lecturer 

 UEBD

M 

0.024±0.04 0.245±0.08 0.026±0.00 0.068±0.03 

 HDM 0.004±0.05 0.096±0.07 0.009±0.01 0.045±0.01 

KM ADM 

ABDM 

-0.005±0.00 

-0.007±0.00 

0.117±0.06 

0.158±0.09 

0.018±0.00 

0.011±0.01 

0.036±0.01 

0.035±0.01 

 CBDM -0.014±0.00 0.117±0.06 0.014±0.00 0.033±0.02 

 JDM 0.004±0.01 0.071±0.06 0.013±0.00 0.042±0.02 

 UEBD

M 

0.011±0.02 0.108±0.09 0.018±0.01 0.055±0.03 

 HDM 0.008±0.03 0.072±0.09 0.013±0.00 0.042±0.03 

WK

M 

ADM -0.012±0.00 0.086±0.08 0.013±0.01 0.040±0.03 

 ABDM -0.010±0.00 0.100±0.10 0.010±0.01 0.037±0.05 

 CBDM -0.014±0.00 0.050±0.07 0.017±0.00 0.027±0.00 

 UEBD

M 

0.049±0.08 0.246±0.08 0.026±0.00 0.073±0.03 

 HDM 0.003±0.02 0.121±0.06 0.010±0.01 0.046±0.02 

EW ADM -0.006±0.01 0.141±0.06 0.016±0.00 0.038±0.02 

 ABDM 0.007±0.02 0.141±0.05 0.011±0.01 0.042±0.01 

 CBDM -0.012±0.00 0.115±0.06 0.015±0.00 0.035±0.01 

 UEBD

M 

0.109±0.12 0.171±0.09 0.024±0.01 0.060±0.01 

 HDM 0.008±0.03 0.131±0.09 0.012±0.00 0.046±0.04 

WOC ADM 

ABDM 

-0.010±0.00 

-0.011±0.00 

0.082±0.08 

0.113±0.07 

0.016±0.01 

0.012±0.00 

0.033±0.01 

0.037±0.00 

 CBDM -0.017±0.00 0.124±0.04 0.015±0.01 0.032±0.01 

 - 0.004±0.04 0.090±0.09 0.014±0.00 0.038±0.02 

EBC - 0.013±0.03 0.121±0.10 0.011±0.00 0.041±0.01 

 

 

According to the results, it can be found that UEBDM is still competitive for mixed categorical data 

clustering, because most of the best and the second best results are achieved by UEBDM-based clustering 

algorithms. However, superiority 

 
Table 4.5: Averaged NMI on four ordinal data sets. 
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Alg. Metric Internship Photo Employee Lecturer 

 UEBD

M 

0.018±0.02 0.281±0.09 0.083±0.01 0.092±0.04 

 HDM 0.015±0.02 0.126±0.06 0.048±0.01 0.070±0.02 

KM ADM 

ABDM 

0.005±0.00 

0.004±0.00 

0.170±0.05 

0.222±0.08 

0.062±0.01 

0.055±0.01 

0.055±0.01 

0.056±0.02 

 CBDM 0.006±0.00 0.157±0.04 0.052±0.01 0.059±0.02 

 JDM 0.014±0.01 0.099±0.06 0.056±0.01 0.074±0.03 

 UEBD

M 

0.015±0.02 0.162±0.11 0.065±0.02 0.085±0.04 

 HDM 0.018±0.01 0.128±0.12 0.055±0.01 0.071±0.04 

WK

M 

ADM 0.003±0.00 0.146±0.09 0.051±0.01 0.065±0.04 

 ABDM 0.001±0.00 0.157±0.10 0.050±0.01 0.068±0.06 

 CBDM 0.004±0.00 0.113±0.07 0.061±0.01 0.052±0.01 

 UEBD

M 

0.039±0.06 0.288±0.08 0.083±0.01 0.100±0.04 

 HDM 0.018±0.02 0.142±0.05 0.051±0.01 0.073±0.03 

EW ADM 0.005±0.00 0.194±0.06 0.058±0.01 0.056±0.02 

 ABDM 0.012±0.01 0.213±0.06 0.057±0.01 0.065±0.02 

 CBDM 0.008±0.00 0.158±0.05 0.057±0.01 0.061±0.01 

 UEBD

M 

0.068±0.08 0.223±0.10 0.077±0.01 0.088±0.02 

 HDM 0.016±0.01 0.196±0.11 0.052±0.01 0.072±0.05 

WOC ADM 

ABDM 

0.002±0.00 

0.001±0.00 

0.142±0.09 

0.192±0.07 

0.056±0.01 

0.060±0.00 

0.054±0.01 

0.059±0.01 

 CBDM 0.007±0.00 0.201±0.06 0.054±0.01 0.057±0.02 

 - 0.020±0.02 0.140±0.10 0.054±0.01 0.061±0.03 

EBC - 0.015±0.02 0.160±0.11 0.049±0.01 0.058±0.02 

 

 

of UEBDM in clustering mixed categorical data is not as significant as its superiority in clustering ordinal 

data. This is because that, all the other compared metrics are actually designed for nominal attributes. A 

data set with more nominal attributes 

 
Table 4.6: Averaged CA on four mixed categorical data sets. 

 

Alg. Metric Assistant Fruit Hayes Nursery 

 UEBD

M 

0.603±0.07 0.540±0.05 0.417±0.05 0.384±0.02 
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 HDM 0.538±0.07 0.456±0.04 0.386±0.03 0.360±0.04 

KM ADM 

ABDM 

0.556±0.10 

0.579±0.08 

0.516±0.03 

0.548±0.06 

0.381±0.03 

0.397±0.03 

- 

- 

 CBDM 0.586±0.06 0.527±0.05 0.389±0.05 - 

 JDM 0.526±0.06 0.451±0.06 0.380±0.02 0.329±0.03 

 UEBD

M 

0.539±0.11 0.504±0.03 0.497±0.06 0.429±0.11 

 HDM 0.525±0.10 0.449±0.03 0.439±0.05 0.387±0.05 

WK

M 

ADM 0.560±0.12 0.509±0.02 0.440±0.03 - 

 ABDM 0.596±0.15 0.499±0.01 0.359±0.04 - 

 CBDM 0.499±0.07 0.494±0.03 0.405±0.08 - 

 UEBD

M 

0.604±0.08 0.546±0.05 0.402±0.06 0.372±0.04 

 HDM 0.567±0.08 0.460±0.03 0.392±0.04 0.333±0.00 

EW ADM 0.565±0.09 0.516±0.03 0.379±0.03 - 

 ABDM 0.568±0.07 0.561±0.05 0.415±0.03 - 

 CBDM 0.581±0.06 0.525±0.05 0.386±0.05 - 

 UEBD

M 

0.628±0.10 0.521±0.05 0.403±0.07 0.365±0.03 

 HDM 0.508±0.10 0.496±0.05 0.379±0.05 0.360±0.04 

WOC ADM 

ABDM 

0.539±0.10 

0.531±0.08 

0.513±0.02 

0.537±0.05 

0.381±0.05 

0.413±0.05 

- 

- 

 CBDM 0.553±0.04 0.505±0.04 0.396±0.08 - 

 - 0.565±0.10 0.484±0.06 0.402±0.07 0.355±0.05 

EBC - 0.522±0.07 0.447±0.04 0.360±0.04 0.360±0.04 

 

 

will therefore shorten the performance gap between a nominal data distance metric and  UEBDM. In 

addition,  the  CA, ARI, and  NMI performance of  several metrics on Nursery data set are not reported 

because these metrics are incapable for the 

 

 

 

 

 
Table 4.7: Averaged ARI on four mixed categorical data sets. 

 
 

Alg. Metric Assistant Fruit Hayes Nursery 
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 UEBD

M 

0.210±0.07 0.293±0.05 0.012±0.04 0.068±0.02 

 HDM 0.111±0.07 0.195±0.07 -0.002±0.02 0.044±0.03 

KM ADM 

ABDM 

0.161±0.08 

0.196±0.09 

0.283±0.04 

0.319±0.06 

-0.003±0.01 

0.001±0.01 

- 

- 

 CBDM 0.168±0.06 0.283±0.04 0.002±0.02 - 

 JDM 0.102±0.05 0.176±0.07 -0.004±0.01 0.030±0.02 

 UEBD

M 

0.124±0.11 0.240±0.02 0.061±0.03 0.124±0.17 

 HDM 0.107±0.09 0.207±0.04 0.021±0.02 0.043±0.06 

WK

M 

ADM 0.145±0.14 0.253±0.02 0.025±0.01 - 

 ABDM 0.215±0.20 0.266±0.01 -0.009±0.01 - 

 CBDM 0.061±0.06 0.261±0.03 0.011±0.04 - 

 UEBD

M 

0.213±0.07 0.297±0.05 0.007±0.04 0.055±0.03 

 HDM 0.145±0.09 0.208±0.06 0.001±0.02 0.000±0.00 

EW ADM 0.172±0.06 0.283±0.04 -0.004±0.01 - 

 ABDM 0.186±0.07 0.329±0.06 0.011±0.01 - 

 CBDM 0.165±0.06 0.278±0.04 0.000±0.02 - 

 UEBD

M 

0.228±0.12 0.241±0.05 0.015±0.04 0.056±0.03 

 HDM 0.091±0.10 0.180±0.06 -0.001±0.02 0.044±0.03 

WOC ADM 

ABDM 

0.121±0.10 

0.141±0.10 

0.256±0.03 

0.282±0.03 

0.001±0.02 

0.011±0.02 

- 

- 

 CBDM 0.094±0.04 0.240±0.03 0.013±0.04 - 

 - 0.142±0.09 0.205±0.06 0.012±0.04 0.023±0.02 

EBC - 0.094±0.07 0.160±0.05 0.044±0.03 0.044±0.03 

 

 

distance measurement of a data set with independent attributes, like Nursery. Since UEBDM exploits more 

order information offered by the ordinal attributes of Nursery data set, UEBDM-based clustering 

algorithms perform better than the others. 

 
Table 4.8: Averaged NMI on four mixed categorical data sets. 

 

Alg. Metric Assistant Fruit Hayes Nursery 

 UEBD

M 

0.246±0.06 0.460±0.04 0.027±0.05 0.081±0.02 

 HDM 0.136±0.07 0.358±0.08 0.019±0.03 0.047±0.02 
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KM ADM 

ABDM 

0.209±0.08 

0.239±0.10 

0.446±0.04 

0.492±0.05 

0.011±0.01 

0.013±0.01 

- 

- 

 CBDM 0.190±0.05 0.447±0.04 0.017±0.03 - 

 JDM 0.122±0.07 0.322±0.09 0.012±0.01 0.036±0.03 

 UEBD

M 

0.163±0.13 0.428±0.01 0.065±0.03 0.156±0.23 

 HDM 0.147±0.12 0.383±0.03 0.032±0.03 0.052±0.08 

WK

M 

ADM 0.194±0.13 0.438±0.03 0.030±0.01 - 

 ABDM 0.256±0.18 0.458±0.02 0.005±0.01 - 

 CBDM 0.106±0.07 0.455±0.04 0.023±0.03 - 

 UEBD

M 

0.249±0.06 0.464±0.04 0.024±0.05 0.063±0.03 

 HDM 0.166±0.09 0.371±0.08 0.021±0.04 0.000±0.00 

EW ADM 0.218±0.07 0.446±0.04 0.010±0.01 - 

 ABDM 0.231±0.07 0.501±0.04 0.022±0.01 - 

 CBDM 0.185±0.06 0.441±0.05 0.013±0.02 - 

 UEBD

M 

0.267±0.11 0.419±0.04 0.026±0.03 0.073±0.05 

 HDM 0.131±0.12 0.346±0.08 0.011±0.02 0.047±0.02 

WOC ADM 

ABDM 

0.171±0.11 

0.197±0.09 

0.436±0.02 

0.455±0.03 

0.012±0.02 

0.019±0.01 

- 

- 

 CBDM 0.159±0.04 0.421±0.03 0.024±0.04 - 

 - 0.201±0.12 0.379±0.08 0.030±0.05 0.045±0.04 

EBC - 0.122±0.07 0.293±0.07 0.047±0.02 0.047±0.02 

 

 

It has been pointed out by [20] and [39] that distance metric is data sensitive, and cannot always outperform 

the others on different data sets. Therefore, although the clustering performance of  UEBDM  is not always  

the best  on the  above  men-
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tioned eight data sets, the above experimental results are still sufficient to prove the effectiveness and 

robustness of UEBDM in clustering analysis. 

According to the comparison of the clustering performance of different clustering algorithms, EBC 

performs slightly better than the traditional KM in general. The other three state-of-the-art algorithms (i.e., 

WKM, EW, and WOC) are obviously more powerful because the best clustering results of each distance 

metric on different data sets are usually produced by one of them. In the following experiments, all the 

metrics are embedded into WOC, which is the most comprehensive one among the state-of-the-art 

clustering algorithms. 

 

Clustering Performance on Nominal Data 
 
To illustrate that UEBDM is also competent in clustering nominal data, we compare the clustering 

performance of it with the other counterparts on the four nominal data sets (i.e., Pillow, Solar, Voting, and 

Tictac).  Corresponding clustering performance is shown in Figure 4.4. The clustering performance on 

Pillow, Solar, Voting, and Tictac data sets are demonstrated in row 1, row 2, row 3, and row 4 of Figure 

4.4, respectively. In this experiment, original object-cluster similarity measure of WOC (denoted by 

MWOC) is also compared for completeness. 

According to the results, we can find that even all the four data sets are nominal data, and all the other 

compared metrics are originally designed for nominal data, UEBDM is still competitive. More specifically, 

the performance of UEBDM is always ranked in the top 3, and it even outperforms the other counterparts 

on Solar and Tictac data sets. 

 

Evaluation of UEBDM and UEBDMnom 

 
The core idea of the proposed UEBDM is to exploit the order information of ordinal attributes for distance 

measurement. To verify the reasonableness of its order infor- mation exploiting mechanism, we compare 

the clustering performance of UEBDM with UEBDMnom, which is the nominal version of UEBDM. 

UEBDM treats ordinal and nominal attributes differently according to Eq. (4.3.7), while UEBDMnom treats
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Figure 4.4: Clustering performance on four nominal data sets. 

 

 
 

all types of attributes as nominal ones. If the performance of UEBDM outperform- s UEBDMnom, 

effectiveness of the order information exploiting mechanism can be proved. Since clustering performance 

of UEBDM and UEBDMnom on nominal data sets are identical, experimental results on the four nominal 

data sets are omitted in this experiment. Clustering performance of UEBDM and UEBDMnom on the eight 

data sets with ordinal attributes are compared in Figure 4.5 - 4.7.
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Figure 4.5: Averaged CA of UEBDM and UEBDMnom on four ordinal (row 1) and four mixed categorical (row 2) data sets . 

 

 

 

 

 

 
It can be observed from the histograms that UEBDM outperforms UEBDMnom on all the eight data sets. 

This indicates that UEBDM is effective in exploiting the order information of ordinal attributes for more 

accurate clustering analysis. Since UEBDMnom treats all the attributes as nominal ones, order information 

is completely ignored by it. Results of this experiment also once again proved the reasonableness of our 

core idea (i.e., ordinal attributes should be treated differently to exploit more valuable information for 

clustering analysis).
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Figure 4.6:  Averaged ARI of UEBDM and UEBDMnom on four ordinal (row 1) and four mixed categorical (row 2) data sets. 

 

Weighting Scheme Evaluation 
 
To illustrate the effectiveness of the attribute weighting scheme in UEBDM, we com- pare the clustering 

performance of UEBDM and its no-weighting version (denoted by UEBDMo) on all the twelve data sets. 

Their performance is compared in Table 

4.9 - 4.11. The best results are highlighted using boldface. 
 

It can be observed that the clustering performance of UEBDM with attribute weighting outperforms the 

version without attribute weighting on most of the data sets, which indicates that the attribute weighting 

scheme can effectively weight the contributions of different attributes during the distance measurement.
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Figure 4.7: Averaged NMI of UEBDM and UEBDMnom on four ordinal (row 1) and four mixed categorical (row 2) data sets. 

 

Table 4.9: Performance of UEBDM and UEBDMo on four ordinal data sets. 

 

Inde

x 

Metric Internship Photo Employee Lecturer 

 
CA 

UEBDM 

UEBDM
o 

0.640±0.12 

0.618±0.10 

0.586±0.08 

0.573±0.08 

0.203±0.01 

0.203±0.01 

0.362±0.03 

0.352±0.02 

 
ARI 

UEBDM 

UEBDM
o 

0.109±0.12 

0.073±0.09 

0.171±0.09 

0.166±0.09 

0.024±0.01 

0.024±0.01 

0.060±0.01 

0.057±0.01 

 
NMI 

UEBDM 

UEBDM
o 

0.068±0.08 

0.057±0.06 

0.223±0.10 

0.215±0.10 

0.077±0.01 

0.077±0.01 

0.088±0.02 

0.091±0.02 

  
 

 

  

  

 
UEBD

M 
UEBD

 

  

  

UEBD
M 

UEBD

 

  

UEBD
M 

UEBD
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M 
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M 
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Table 4.10: Performance of UEBDM and UEBDMo on four mixed categorical data sets. 
 

Inde

x 

Metric Assistant Fruit Hayes Nursery 

 
CA 

UEBDM 

UEBDM
o 

0.628±0.10 

0.622±0.09 

0.521±0.05 

0.512±0.04 

0.403±0.07 

0.402±0.06 

0.365±0.03 

0.360±0.03 

 
ARI 

UEBDM 

UEBDM
o 

0.228±0.12 

0.220±0.10 

0.241±0.05 

0.236±0.04 

0.015±0.04 

0.011±0.03 

0.056±0.03 

0.057±0.03 

 
NMI 

UEBDM 

UEBDM
o 

0.267±0.11 

0.270±0.10 

0.419±0.04 

0.416±0.04 

0.026±0.03 

0.023±0.03 

0.073±0.05 

0.070±0.04 

 
Table 4.11: Performance of UEBDM and UEBDMo on four nominal data sets. 

 

Inde

x 

Metric Pillow Solar Voting Tictac 

 
CA 

UEBDM 

UEBDM
o 

0.320±0.02 

0.316±0.02 

0.455±0.07 

0.425±0.03 

0.871±0.00 

0.871±0.00 

0.584±0.03 

0.577±0.03 

 
ARI 

UEBDM 

UEBDM
o 

0.016±0.02 

0.013±0.03 

0.217±0.10 

0.186±0.06 

0.548±0.00 

0.549±0.00 

0.029±0.02 

0.026±0.02 

 
NMI 

UEBDM 

UEBDM
o 

0.076±0.02 

0.074±0.02 

0.319±0.10 

0.289±0.06 

0.483±0.00 

0.483±0.00 

0.020±0.01 

0.018±0.01 

 

Distance Matrices Demonstration 
 
To intuitively observe if the distances produced by different metrics are consisten- t with the natural 

distance structure of the data sets, we compare the distance matrices produced by different metrics in this 

experiment. All the distance values are normalised into the interval [0,1], and the distance matrices are 

converted into grey-scale maps accordingly. Lighter pixels indicate larger distance and vice versa. 

Therefore, for the distance matrix of an ordinal attribute, pixels on the diagonal from left-top corner to the 

right-bottom corner should be pure black, while the pix- els locate towards the right-top and left-bottom 

corners should be lighter. Distance matrices of Assistant data set are demonstrated in Figure 4.8. “(O)” and 

“(N)”
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indicate ordinal and nominal attributes of Assistant data set, respectively. Distance matrices produced by 

UEBDM, HDM, ADM, ABDM, and CBDM are demonstrated in row 1, row 2,  row 3,  row 4,  and row 5 

of Figure 4.8,  respectively.  JDM metric is not compared in this experiment because it cannot directly 

compute the distance between intra-attribute categories. 

Att. 1 (O) Att. 2 (O) Att. 3 (N) Att. 4 (N) 
 

 

 

 

 

 

Figure 4.8: Distance matrices produced for Assistant data set. 
 

 
It can be observed that only the distance matrices produced by UEBDM are com-
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pletely consistent with the order structure of the two ordinal attributes. Since HDM assigns distances “0” 

and “1” to all the pairs of identical and different categories, it is incapable to indicate the distance structures 

of ordinal attributes. The distance matrices produced by ADM, ABDM, and CBDM can roughly indicate 

the distance structures of the two ordinal attributes, but a certain amount of distances produced by them 

are still disordered (i.e., the pixels are not gradually lighter towards the right-top and left-bottom corners 

from the diagonal). This is also the reason why their performance is superior to HDM, but is inferior to 

UEBDM as shown in the experimental results in Section 4.5.2. For the other two nominal attributes, it is 

reasonable that their distance matrices produced by all the compared metrics are unordered. 

 

4.6 Summary 
 
In this chapter, we have proposed a distance metric for categorical data clustering, called UEBDM, from 

the perspective of information entropy. In contrast with the existing categorical data metrics, the proposed 

one treats ordinal attributes and nominal attributes differently, but unifies the concept of the distance and 

impor- tance of them, which avoids information loss during the distance measurement. For ordinal 

attributes, order information is taken into account for the distance measure- ment while for nominal 

attributes, statistical information is exploited. Since the distance concepts of ordinal and nominal attributes 

are unified, it is not necessary to separately compute the distances on ordinal and nominal attributes, and 

then weight and combine them to produce the final distances. Moreover, the proposed metric is easy to use 

and non-parametric, which can be easily applied for the clus- tering analysis of different types of 

categorical data. Experiments have shown that the proposed UEBDM metric outperforms its counterparts 

on different real and benchmark categorical data sets.
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Chapter 5 

 

Fast Hierarchical Clustering of Categorical Data 

 

Introduction 
 
Clustering methods can be classified into two types [67] [68] [100]: partitional and hierarchical [96] [111]. 

Partitional clustering separates a set of data objects into a certain number of clusters to minimise the intra -

cluster distance and maximise the inter-cluster distance, while hierarchical clustering views each data 

object as an individual cluster and builds a nested hierarchy by gradually merging the current most-similar 

pair of them. Compared to partitional clustering, hierarchical cluster- ing offers more information regarding 

the distribution of the data set. Often, the hierarchy is visualized using dendrograms, which can be ‘cut’ at 

any level to produce the desired number of clusters. Due to the rich information it offers, hierarchical 

clustering has been extensively applied to different fields (e.g., data analysis, knowl- edge discovery, 

pattern recognition, image processing, bio-informatics, and so on [53] [82] [24] [86] [43]). 

In general, a traditional hierarchical clustering framework can be summarised as follows: 

Step 1. Each single data object is assigned to an individual cluster. 

 
Step 2. The most-similar pair of clusters is found according to a certain linkage strategy and 

distance/similarity metric. 

 
Step 3. The most-similar pair of clusters is merged to form a new cluster. 

 
Step 4. Step 2 and Step 3 are repeated until only one cluster exists or a particular stop condition is satisfied.  

In the above, the commonly used linkage strategies are: single-linkage(SL), average- linkage(AL), and 

complete-linkage(CL), which compute the maximum, average, and minimum similarity between the data 

objects of two clusters, respectively [111] [100]. The Traditional hierarchical clustering frameworks with 

SL, AL and CL linkages are abbreviated as TSL, TAL and TCL hereinafter. Although these three 

traditional frameworks are parameterless and simple to use, they have three major problems: 

Their performance is sensitive to different data distribution types. TSL “has a tendency to produce clusters 

that are straggly or elongated” [67]; TCL and TAL tend to produce compact and spherical-shaped clusters, 

respectively. 

All three only consider the local distance between pairs of data objects but ignore the global data structure 

during clustering [68]. 

Their time complexity is O(N 2), which limits their applications, particularly for large-scale data and 

streaming data. 

To tackle the above three problems, various types of hierarchical clustering ap- proaches have been 

proposed in the literature. To solve the first two problems, potential-based hierarchical clustering 

approaches based on potential theory [113] have been proposed (e.g., see [91] and [89]), where the potential 

field is utilized to measure the similarity between data objects. Because this type of approach merges the 

data objects by considering both their global distribution (i.e., potential fields of data objects) and local 

relationship (i.e., exact distance between neighbors), they show robustness when processing data sets with 
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different data distribution types and overlapped clusters. Nevertheless, their time complexity is still O(N 
2). To cope with the third problem, locality-sensitive hashing-based hierarchical clustering [77] has been 

proposed with a time complexity of O(Nb) to speed up the closest-pair  search procedure of TSL, where b 

is the bucket-size. However, the setting of param- eters for this approach is non-trivial, and its clustering 

accuracy is generally lower than that of TSL. Furthermore, hierarchical clustering based on Random 

Projec- tion (RP) [109] with time complexity of O(N (log N )2) has also been proposed. It accelerates TSL 

and TAL by iteratively projecting data objects into different lines for splitting. In this manner, the data set 

is partitioned into small subsets, and the similarity can be measured locally to reduce computation cost. 

However, RP-based approaches will inherit the drawbacks of TSL and TAL as discussed before due to 

approximation. To simultaneously tackle the above-mentioned three problems, summarisation-based 

hierarchical clustering frameworks have also been proposed in the literature. Data bubble-based 

hierarchical clustering and its variants [22] [21] 

[107] [141] [98] [138] [137] have been proposed to summarise the data objects by randomly initializing a 

set of seed points to incorporate nearby data objects into groups (data bubbles). The hierarchical clustering 

is only performed on the bubbles to avoid the similarity measurement for a large number of original data 

objects. However, the performance of data bubble and most of its variants is sensitive to the compression 

rate and the initialization of seed points. Another common short- coming of the summarisation-based 

approaches is that the hierarchical relationship between data objects is lost due to summarisation. In 

addition, none of the above- mentioned approaches are fundamentally designed for streaming data. 

Specifically, the entire clustering process should be executed to update the hierarchy structure for each new 

input, which may sharply increase the computation cost. To solve this problem, the Incremental 

Hierarchical Clustering (IHC) approach [121] has been proposed. It saves a large amount of computation 

cost by dynamically and locally restructuring the inhomogeneous regions of the present hierarchy structure. 

There- fore, this approach performs hierarchical clustering with a time complexity as low as O(N log N ) 

when the hierarchy structure is completely balanced. However, the constructed hierarchy is not guaranteed 

to be balanced, which makes its worst-case time complexity still  O(N 2).   Furthermore,  because IHC is 

an approximation of TSL, it will also have bias for certain data distribution types. 

 

In this chapter, we concentrate on: 1) addressing with the three above-mentioned problems of traditional 

hierarchical clustering frameworks, 2) proposing a new hier- archical clustering framework for fast 

categorical data hierarchical clustering, and 3) proposing an incremental hierarchical clustering framework 

for streaming categorical data hierarchical clustering. We first propose a Growing Multi-layer Topology 

Train- ing (GMTT) algorithm to dynamically partition the data and learn the relationship between the 

partitioned clusters in terms of their similarity levels. In the literature, topology training has been widely 

utilized for partitional clustering [112] [49] [48] 

[133] [16] [125] [106]. However, to the best of our knowledge, it has yet to be utilized for hierarchical 

clustering. We make the topology grow by creating new layers with new object groups based on the existing 

object groups if the existing ones cannot represent the corresponding data objects well. The growth is 

continued until each leaf node can appropriately represent its child object group.  As a result, the GMT - T 

algorithm assigns more layers and object groups to finely describe the crowded region of data sets (i.e., a 

group of many similar data objects). With the topology, the merging steps of hierarchical clustering are 

performed under its guidance. More- over, similarity between data objects is only measured within their 

groups, which can significantly reduce the computation cost. In addition, an incremental version of the 

GMTT framework, denoted as the IGMTT framework, is also presented to cope with streaming data.   In 

the IGMTT framework,  each new input can easily find its nearest neighbor by searching the topology from 

top to bottom. After that, both the topology and hierarchy are locally updated to recover the influence 

caused by the input. Both the GMTT and the IGMTT frameworks have competent perfor- mance in terms 

of clustering quality and time complexity. Their effectiveness and efficiency have been empirically 

investigated. The main contributions of this chapter are three-fold: 

 
The GMTT algorithm is proposed for data partition and representation. The topology constructed 

accordingly can appropriately represent the data objects. The training is automatic without prior knowledge 

of the data set (e.g., number of clusters, proper number of object groups, etc). 

http://www.ijrti.org/


                              © 2024 IJNRD | Volume 9, Issue 1 January 2024 | ISSN: 2456-4184 | IJNRD.ORG 

  

  

IJNRDTH00101 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 
365 

A fast hierarchical clustering framework has been proposed based on GMTT. According to the topology 

trained through GMTT, distance measurement is locally performed to reduce computation cost. Merging 

is also guided by the topology to make the constructed hierarchy able to distinguish different clusters.  

An incremental version of the GMTT framework (i.e., the IGMTT framework) is provided for streaming 

data hierarchical clustering. Similar to the GMTT framework, it is also fast and accurate. 

The rest of this chapter is organised as follows. Section 5.2 introduces the com- mon notations and basic 

concepts in this chapter. In Section 5.3, details regarding the proposed GMTT framework and IGMTT 

framework are presented. In Section 5.4, time complexity analysis of GMTT and IGMTT frameworks are 

provided. Then, Section 5.5 presents the experimental results for various benchmark and synthetic data 

sets. Lastly, we summarise this chapter in Section 5.6. 

 

Preliminaries 

 
In this chapter, the basic settings and notations about data object, clusters, at- tribute, category, and distance 

are all the same as Chapter 2 - 4. Thus, we only introduce the basic notations about hierarchy and topology, 

which are the two most important concepts in this chapter. 

 
Hierarchy 

 
Given a data set X with N data objects. The hierarchical clustering results of X is a hierarchy H, which is 

a tree structure linking all the objects using branches, and representing data objects that are similar in 

different resolutions by nodes. In a hierarchy H, an element H(l, p, h) is a node in the lth layer with the 

sequence number of its parent node p, and its own sequence number h. The sequence numbers of all the 

nodes in a hierarchy are unique, and the root node is H(1, 0, 1). Each non-leaf node in H has a certain 

number of child nodes. If the number of child nodes is fixed 

for the non-leaf nodes, we call the number of child nodes branching factor, which is denoted by B.  Each 

leaf node is a specific data objects, and the total number of leaf nodes in H equals to N . 

 

Topology 
 

 
Topology T of X has similar structure as the hierarchy H of X. The difference between T and H lies in the 

way of constructing them and the meaning of their nodes. H is constructed by hierarchical clustering 

algorithms, which gradually merge the most similar pair of clusters of X. That is, linking the most similar 

clusters (each cluster indicates a single object at the beginning of the merging) using branches and represent 

them using a node. T is a structure indicating the similarity levels of object groups of X, and does not care 

about the detailed similarity between data objects. Therefore, the leaf nodes of T are the parent nodes of 

object groups. 

 

 

 
 

The Proposed Method 
  
This section will propose a topology training algorithm that can gradually and automatically make a 

topology grow to better represent the similarity relationship of object groups. Subsequently, a framework 

based on it is presented to achieve fast and accurate categorical data hierarchical clustering. Furthermore, 

an incremental version of the framework is also presented for streaming categorical data hierarchical 

clustering. 
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GMTT: Growing Multi-layer Topology Training 
 
The GMTT algorithm is presented, which partitions and represents the data set using a topology. At the 

beginning, there is only one object group (i.e., the whole data set X). Obviously, a topology with only one 

node indicating this group cannot represent the objects in the data set well, especially for complex real -

world data sets. To better represent the data objects, a number of new object groups are initialized and 

trained, and are indicated by the child nodes of the original one in the topology. 

For each of the new nodes, growing training is performed repeatedly until all of the existing data groups 

represent their subsets well. It is expected that more groups are assigned to the regions of the data set that 

are hard to represent well. There are many criteria for defining a region that is hard to represent well (e.g., 

inhomogeneous data objects, crowded data objects, border region of benchmark clusters, overlapped data 

objects, etc).   From the perspective of hierarchical clustering, the merging of data objects happens in the 

region with crowded data objects at the beginning and gradually moves to the regions that with not that 

crowded data objects. Obviously, the merging of the regions with crowded data objects dominates the 

processing time. According to this information, we choose to better represent the crowded region via the 

GMTT algorithm. Consequently, the structure of the trained topology is similar to the desired hierarchy, 

and thus the topology can offer better guidance to accelerate the hierarchical clustering procedures.  

Specifically, given  a  data  set  X  =  {x1, x2, ..., xN } with  N  data  objects,  the 

topology T is trained by randomly inputting data objects from X to create new nodes. Each node in T is 

expressed in the form of vl,p,h, where l indicates the layer of the node in T, p is the sequence number of its 

parent node, and h is its own sequence number. For simplicity, vl,p,h can be denoted as vh if the information 

of its layer and parent node is not considered in some cases. The nodes in the topology does not have 

physical meaning. They are just used to indicate the layers and relationship of the object groups. The 

corresponding object group of a node vl,p,h is expressed as Xh, which contains Nh data objects belonging to 

X. During the training, we need to decide if the topology should grow or not. In other words, we should 

decide if a node vl,p,h can represent its corresponding subset Xh well and when to make the topology grow 

by creating B child nodes for vl,p,h in Layer l + 1. Here, B is a constant referred to as the branching factor, 

and it controls the number of child nodes created for each node. The nodes that cannot represent their 

subset well are defined as coarse nodes. The definitions of full-coarse node and semi-coarse node are given 

as follows. 

 
Definition 1. Let vl,p,h be a leaf node with an Nh-object corresponding group. Given
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ir s l+1,h,j 

l+1,h,j 

s 

the branching factor B and the upper limitation UL, the node vl,p,h is a full-coarse node if and only if Nh > 

UL · (B − 1). 

Definition 2. Let vl,p,h be a leaf node with an Nh-object corresponding group. Given the branching factor 

B and the upper limitation UL, the node vl,p,h is a semi-coarse node if and only if UL < Nh ≤ UL · (B − 1). 

In the above two definitions, UL controls the upper bound of the size Nh of vl,p,h’s corresponding object 

group. For a full-coarse node, B new child nodes should be created by training B new sub-groups for Xh. 

For a semi-coarse node, Bs new child nodes should be created in the same manner, where Bs is the branching 

factor of a semi-coarse node. During the training, the value of Bs will dynamically change according to the 

size of the semi-coarse node’s corresponding object group. The 

value of Bs is decided by

Bs = Nh 

[ UL 

|. (5.3.1)

Supposing that vl,p,h is a full-coarse node, B child nodes (i.e., vl+1,h,t+1, vl+1,h,t+2, 

..., vl+1,h,t+B) should be created, where t is the total number of nodes before the creation of B new child 

nodes.   After the creation,  the value of t is updated by t(new) = t(old) + B, and then, the corresponding object 

groups are formed by training the objects in Xh. Before the training, all the objects in Xh are randomly 

assigned to one of the B groups. Then, the training is performed by repeatedly assigning each data object 

in Xh to its closest group until convergence of the training. For a data object xh,i, its closest group is found 

by 

w = argmin Dist(xh,i, vl+1,h,j), (5.3.2) 

j 
 

with t − B + 1 ≤ j ≤ t.  Dist(xh,i, vl+1,h,j) measures the distance between object xh,i 

and the group indicated by node vl+1,h,j.  Distance Dist(xh,i, vl+1,h,j) is defined by 
 

d vr

Dist(xh,i, vl+1,h,j) = 
Σ Σ 

Dist(or , or) · ur (s), (5.3.3)

r l+1,h,j records the occurrence probability of each category 

belonging to Ar

in the object group indicated by node vl+1,h,j, and ur (s) is the occurrence prob-

ability of or in the object group indicated by vl+1,h,j. We adopt this object-group

where u 

r=1 s=1 
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Algorithm 8 Topology Training 
 

1: Input: Data set Xh and branching factor B (Bs). 

2: Output: B (Bs) new child nodes and object groups. 

3: Create B (Bs) new nodes as the child nodes of the detect coarse-node; 

4: Randomly assigning the data objects of the group indicated by the detected coarse-node into the B (Bs) 

new groups; 

5: while Convergence = false do 

6: Randomly select a data object xh,i from Xh; 

7: Find its closest group among the B (Bs) new groups according to Eq. (5.3.2); 

8: end while 
 

 

distance instead of the object-mode distance adopted by k-modes [63] because the statistics of the group 

more finely describe the intra-group objects than the selected representative mode of the group. Therefore, 

training the new groups using the object-group distance can make each group containing more similar 

objects, and thus the constructed topology can better represent the data set. The new object groups are 

iteratively trained through Eq. (5.3.2) and (5.3.3) until convergence. The training procedure can be 

summarised as Algorithm 8. 

After B new child nodes are created and the corresponding B new groups are trained for Xh, X is more 

precisely represented by the topology T because each new group indicated by the corresponding node 

contains a smaller number of more similar objects. Here, we also define the concept of fine node to judge 

when to stop the growth of the topology. 

Definition 3. Let vl,p,h be a child node with an  Nh-object  corresponding  group. Given the upper limitation 

UL, the node vl,p,h is a fine node if and only if Nh ≤ UL. 

When all the leaf nodes in the topology are judged as fine nodes, it means that all the groups indicated by 

the leaf nodes are fine enough for describing the data set, and the growth of the topology is thus stopped. 

The entire GMTT algorithm is summarised as Algorithm 9. 

An example of the topology trained through GMTT algorithm is illustrated in Figure 5.1, where a 3-layer 

topology is trained for a 20-object data set with B = 3 
 

 

Algorithm 9 GMTT Algorithm 
 

1: Input: Data set X, upper limitation UL, and branching factor B. 

2: Output: Topology T. 

3: Initialize a  node  v1,0,1  indicating the  whole X; 4: while full-coarse or semi-coarse nodes exist do 5:

 Find a coarse node vl,p,h in T; 

6: Generate B (Bs) new nodes through Algorithm 8; 

7: end while 
 

 
 

Node Information 

Node Subset Size 

v1,0,1 
X1 20 

 

Layer 1 

v1,0,

 

Layer 2 

v2,1,

 
v2,1,

 v2,1,

 Layer 3 

v 
v3,4,

 
3,2,
6 

v3,2,

 

v3,2,

 
v3,4,
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v2,1,2 
X2 9 

v2,1,3 
X3 4 

v2,1,4 
X4 7 

v3,2,5 
X5 3 

v3,2,6 
X6 2 

v3,2,7 
X7 4 

v3,4,8 
X8 4 

v3,4,9 
X9 3 

 

 

Figure 5.1: Topology trained for a 20-objects data set. 

 
 

and UL = 4. In the topology shown in this figure, Layer 1 contains only one top node v1,0,1 with the 

corresponding object group X1, where X1 = X. Because N1 > UL, B child nodes are created and B new 

groups are trained in the next layer using data objects from X1. One of the branches stops its growth with 

fine node v2,1,3 in Layer 2 because N3 ≤ UL. Finally, the topology stops its growth in Layer 3 because all of 

the leaf nodes are judged as fine nodes in Layer 3, which means that the entire data set can be represented 

well by the present topology. It can be seen from the figure that the union of all the groups indicated by the 

leaf nodes is the entire data set (i.e., X = X3 ∪ X5 ∪ X6 ∪ X7 ∪ X8 ∪ X9). 

Here, we also discuss the two reasons about why we design the GMTT algorithm to gradually train a multi-

layer topology instead of directly initializing enough nodes in one layer and training their indicated object 

groups: 

For a topology trained through GMTT, the number of corresponding data objects of each leaf node will be 

smaller than UL due to the growing multi- layer topology training. This guarantees that crowded regions of 

the data set are represented by more nodes, and sparse regions are represented by less nodes. If we directly 

initialize a sufficiently large number of object groups, groups will be trapped locally and cannot represent 

the data set well. In Figure 5.2, we use a numerical 2-d synthetic data set to illustrate the difference between 

the nodes trained through GMTT, and the nodes trained in just one- layer.   Although we focus on 

categorical data clustering,  this example can still intuitively demonstrate the difference between the two 

topology training strategies. Obviously, the nodes of the topology trained through GMTT can better fit the 

distribution of the data objects. In the one-layer case, it is possible that a very sparse region with a small 

number of objects is forced to be partitioned and represented by several nodes, because too many nodes 

are randomly initialized for indicating the object groups in a sparse region, and the groups are locally 

trapped due to the single time initialization. Therefore, GMTT is more proper for data set representation.  

The structure of the topology trained through GMTT is consistent with the expected hierarchy of 

hierarchical clustering that the nodes in deeper layers indicate a more crowded region of data objects, and 

vice versa. Moreover, links in the topology indicate the affiliation between the nodes and their child nodes, 

which is similar to the links in the expected hierarchy. These properties make the topology suitable for 

guiding and accelerating the hierarchical clustering. In contrast,   if all the object groups are directly 

initialized and trained in just one layer, their corresponding nodes in the topology cannot offer the desired 

affiliation information, and thus cannot be utilized for the accelerating of hierarchical clustering.  

Although the trained topology has similar structure as the desired hierarchy, they still have two significant 

differences: 
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The leaf nodes in the topology indicate groups of objects, while the leaf nodes 
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Results of GMTT training Results of one-layer training 
 

Figure 5.2: Comparison of GMTT and one-layer training. of a hierarchy are specific data objects. 

The links in the topology connecting two nodes only indicate the affiliation 

between their indicated object groups, while the links of a hierarchy indicate the nested similarity 

relationship among the object clusters. 
 

Therefore, how to efficiently and effectively obtain the desired hierarchy through further processing the 

topology will be discussed in Section 5.3.2. 
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Fast Hierarchical Clustering Based on GMTT 
 
From the perspective of hierarchical clustering, the constructed hierarchy should satisfy two properties: 

homogeneity and monotonicity [96]. Suppose we cut a den- drogram horizontally to produce a certain 

number of clusters, homogeneity is the property that the similarity between intra-cluster objects is higher 

than that of the inter-cluster objects. Monotonicity is the property that the clusters produced by cutting the 

hierarchy in a layer close to the bottom are more homogeneous than the clusters produced by cutting the 

hierarchy in a layer close to the top. In the topolo- gy obtained through GMTT, because the object group 

of each node is a local part of the object group indicated by their parent node, the topology roughly satisfies 

the property of homogeneity. The monotonicity is also satisfied among the nodes that are lineal 

consanguinity of each other, where the concept of lineal consanguinity is 

 
 

Figure 5.3: Data objects in the subsets are linked to form sub-MSTs. 

 

defined in Definition 4. 
 

Definition 4. Let vh be a node in T. If another node vm in T can be found by searching T in a certain 

direction (bottom-up or top-down) from vh, then vh and vm are said to be lineal consanguinity of each other. 

For instance, v3,2,5 and v1,0,1 shown in Figure 5.1 are lineal consanguinity of each other, but v3,2,5 and v2,1,3 

are not. Even node v2,1,3 is in layer 2, its homogeneity is not guaranteed to be lower than that of node v3,2,5 

in layer 3 because the object group indicated by v3,2,5 is not a local part of the object group indicated by 

v2,1,3. 

To merge all of the data objects according to the topology, data objects belonging to the groups indicated 

by leaf nodes, and the groups themselves, should be merged according to a certain linkage strategy. The 

merging procedures should also comply with the lineal consanguinity relationship between topology nodes 

to exploit the homogeneity and monotonicity of the topology. We introduce how to efficiently merge the 

data objects according to the topology to form a complete hierarchy in the following. 

For an object group Xh indicated by a leaf node vh, a certain linkage strategy (e.g., SL, AL, and CL) and a 

certain distance/similarity metric (e.g., HDM, ADM, ABDM, CBDM, and UEBDM) should be utilized to 

link these objects to form a sub-Minimal Spanning Tree (MST) for Xh. In Figure 5.3, we take the same 

data set and topology shown in Figure 5.1 as an example to show the formed sub-MSTs. After the sub-

MSTs are formed, they should be linked to form a complete MST. Therefore, nodes in the same layer 

sharing the same parent node are also linked to form sub-MSTs according to a certain linkage strategy and 

metric. It is commonly recognized that hierarchical clustering result can be expressed in the form of an 
 

 

Algorithm 10 GMTT Hierarchical Clustering Framework 
 

1: Input: Data set X, upper limitation UL and branching factor B. 

2: Output: Minimal Spanning Tree MST. 

3: Train a topology T through Algorithm 9; 

4: Form sub-MSTs for the objects in the group indicated by each leaf node; 

5: Form sub-MSTs for the child nodes of each parent node and obtain the complete MST. 
 

MST instead of a hierarchy because they contain the same information and can be converted to each other 

easily [55] [67] [96]. Therefore, the hierarchical clustering task of our GMTT hierarchical clustering 

framework is to form an  MST  for  X. When sub-MSTs are formed for: 1) all of the object groups of leaf 
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p(x8,  x9) 

nodes, and 2) all of the nodes sharing the same parent node, a complete MST linking all of the data objects 

has been formed. The entire GMTT hierarchical clustering framework is summarised as Algorithm 10. 

Here, we also introduce how to transform the complete MST into a hierarchy in three stages:  

Stage 1. Only the data objects belonging to the groups indicated by the leaf n- odes are considered for 

merging. Specifically, for a leaf node vh, all the pairs of data objects in Xh that are linked by the 

corresponding sub-MST are stacked together according to the ascending order of the lengths of their linking 

edges. The stacked pairs form a Local Merging Queue (LMQ) qh, and a corresponding Linking Distance 

Queue (LDQ) dh.  After the LMQs 

{q1, q2, ..., qul } and  the  corresponding  LDQs  {d1, d2, ..., dul } are  formed  for 

all the ul leaf nodes, a candidate set C = {q1(1), q2(1), ..., qul (1)} containing the pairs with shortest linking 

edges in each LMQ, and the corresponding dis- tance set D = {d1(1), d2(1), ..., dul (1)} is formed. Then, the 

most-similar pair qg(1) that should be merged firstly is found through 

 

g = argmin D(i). (5.3.4) 

1≤i≤ul 

After the merging, qg(1) is removed from both set C and qg, and dg(1) is 
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Figure 5.4: Merging procedure demonstration of Stage 1. 

 
 

removed from both set D and dg. Subsequently, the current most-similar pair in qg  is popped up into C, 

and the corresponding linking distance is popped up into D. The above operations are iteratively performed 

until an All-Leaf- Parent (ALP) node in T becomes an All-Candidate-Parent (ACP) node. For a non-leaf 
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node, if all its child nodes are leaf nodes, it is an ALP. When all the data objects belonging to the groups 

of ALP’s child nodes are merged together within their groups, the ALP becomes an ACP. Figure 5.4 

illustrates the merging procedure of Stage 1 using the 20-object data set demonstrated in Figure 5.3 as an 

example. It can be seen that six LMQs {q1, q2, ..., q6} are formed according to the corresponding sub-

MSTs in Figure 5.3. At the beginning, q3(1) = p(x8, x9) is the most similar pair among the candidates in C 

(the candidate set is shown by red the dashed frame in Figure 5.4). Therefore, x8 and x9 are merged firstly. 

Figure 5.5 shows the corresponding hierarchy of the example in Figure 5.3. After merging the data objects 

as shown in Figure 5.5, an ALP v2,1,2 becomes an ACP. Then, both the object groups indicated by the child 

nodes of ACP, and data objects belong to the groups indicated by all the existing leaf nodes should be 

considered for merging in Stage 2. 

 

Linkage Between Data Points 

 

 

 
 

 

 

 

 
 

 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 

 

Figure 5.5: Hierarchy demonstration for Stage 1. 

 
 

Stage 2. Because the topology only guarantees the monotonicity of the object groups that are lineal 

consanguinity of each other, lengths of the linking edges between the groups indicated by ACP’s leaf nodes 

are not guaranteed to be larger than the edges linking unmerged data objects belonging to the groups of all 

the existing leaf nodes. Therefore, pairs of object groups indicated by ACPs’ leaf nodes are viewed as 

merging candidates and should be considered together with the data object candidates for merging in Stage 

2. Suppose that vh is the only ACP at the beginning of Stage 2, pairs of the groups indicated by its leaf 

nodes should also be stacked into the candidate set C for merging. Because data objects belonging to the 

groups indicated by ALP’s child nodes continue to be merged, more ALPs will become ACPs in Stage 2. 

Because the groups indicated by ACPs’ child nodes also continue to be merged in Stage 2, when all the 

groups indicated by the child nodes of an ACP are merged together, this ACP becomes a leaf node. In 

Stage 2, the merging of leaf nodes and data objects is performed repeatedly until all of the ALPs becomes 

ACPs. Figure 5.6 demonstrates the topology at the end of Stage 2. The corresponding hierarchy is presented 

in Figure 5.7. 

 
Stage 3. After Stage 2, the candidate set C only contains pairs of object groups indicated by nodes. These 

groups are finally merged according to the lengths of the linking edges of the corresponding sub-MSTs 

until all of the object groups in the candidate set are merged. The final hierarchy of the 20-object example 

formed after Stage 3 is shown in Figure 5.8. 
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Figure 5.6: Topology at the end of Stage 2. 
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Figure 5.7: Hierarchy at the end of Stage 2. 

 

 
The transformation algorithm is summarised as Algorithm 11. 
 

In the GMTT framework, traditional linkages (i.e., SL, AL, and CL) can be adopted for hierarchical 

clustering. Here, we offer the detailed discussions about how to combine them with the GMTT framework: 

1) SL can be directly used to form sub-MSTs for hierarchical clustering according to Algorithm 11, 2) AL 

merges data objects according to the average distance between the members of clusters and cannot produce 

sub-MSTs as shown in Figure 5.3. Thus, AL should be adopted to directly produce the candidate set C 

without forming LMQs. Whenever a pair of objects (data objects or object groups) is selected from C for 

merging, AL will 
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Figure 5.8: Hierarchy at the end of Stage 3. 

 
 

produce a new candidate among the objects with the same parent node as the merged ones, and 3) CL can 

be used in the same manner as SL. When using these three linkages to merge two object groups, two modes 

are firstly selected from the two groups in the same way as k-modes clustering algorithm [63], and then 

the selected modes are treated as data objects for merging. Since SL is the simplest linkage with lower 

computation cost, we choose to adopt SL for the MST construction of the proposed GMTT framework.  

 
 

Incremental Hierarchical Clustering Based on 
GMTT 

 
Streaming data processing is a significant challenge for hierarchical clustering ap- proaches [99] [117] 

[114]. To make the GMTT framework feasible for the processing of streaming data, we present its 

incremental version. We firstly train a coarse topology through GMTT using the former part of inputs. 

After that, for each new input, the coarse topology is dynamically updated through the incremental version 

of GMTT, which is abbreviated as IGMTT. Specifically, for a streaming data set
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Algorithm 11 MST-Hierarchy Transformation 
 

1: Input: MST obtained through Algorithm 10, topology T trained through Al- gorithm 9. 

2: Output: Hierarchy H. 

3: Generate LMQs and LDQs for the object group indicated by each leaf node; 

4: Generate merging candidates C; 

5: while C is not empty do 

6: if new ACP occurs then 

7: Generate LMQ and LDQ for the ACP; 

8: Update C according to the LMQ and LDQ of the new ACP; 

9: end if 

10: Merge the closest pair in C; 

11: Remove the merged pair from C, and remove the corresponding linking dis- tance from D; 

12: if the LMQ of the merged pair is not empty then 

13: Move the present closest pair from the LMQ to C, and move the corre- sponding linking distance from 

LDQ to D; 

14: end if 

15: end while 
 

 

 
X with N data objects, the coarse topology is trained through the GMTT algo- rithm using the former R 

streaming inputs of X with the upper limitation UL and branching factor B. After that, for each new input 

xi, its most similar object group indicated by vh is found by searching T from top to bottom according to 

the lineal consanguinity relationship. Object group Xh indicated by vh incorporates the new 

input,  and  the size Nh  of Xh  is updated  by N (new)  =  N (old) + 1.   If vh  is judged 
 

as a coarse node, the updating is triggered to update T by creating B or Bs new child nodes for vh, and 

training B or Bs new object groups. To make the IGMTT algorithm more efficient, we choose a reasonable 

and efficient updating trigger mech- anism. That is, the updating is only triggered when a full-coarse node 

is detected. Otherwise, the algorithm will directly process the next input. 

Specifically, if a node vh becomes a full-coarse node after adopting a new input xi, we should update the  

mode of  the  object group  indicated by vh.  If the  mode is changed after updating, all the sub-MSTs and 

modes of the groups indicated by the nodes that are lineal consanguinity of vh should be updated. Then, B 

new child nodes are created for vh, and Xh is partitioned by training B new object groups. After that, sub-

MSTs of each of the new groups indicated by the new child nodes, and sub-MST linking the new child 

nodes are produced in the same way of GMTT. 

Since most of the existing categorical data distance metrics define distances based on the statistics of the 

whole data set, the defined distances should also be dynami- cally updated for streaming data. Therefore, 

the same updating trigger mechanism is adopted for the updating of the distance matrices of each attribute. 

Specifically, when a full-coarse node is detected, statistics of the whole data set is updated by counting the 

new inputs. Then, for each attribute, the distance matrix recording the distances between each pair of the 

categories are updated. This distance matrix updating mechanism is suitable for ADM, ABDM, CBDM, 

and UEBDM metrics. In addition, since HDM does not rely on the statistics for distance measurement, it 

can be directly used without maintaining distance matrices for the attributes. 

The result of the IGMTT framework can also be transformed into a hierarchy according to Algorithm 11. 

To better explain the details of the IGMTT framework, we summarise it in Algorithm 12. 
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Time Complexity Analysis 
 
Since most of the distance metrics that are applicable to GMTT frameworks (i.e., ADM, ABDM, CBDM, 

and the proposed UEBDM) have the same time complex- ity for distance measurement and dynamic 

distance matrices updating, we choose UEBDM as the distance metric for the time complexity analysis of 

GMTT  and IGMTT  frameworks.   Time  complexity  of  GMTT-UEBDM,  IGMTT-UEBDM,  and the 

MST-Hierarchy transformation algorithm are analysed in this section. 
 

 

Algorithm 12 IGMTT Hierarchical Clustering Framework 
 

1: Input: Streaming data set X. 

2: Output: MST. 

3: Train a coarse topology T using the former R inputs; 

4: for i = R + 1 to N do 

5: Search to find the closest object group (indicated by vh) for xi; 

6: Xh = Xh ∪ xi and N (new) = N (old) + 1; 

7: if vh is a full-coarse node then 

8: Update the mode of the object group indicated by vh; 

9: if the mode is changed after updating then 

10: All the sub-MSTs and modes of the groups indicated by the nodes that are lineal consanguinity of vh 

should be updated; 

11: end if 

12: Generate B new nodes and train B new object groups for Xh through Algorithm 8; 

13: Form a sub-MST to link the new child nodes; 

14: Form sub-MSTs to link the objects inside the groups indicated by the new child nodes; 

15: if the adopted metric is not HDM then 

16: Update the statistics of the whole data set; 

17: Update the distance matrices of each attribute; 

18: end if 

19: end if 

20: end for 
 

 

Time Complexity Analysis for GMTT-UEBDM 
 
We prove that the time complexity of the GMTT-UEBDM algorithm can be opti- mized to O(N 1.5), which 

is lower than the O(N 2) of traditional approaches. 

Theorem 1.  GMTT-UEBDM hierarchical clustering algorithm has time complexity 

O(N 1.5) if the upper limitation UL is set at 
√

N . 

Proof. When the topology T trained through GMTT is a total-imbalanced tree, we
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— (                             B− 1)UL(u    +unl) .  

For each 

max 

L 

L 

max L 

max 

L 

will have the worst-case time complexity. In this case, the number of non-leaf nodes 

is unl =   n−UL    . From the top to the bottom of T, the numbers of data objects for 

(B−1)UL 

training the non-leaf nodes can be viewed as an arithmetic sequence {N, N − (B − 

UL, N − 2(B − 1)UL, ..., N − (unl − 1)(B − 1)UL}. Therefore, total number of data

objects for training all the non-leaf nodes is sn 2 

= N · unl nl 

object that will be trained, B nodes should be considered to find the winner node using Eq.(5.3.2), and the 

corresponding time complexity if O(Bdvmax) according to Eq. (5.3.3), where vmax has been defined in 

Chapter 4 for the time complexity of UEBDM. For each of the non-leaf node, its training will be repeated 

I times for convergence. Therefore, the time complexity for the topology training (Algorithm 10, line 3) is 

O(snBdvmaxI). 

According to the time complexity analysis of UEBDM in Chapter 4, time com- plexity for producing the 

distance matrices that record the distances between intra-

attribute categories of d attributes is O(Nd + v2 d).

 

For each of the non-leaf nodes, a sub-MST should be constructed for its B child nodes. For unl non-leaf 

nodes in total, the time complexity is O(unlB2). For each of the leaf nodes, a sub-MST should be constructed 

for its corresponding UL data objects. For ul leaf nodes in total, the time complexity is O(ulU 2). Therefore, 

the time complexity for constructing the complete MST (Algorithm 10, line 4 - 5) is O(unlB2 + ulU 2). 

The overall time complexity of the proposed GMTT-UEBDM is O(snBdvmaxI + 

Nd + v2 d + unlB2 + ulU 2). I is a very small constant ranging from 2 to 10 
 

according to the experiment.  B is always set to a small positive integer (i.e., 2 -

4) in the experiments. vmax satisfying v2 < N , which is a small constant for real

 

categorical data. d is also a small constant for real categorical data. Therefore, when 

U is set at 
√

N , the overall time complexity of GMTT-UEBDM can be optimized to  O(N 1.5). Q 

 
Time Complexity Analysis for IGMTT-UEBDM 

 
We prove that the time complexity of IGMTT-UEBDM algorithm is still O(N 1.5).
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L 

U 

L 

U 

U 

max 

2 
L UL UL UL(B− 1) 

Theorem 2. IGMTT-UEBDM hierarchical clustering algorithm has time complex- ity O(N 1.5) if the upper 

limitation U is set at 
√

N . 

Proof. According to the proof of Theorem 1, the time complexity for obtaining the coarse topology is 

O(R1.5). 

For N inputs, the time complexity for searching the closest object group (Algo- rithm 12, line 5) according 

to unl non-leaf nodes is O(BunlN ). 

For every UL(B − 1) new inputs, a full-coarse node will be formed. Thus, line 8 

- 18 of Algorithm 12 will be performed once if the mode of the group that adopts 

the newest input is changed after the topology T adopts UL(B − 1) new inputs. We assume that the mode 

is changed after the topology T adopting each UL(B − 1) new inputs for time complexity analysis in the 

following. Therefore, the following operations will be triggered     N    times in total during the hierarchical 

clustering. 

UL(B−1)

For each trigger, at most N 
L 

sub-MSTs and modes should be updated with time

complexity O(B2) and O(UL(B − 1)d), respectively. Therefore, the time complexity 

for the N triggers is O(N2B 
+ N2d 

). 
 

UL(B−1) 2 UL

 

For each trigger, B new groups should be trained for UL(B − 1) data objects and the training will be repeated 

I times for convergence. Therefore, the time complexity

for the N  

UL(B−1) 

triggers is O(BNdvmaxI).

 

For each trigger, B sub-MST linking at most UL data objects should be formed with time complexity is 

O(BU 2); A sub-MST should also be formed for the B new

nodes, which has time complexity O(B2). For N

  

UL(B−1) 

triggers in total, the overall

time complexity for the sub-MSTs construction is O(ULN + BN ). 
L 
 

For each trigger, we update the distance matrices with time complexity O(Nd + 

v2 d) according to the time complexity analysis of UEBDM. Therefore, the overall 

max 

time complexity for the N triggers is O( N · (Nd + v2 d)).

UL(B−1) UL(B−1) max

 

According to the above analysis, the overall time complexity of the IGMTT-

UEBDM algorithm is 

O(Bu 
N + N2B  

+ N2d 
+ BNdv 

I + U 
N + BN + N ·

(Nd+v2 d)).  Similar to the time complexity analysis of 

GMTT-UEBDM, the time

complexity can be optimized to O(N 1.5) with UL = 
√

N . Q

U L 

nl 

max L 
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L 

Time Complexity Analysis for MST-Hierarchy Trans- formation 

Theorem 3. MST-Hierarchy transformation algorithm has time complexity O(N 1.5) if the upper limitation 

U is set at 
√

N . 

Proof. For a leaf node, the time complexity for forming LMQ for the corresponding 

UL objects is O(U 2).  For ul leaf nodes, the time complexity is O(U 2ul).  For each 

L L 

merging, the distance between the first pairs in ul LMQs should be compared to find the smallest one. For 

N − 1 merges, the time complexity is O(ulN ). Therefore, the 

overall time complexity of the transformation algorithm is O(U 2ul + ulN ). When we set UL = 
√

N , the time 

complexity can be optimized to O(N 1.5). Q 

 
Discussions 

 
We further discuss and analyse the potential limitations of the proposed GMTT and IGMTT frameworks 

in terms of dimensionality of data sets and coarse topology training. 

 
Dimensionality: The GMTT algorithm extracts the data distribution structure by gradually creating 

necessary nodes. New nodes gradually split the data set to detect and represent the data distribution. Due 

to the curse of dimensionality, the distribution of data objects will be sparser for high-dimensional data.  

As a result, nodes trained through GMTT will be less representative for high- dimensional data, and the 

structural distribution information offered by the topology may have less contribution to improve the 

hierarchy quality. 
 

Coarse Topology: The IGMTT algorithm trains a coarse topology  using  the  for- mer part of streaming 

data. Because it extracts the structural information of data set and allows fine training for the coarse 

topology according to the following inputs, the size of the former part of streaming inputs for coarse 

topology training will not significantly influence the clustering quality if the distribution of streaming data 

does not change with time. The case in which 

the data distribution changes over time is another challenging problem for streaming data hierarchical 

clustering, which is not considered in this thesis. 

 
The above-mentioned discussions have been further justified by the experimental results in Section 5.5. 

 
 

Experiments 
 
Experiments were conducted in two parts: 1) evaluation of the proposed GMTT- UEBDM, and 2) 

evaluation of the incremental version of GMTT-UEBDM (IGMTT- UEBDM). All the experiments are 

performed on different types of benchmark and synthetic categorical data sets. 

 

Experimental Settings 
 

Data Sets 
13 categorical data sets including 12 real and benchmark data sets and one synthetic data set are collected 

for the experiments. The 12 real and benchmark data sets include four ordinal, four nominal, and four 

mixed categorical data sets that are the same as the data sets used in the experiments of Chapter 4. The 
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synthetic data set has three attributes and 100,000 objects. Each object value is randomly selected from {1, 

2, ..., 5}. Since the synthetic data set is just generated for execution time evaluation, objects in this data set 

have no label, and no physical meaning. 

 
 

Counterparts 
 
Since all the existing hierarchical clustering approaches are proposed for numerical data only, there is 

actually no counterpart in the field of categorical data hierarchi- cal clustering. Therefore, we choose the 

existing hierarchical clustering approaches that adopt a certain distance metric (e.g., Euclidean distance 

metric), and replace their adopted metrics with the existing categorical data metrics to form several 

counterparts for the evaluation of the proposed approaches. 

Table 5.1: 15 counterparts. 
 

 TSL TAL TCL 

HDM TSL-HDM TAL-HDM TCL-HDM 

ADM TSL-ADM TAL-ADM TCL-ADM 

ABDM TSL-ABDM TAL-ABDM TCL-ABDM 

CBDM TSL-CBDM TAL-CBDM TCL-CBDM 

UEBD

M 

TSL-

UEBDM 

TAL-

UEBDM 

TCL-UEBDM 

 

 
The selected hierarchical clustering frameworks are: the Traditional hierarchical clustering framework 

combined with Single Linkage (TSL), Average Linkage (TAL), and Complete Linkage(TCL). 

The selected distance metrics are: the commonly used Hamming Distance Metric (HDM) [58], the state-

of-the-art Ahmad’s Distance Metric (ADM) [10], Association- Based Distance Metric (ABDM) [80], 

Context-Based Distance Metric (CBDM) [65], and the Unified Entropy-Based  Distance Metric (UEBDM) 

proposed in  Chaptere 4. 

By combining the selected frameworks and metrics, 15 counterparts are formed, and we list them in Table 

5.1. Potential-based, RP-based, and incremental hier- archical clustering approaches are not chosen 

because they are original proposed for numerical data, and cannot be modified for categorical data 

hierarchical clus- tering by simply replacing their adopted metrics. Jia’s Distance Metric [72] is not chosen 

because its computation is relative laborious, and it cannot be adequately accelerated by maintaining inter-

category distance matrices for each attribute. 

 

 

 
 

Parameter Settings 
 

According to the time complexity analysis in Section 5.4, we set UL = 
√

N for different data sets. According 

to the experiments, we set B = 4. In the following experiments, reasonableness of setting B = 4 is studied.
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Table 5.2: Clustering performance of GMTT-based approaches on four ordinal data sets. 
  

Approach Internship Photo Employee Lecturer 

GMTT-HDM 0.5633±0.0

6 

0.5091±0.0

7 

0.1865±0.0

1 

0.3419±0.0

2 

GMTT-ADM 0.5389±0.0

4 

0.4773±0.0

2 

0.2055±0.0

1 

0.3363±0.0

3 

GMTT-ABDM 0.5456±0.0

6 

0.5061±0.0

2 

0.2042±0.0

1 

0.3388±0.0

1 

GMTT-CBDM 0.5067±0.0

1 

0.5303±0.0

7 

0.1948±0.0

1 

0.3225±0.0

3 

GMTT-UEBDM 0.6733±0.0

4 

0.5788±0.0

5 

0.2135±0.0

2 

0.3546±0.0

4 

 

Validity Index 

 
Quality of the hierarchy produced by hierarchical clustering approaches is usually measured by Fowlkes 

Mallows Index (FMI) [46] that has been reviewed in Chapter 2. 

  

Performance Evaluation of GMTT-UEBDM 
 
We separately evaluate the proposed UEBDM metric and GMTT framework to investigate their 

effectiveness in categorical data hierarchical clustering. Because there are randomization procedures in the 

GMTT framework, all the approaches formed by combining GMTT and a metric are run 10 times, and we 

record their averaged FMI values as the final results. 

 

Effectiveness Evaluation of UEBDM Metric 
 
We combine the four counterpart categorical data distance metrics that are listed in Table 5.1 into GMTT 

to form four hierarchical clustering approaches. We compare the performance of them and the proposed 

GMTT-UEBDM on the 12 categorical data sets in Table 5.2 - 5.4 to illustrate the superiority of UEBDM 

in categorical data hierarchical clustering. In the following of this section, mixed categorical data is called 

mixed data interchangeably for simplicity. 

It can be observed that GMTT-UEBDM obviously outperforms the other coun- terparts on most of the data 

sets, which illustrates the effectiveness of UEBDM in
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Table 5.3: Clustering performance of GMTT-based approaches on four mixed data sets. 
 

Approach Assistant Fruit Hayes Nursery 

GMTT-HDM 0.5097±0.0

6 

0.4880±0.0

4 

0.3644±0.0

1 

0.3910±0.0

5 

GMTT-ADM 0.5056±0.0

4 

0.5218±0.0

4 

0.3598±0.0

1 

- 

GMTT-ABDM 0.5139±0.0

3 

0.5160±0.0

4 

0.3795±0.0

3 

- 

GMTT-CBDM 0.5333±0.0

4 

0.5397±0.0

4 

0.3758±0.0

3 

- 

GMTT-UEBDM 0.5528±0.0

4 

0.5080±0.0

3 

0.4477±0.0

4 

0.4410±0.0

6 

 
Table 5.4: Clustering performance of GMTT-based approaches on four nominal data sets. 

 

Approach Pillow Solar Voting Tictac 

GMTT-HDM 0.3080±0.0

2 

0.4321±0.0

3 

0.8506±0.0

3 

0.5768±0.0

3 

GMTT-ADM 0.3040±0.0

2 

0.4452±0.0

3 

0.8667±0.0

2 

0.5842±0.0

3 

GMTT-ABDM 0.3050±0.0

2 

0.4390±0.0

4 

0.8545±0.0

2 

0.5742±0.0

3 

GMTT-CBDM 0.3082±0.0

1 

0.3981±0.0

3 

0.8310±0.0

8 

0.5678±0.0

4 

GMTT-UEBDM 0.3136±0.0

2 

0.4700±0.0

4 

0.8545±0.0

3 

0.5848±0.0

3 

 
categorical data hierarchical  clustering.  Results  of  GMTT-ADM,  GMTT-ABDM, and GMTT-CBDM 

are empty for Nursery data sets because ADM, ABDM,  and CBDM metrics are unable to measure 

distances for a data sets with extremely low inter-attribute dependency like Nursery data set. 

 

Effectiveness Evaluation of GMTT Framework 

 
We compare the performance of different hierarchical clustering frameworks adopt- ing the same distance 

metric to illustrate the effectiveness of the proposed GMTT framework. The comparative results are shown 

in Table 5.5 - 5.7. 

According to the experimental results, we found that the GMTT-UEBDM has very competitive 

performance, and the performance of all the other GMTT-based approaches that adopt the existing metrics 

are more robust (i.e., always not the worst
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Table 5.5: Clustering performance of GMTT-based approaches and 15 counterparts on four ordinal data sets. 
 

Approach Internship Photo Employe

e 

Lecturer 

TSL-HDM 0.6667 0.424

2 

0.1970 0.4240 

TAL-HDM 0.5111 0.530

3 

0.1910 0.3140 

TCL-HDM 0.6778 0.515

2 

0.1760 0.3880 

GMTT-HDM 0.5633 0.509

1 

0.1865 0.3419 

TSL-ADM 0.6889 0.454

5 

0.1960 0.4110 

TAL-ADM 0.5111 0.469

7 

0.2240 0.3330 

TCL-ADM 0.6889 0.469

7 

0.2180 0.3320 

GMTT-ADM 0.5389 0.477

3 

0.2055 0.3363 

TSL-ABDM 0.5000 0.454

5 

0.2130 0.3910 

TAL-ABDM 0.6889 0.484

8 

0.2070 0.3300 

TCL-ABDM 0.6889 0.530

3 

0.2110 0.3160 

GMTT-ABDM 0.5456 0.506

1 

0.2042 0.3388 

TSL-CBDM 0.5222 0.500

0 

0.2080 0.3980 

TAL-CBDM 0.5000 0.515

2 

0.2190 0.3110 

TCL-CBDM 0.5222 0.590

9 

0.2030 0.3440 

GMTT-CBDM 0.5067 0.530

3 

0.1948 0.3225 

TSL-UEBDM 0.6889 0.409

1 

0.2150 0.4030 

TAL-UEBDM 0.7444 0.651

5 

0.2160 0.3330 

TCL-UEBDM 0.5778 0.712

1 

0.1960 0.3250 

GMTT-UEBDM 0.6733 0.578

8 

0.2135 0.3546 

 
in comparison with the corresponding TSL-,  TAL-,  and  TCL-based  approaches). The three more detailed 

observations are discussed as follows: 

By comparing the results in Table 5.5 - 5.7, it can be found that GMTT frame- work can better boost the 

performance of traditional hierarchical clustering frameworks on mixed and nominal data sets. For the four 

ordinal data set- s, performance of GMTT framework cannot obviously boost the performance
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Table 5.6: Clustering performance of GMTT-based approaches and 15 counterparts on four mixed data sets. 
 

Approach Assistant Fruit Hayes Nurser

y 

TSL-HDM 0.4028 0.380

0 

0.401

5 

0.3334 

TAL-HDM 0.4306 0.490

0 

0.363

6 

0.3436 

TCL-HDM 0.4583 0.350

0 

0.477

3 

0.3353 

GMTT-HDM 0.5097 0.488

0 

0.364

4 

0.3910 

TSL-ADM 0.4583 0.370

0 

0.386

4 

- 

TAL-ADM 0.5000 0.550

0 

0.356

1 

- 

TCL-ADM 0.5000 0.530

0 

0.424

2 

- 

GMTT-ADM 0.5056 0.521

8 

0.359

8 

- 

TSL-ABDM 0.4583 0.440

0 

0.386

4 

- 

TAL-ABDM 0.5000 0.520

0 

0.386

4 

- 

TCL-ABDM 0.5000 0.460

0 

0.363

6 

- 

GMTT-ABDM 0.5139 0.516

0 

0.379

5 

- 

TSL-CBDM 0.5000 0.370

0 

0.409

1 

- 

TAL-CBDM 0.5000 0.490

0 

0.340

9 

- 

TCL-CBDM 0.6250 0.510

0 

0.462

1 

- 

GMTT-CBDM 0.5333 0.539

7 

0.375

8 

- 

TSL-UEBDM 0.4167 0.330

0 

0.401

5 

0.3402 

TAL-UEBDM 0.6111 0.510

0 

0.416

7 

0.5307 

TCL-UEBDM 0.5278 0.510

0 

0.363

6 

0.4651 

GMTT-UEBDM 0.5528 0.508

0 

0.447

7 

0.4410 

 
 

because the GMTT framework use object-cluster distance for the topology construction, and thus it is more 

suitable to be combined with an ordinal da- ta distance metric for ordinal data clustering. In other words, 

by combining with HDM, ADM, ABDM, and CBDM, the positive impact on the clustering accuracy 

offered by GMTT is hampered. It is because that, even existing categorical data distance metrics are 

actually designed for nominal data, they
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Table 5.7: Clustering performance of GMTT-based approaches and 15 counterparts on four nominal data sets. 
 

Approach Pillo

w 

Solar Votin

g 

Tictac 

TSL-HDM 0.350

0 

0.278

6 

0.616

1 

0.652

4 

TAL-HDM 0.280

0 

0.297

2 

0.616

1 

0.505

2 

TCL-HDM 0.320

0 

0.439

6 

0.616

1 

0.575

2 

GMTT-HDM 0.308

0 

0.432

1 

0.850

6 

0.576

8 

TSL-ADM 0.300

0 

0.272

4 

0.616

1 

0.654

5 

TAL-ADM 0.320

0 

0.309

6 

0.616

1 

0.626

3 

TCL-ADM 0.330

0 

0.315

8 

0.834

5 

0.574

1 

GMTT-ADM 0.304

0 

0.445

2 

0.866

7 

0.584

2 

TSL-ABDM 0.320

0 

0.272

4 

0.616

1 

0.654

5 

TAL-ABDM 0.320

0 

0.260

1 

0.850

6 

0.640

9 

TCL-ABDM 0.310

0 

0.325

1 

0.878

2 

0.569

9 

GMTT-ABDM 0.305

0 

0.439

0 

0.854

5 

0.574

2 

TSL-CBDM 0.290

0 

0.312

7 

0.616

1 

0.656

6 

TAL-CBDM 0.280

0 

0.315

8 

0.616

1 

0.577

2 

TCL-CBDM 0.300

0 

0.322

0 

0.852

9 

0.626

3 

GMTT-CBDM 0.308

2 

0.398

1 

0.831

0 

0.567

8 

TSL-UEBDM 0.340

0 

0.489

2 

0.611

5 

0.652

4 

TAL-UEBDM 0.280

0 

0.501

5 

0.892

0 

0.567

8 

TCL-UEBDM 0.310

0 

0.483

0 

0.825

3 

0.559

5 

GMTT-UEBDM 0.313

6 

0.470

0 

0.854

5 

0.584

8 

 
 

are still somewhat workable for the distinguishing of similarity levels between different pairs of objects. 

But when combined with GMTT, these existing nominal data metrics are utilized to more finely measure 

the distances between each attribute value of an object and the occurrence probability distributions of the 

attribute values in different clusters, which makes the unreasonableness of the nominal data metrics in 

ordinal data distance measurement has more
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significant impact on the clustering results. Therefore, GMTT framework is not suitable to be combined 

with improper categorical data metrics, especially for ordinal data. 

 
 

GMTT-UEBDM is competitive on all  the  12  data  sets.  It  is  because  that the adopted UEBDM can 

more reasonably measure the distances for different types of categorical data. Based on UEBDM, the 

object-cluster distance mea- surement procedure of GMTT can more accurately assign data objects to more 

similar clusters, and thus GMTT-UEBDM can achieve competitive clustering performance. Although the 

performance of GMTT-UEBDM is not always the best, it is very robust to different data sets and it 

outperforms most approach- es formed by combining traditional hierarchical clustering frameworks and 

the existing metrics on most data sets. 

 
 

The approaches formed by combining different hierarchical clustering frame- works with the proposed 

UEBDM metric (i.e., TSL-UEBDM, TAL-UEBDM, TCL-UEBDM, and GMTT-UEBDM) have  obvious  

better  performance  than the approaches formed by combining different hierarchical clustering frame- 

works with existing nominal data metrics. This indicates that the adopted metric usually dominates the 

clustering performance of a hierarchical cluster- ing approach. Therefore, from the perspective of the 

quality of the produced hierarchy, it is obvious that the contribution of the proposed GMTT frame- work 

is to make the hierarchical clustering results more robust to different types of categorical data sets, and the 

contribution of the proposed UEBDM metric is to achieve more accurate hierarchical clustering results.  

 
 

In short, the proposed GMTT framework can produce more robust hierarchical clustering results in 

comparison with the existing frameworks. Moreover, the pro- posed GMTT-UEBDM can produce more 

robust and accurate hierarchical clustering results than the counterparts.
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Figure 5.9: Execution time of GMTT-UEBDM, TSL-HDM, TAL-HDM, and TCL- HDM on synthetic data sets with different 

sizes. 

 

Efficiency Evaluation of GMTT-UEBDM 
To verify the efficiency of GMTT-UEBDM, the execution time of it is compared with several 

representative counterparts in Figure 5.9. For each compared approach, the execution time of it for the 

hierarchical clustering of a synthetic data set with differ- ent sampling rates are recorded as a “Time - Data 

Size” curve. The synthetic data set with 100,000 objects is sampled using the sampling rates {0.01, 0.1, 

0.2, ..., 1} to produce 11 synthetic data sets with size 1k, 10k, 20k, ..., 100k. 

From Figure 5.9, it can be observed that the execution time of TSL-HDM, TAL- HDM, and TCL-HDM 

increases dramatically with the increasing of the data size. Compared with them, the execution time of the 

proposed GMTT-UEBDM increases obviously slower, which is consistent with the time complexity 

analysis in Section 5.4. In short, GMTT-UEBDM is the most efficient among the compared categorical 

data hierarchical clustering approaches. 

 

Performance Evaluation of IGMTT-UEBDM 
 

Effectiveness Evaluation of IGMTT-UEBDM 
 

Since there is no existing hierarchical clustering approaches that is applicable to streaming categorical data, 

we compare the proposed IGMTT-UEBDM with GMTT- UEBDM to validate its effectiveness. This 

experiment is also run 10 times on the 12 categorical data sets, and the averaged FMI values are recorded 

in Table 5.8 -

T
i

m e
 

(s
) 
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Table 5.8: Clustering performance of GMTT-UEBDM and  IGMTT-UEBDM  on four ordinal data sets. 
 

Approach Internship Photo Employee Lecturer 

GMTT-UEBDM 0.6733±0.0

8 

0.5788±0.0

7 

0.2135±0.0

2 

0.3546±0.0

4 

IGMTT-UEBDM 0.6427±0.0

6 

0.5282±0.0

7 

0.2177±0.0

5 

0.3495±0.0

5 

 
Table 5.9: Clustering performance of GMTT-UEBDM and  IGMTT-UEBDM  on four mixed data sets. 

 

Approach Assistant Fruit Hayes Nursery 

GMTT-UEBDM 0.5528±0.1

0 

0.5080±0.0

6 

0.4477±0.0

4 

0.4410±0.0

9 

IGMTT-UEBDM 0.5532±0.1

1 

0.5281±0.0

8 

0.4424±0.0

5 

0.4404±0.0

7 

 
Table 5.10: Clustering performance of GMTT-UEBDM  and  IGMTT-UEBDM  on four nominal data sets. 

 

Approach Pillow Solar Voting Tictac 

GMTT-UEBDM 0.3136±0.0

2 

0.4700±0.0

4 

0.8545±0.0

3 

0.5848±0.0

3 

IGMTT-UEBDM 0.3028±0.0

2 

0.4621±0.0

6 

0.8497±0.0

6 

0.5910±0.0

6 

 

5.10. 

It can be observed that the clustering performance of IGMTT-UEBDM is very close to that of GMTT-

UEBDM on most of the data sets in general. Two detailed observations are discussed as follows:  
 

IGMTT-UEBDM even outperforms GMTT-UEBDM on several data sets (i.e., Employee, Assistant, Fruit, 

and Tictac). If the former part of inputs do not contain noise and outliers, the coarse topology trained by 

them will be very close to or even better than the fine topology trained through GMTT. This is the reason 

why sometimes the performance of IGMTT-UEBDM is even better than that of GMTT-UEBDM. 
 

The performance of IGMTT-UEBDM is obvious worse than that of GMTT-
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Figure 5.10: Execution time of GMTT-UEBDM and IGMTT-UEBDM  on  synthetic data sets with different sizes. 

 
UEBDM on Internship and Photo data sets. The data size of Internship and Photo are very small in 

comparison with the other data sets. Therefore, the former part of inputs of them will be unstable in terms 

of the capability of training a representative coarse topology. Therefore, the performance of IGMTT-

UEBDM on extreme small data sets will be unstable. However, since IGMTT-UEBDM is proposed for 

large-scale streaming categorical data, its unstable performance on small data sets will not hamper its 

effectiveness. 
 

In conclusion, clustering accuracy of IGMTT-UEBDM is very competitive in the hierarchical clustering 

of streaming categorical data. 

 

Efficiency Evaluation of IGMTT-UEBDM 
 
Similar to the efficiency evaluation of GMTT-UEBDM, we run IGMTT-UEBDM on the same synthetic 

data set with different sampling rates. Since there is no existing counterparts, we still compare it with 

GMTT-UEBDM. The execution time of them are shown in Figure 5.10. 

It can be observed that the increasing rate of IGMTT-UEBDM’s and GMTT- UEBDM’s execution time 

are similar. Moreover, IGMTT-UEBDM costs less exe- cution time than GMTT-UEBDM in general, 

because IGMTT-UEBDM adopts a lazy topology training scheme (i.e., only perform topology training 

when full-coarse nodes are detected). In addition, the execution time of IGMTT-UEBDM is higher

T
i
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than GMTT-UEBDM when the data size is less than 10k.  This is caused by the coarse topology training 

procedure of IGMTT-UEBDM. When data size is not large enough, the efficiency of adopting coarse 

topology training is not obvious, and it may even increase the overall computation cost. However, since 

IGMTT-UEBDM is designed for large-scale streaming data, this phenomenon does not hamper the ef- 

ficiency of IGMTT-UEBDM. In general, IGMTT-UEBDM is efficient for large-scale streaming 

categorical data hierarchical clustering. 

 

Study of the Branching Factor 
The two parameters (i.e., the branching factor B and the upper limitation UL) influence the hierarchical 

clustering performance in different ways. Since our goal is to achieve a lower time complexity (i.e., O(N 

1.5)), the upper limitation UL must be fixed at 
√

N for different data sets as analysed in Section 5.4. Therefore, 

we discuss how the branching factor B influences the performance of the proposed approaches as follows: 

 
A too large B may cause a flat topology, which cannot offer rich structural information for forming the 

final hierarchy. Therefore, a too large value of B may influence the accuracy of hierarchical clustering. 

A too small B may make the topology too deep (i.e., with too many layers). This will cause high 

computation cost for the topology training.  Addition- ally, a too small B will also split data objects into 

large groups, which may incorrectly split benchmark clusters, and thus lead to poor clustering accura - cy. 

Therefore, a too small B may influence both the computation cost and accuracy of hierarchical clustering. 

To experimentally investigate the impact of B, we run GMTT-UEBDM 10 times with different B on each 

of the 12 data sets, and record the averaged results in Figure 5.11 - 5.13. In this experiment, the clustering 

performance when B = 1 is very poor because B = 1 makes the topology trained through GMTT never grow 

to better represent data set. Moreover, for each data set, we only evaluate the GMTT-
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Figure 5.11: B - FM curves of GMTT-UEBDM on four ordinal data sets. 

 

UEBDM performance when B ≤ 
√

N because B > 
√

N makes the clusters have less 

than 
√

N objects, which violates the setting U    = 
√

N . Since a too large B will lead 

to poor clustering accuracy as discussed before, for the data sets with 
√

N > 20, we only evaluate the 

performance of GMTT-UEBDM with B ∈ {1, 2, ..., 20} on them. 

 
It can be observed that the clustering accuracy of GMTT-UEBDM is very robust to different B, excepting 

some extreme values (e.g., 1, 2, and 
√

N ), which is consis- tent with our discussions. Therefore, setting B 

= 4 is reasonable for GMTT-based approaches. 

 

 
 

Summary 
 
This chapter has presented a topology training framework for categorical data hi- erarchical clustering, 

called GMTT, which trains a multi-layer topology to describe the data set, and uses the topology to guide 

and accelerate the merging process of hierarchical clustering. Based on the GMTT, a hierarchical clustering 

approach called GMTT-UEBDM has been designed by combining GMTT with the proposed
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Figure 5.12: B - FM curves of GMTT-UEBDM on four mixed data sets. 
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Figure 5.13: B - FM curves of GMTT-UEBDM on four nominal data sets. 

 

 
UEBDM metric. This approach features lower time complexity and higher clustering accuracy compared 

to the counterparts. We have analysed that the GMTT-UEBDM improves the time complexity of existing 

applicable categorical data hierarchical clustering approaches to O(N 1.5). Although a parameter B should 
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be set in ad- 

vance, we have illustrated that the performance of GMTT-UEBDM is very robust to different values of 

this parameter. Furthermore, an incremental version of GMTT- UEBDM (i.e., IGMTT-UEBDM) has also 

been proposed to make the proposed ap- proach also applicable to large-scale streaming categorical data.  

IGMTT-UEBDM has the same time complexity as the GMTT-UEBDM, but can dynamically update the 

topology and successively incorporate new inputs to update the corresponding hierarchy. Experiments on 

different real, benchmark, and synthetic data sets have demonstrated that GMTT-based approaches 

improve the time complexity without sacrificing the quality of the constructed hierarchy. 
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Chapter 6 

 
Conclusions and Future Work 

 
 

Conclusions 
 
This thesis has addressed four significant issues in categorical data clustering: 1) dis- tance measurement 

of ordinal attributes, 2) the unification of the distance definition of ordinal and nominal attributes, 3) the 

design of an applicable fast hierarchical clustering framework for categorical data, and 4) the design of an 

incremental hier- archical clustering framework for streaming categorical data. 

First,   an Entropy-Based Distance Metric (EBDM) was presented for ordinal data clustering. The EBDM 

uses cumulative entropy as a measure with which to quantify the distances between ordinal categories by 

considering both their order relationship and their statistics. Because the proposed EBDM appropriately 

uses the order information for distance measurement, it outperforms the existing categorical data distance 

metrics that were proposed under the hypothesis that categorical data comprise only nominal attributes in 

the clustering analysis of ordinal data. We also studied the relationship between the degree to which order 

information is exploited and the ordinal data clustering performance; we found that the clustering 

performance of an ordinal data clustering algorithm is dominated by the adopted metric and that the 

effectiveness of a metric is dominated by the degree to which it exploits the order information. The 

proposed EBDM is parameter-free and easy to use, and the experimental results demonstrated that its 

clustering performance

http://www.ijrti.org/


                              © 2024 IJNRD | Volume 9, Issue 1 January 2024 | ISSN: 2456-4184 | IJNRD.ORG 

  

IJNRDTH00101 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 

396 

obviously outperforms the existing applicable categorical data distance metrics. 

 
The EBDM was then extended to a unified distance metric (i.e., the unified EBDM or UEBDM) to cope 

with the more complex mixed categorical data clustering problem. From the perspective of information 

theory, the UEBDM treats ordinal attributes and nominal attributes differently but unifies the concepts of 

the distance between categories and the importance of attributes, which avoids information loss during the 

distance measurement of mixed categorical data. For ordinal attributes, the order relationships between 

categories and their statistics are considered for the distance measurement, while for the nominal attributes, 

the statistics of the categories are used for distance measurement. Because the distance concepts of ordinal 

and nominal attributes are unified, it is not necessary to separately compute the distances for ordinal and 

nominal attributes and then weight and combine them to produce the final distances between data objects. 

Moreover, the UEBDM is still easy to use and non-parametric, and it can be easily applied for clustering 

analysis of any type of categorical data, including ordinal data, nominal data, and mixed categorical data. 

The experimental results showed that the UEBDM outperforms the existing categorical data metrics in the 

clustering of various types of categorical data. 

Because hierarchical clustering is a useful but laborious type of clustering anal- ysis and the existing 

efficient hierarchical clustering approaches are designed only for numerical data, we developed a fast 

hierarchical clustering framework that is ap- plicable to both categorical and numerical data. According to 

our design, the time complexity of most hierarchical clustering approaches (i.e., O(N 2)) is reduced to O(N 
1.5), where N is the number of data objects in the target data set. The proposed framework automatically 

trains a topology to describe the distribution structure of a data set, and the most computationally expensive 

hierarchical clustering process, that is, searching the most similar pair of data objects, is then accelerated 

under the guidance of the trained topology. More specifically, the global most similar pair searching 

problem is converted to a local problem by the topology, which results in significant savings in the 

computation cost. A fast and accurate categorical data hierarchical clustering approach can be obtained by 

combining this framework with the proposed UEBDM metric. According to the experiments, this approach 

features robust and competitive clustering performance and a low computation cost, and its only parameter 

is very easy to set. 

Finally, we further extended the fast hierarchical clustering framework to an incremental version to tackle 

the problem of large-scale streaming categorical data hierarchical clustering, which is a significant problem 

that has yet to be solved. The proposed incremental framework dynamically incorporates new inputs to 

train the topology and updates the corresponding hierarchy when the topology’s structure is changed by 

the new inputs. We also provided an incremental version of the proposed UEBDM metric that can be 

combined with the incremental framework for categorical data hierarchical clustering. Experiments on 

various real, benchmark, and synthetic data sets have shown the effectiveness and efficiency of the 

proposed incremental categorical data hierarchical clustering approach. 

 

 

Future Work 

  
Although many challenging problems in the field of categorical data clustering have been addressed in this 

thesis, many others remain for future studies; we discuss the future works along four directions as follows:  
 

Unified inter-attribute dependence measurement. The relationships among at- tributes have not yet been 

considered. The degree of dependence between attributes may offer valuable information for distance 

measurement. How- ever, three types of inter-attribute relationships exist for mixed categorical data: those 

between ordinal attributes, those between nominal attributes, and those between ordinal and nominal 

attributes. This makes inter-attribute de- pendence measurement a very challenging problem. More 

specifically, if the definitions of the three types of relationships are not unified, information loss will occur 

during clustering analysis. If an appropriate inter-attribute depen- dence measure is adopted, the 

contributions of various types of attributes can be reasonably weighted, and the clustering performance can 
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be improved ac- cordingly. Therefore, one main future direction of categorical data clustering may be to 

define a unified inter-attribute dependence measure. 
 

Automatic attribute type recognition. This thesis assumes that the types of attributes were specified in 

advance. However, a common phenomenon exists in which the data collectors incorrectly mark the 

attribute types for the at- tributes of the collected data, such as marking the ordinal attributes as nominal 

ones, marking the nominal attributes as ordinal ones, or marking the ordinal attributes as numerical ones. 

Manual correction of the incorrectly marked at- tribute types is a laborious task for categorical data sets 

with a large number of attributes. Therefore, automatically distinguishing the types of categorical attributes 

would be a potential orientation. 
 

Categorical data distance metric learning. The proposed UEBDM metric de- fines the distances for 

categorical data before the learning procedure for a clustering algorithm. From a practical view-point, 

however, the distances be- tween categories are inherently task-dependent and data-dependent. Hence, 

determining the distances from the data set and adapting them to fit the learn- ing task is a possible mean 

to achieve better clustering performance. However, because the distances among categorical data are not 

as well-defined as those of numerical data in general, learning the distances between each pair of cat- 

egories for each attribute is a non-trivial task. Therefore, a meaningful future study could involve the design 

of an efficient distance metric learning approach for categorical data clustering analysis. 
 

Categorical data summarisation. Most fast hierarchical clustering approaches proposed for numerical data 

adopt data summarisation techniques to represent the whole data set using a small number of representative 

data objects or seed points. In this way, hierarchical clustering can be efficiently performed on these 

representative objects or seed points to save considerable computation cost. Although the GMTT 

framework presented in this thesis also summarises categorical data objects using a trained topology, it 

requires the statistics of each object group to be maintained during the clustering procedures, which may 

cause high space complexity, especially for high-dimensional categorical data with large numbers of 

possible values of the attributes. To this end, the design of an efficient categorical data summarisation 

scheme for categorical data clustering that does not sacrifice clustering accuracy is also a meaningful 

direction for a future study. 
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