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Abstract: This paper presents a novel stochastic optimization approach to determining the feasible optimal solution of the power 

economic dispatch (PED) problem considering various generator constraints. Many practical constraints of generators, such as 

ramp rate limits, prohibited operating zones and the valve point effects are considered. These constraints make the PED problem a 

non-convex minimization problem with constraints. The proposed shuffled differential evaluation (SDE) utilizes the concept of 

the shuffled frog – leaping algorithm in the original differential evaluation to accelerate the search for the global optimum. A 

typical 13-unit power system is considered to evaluate and compare the performance of the proposed SDE algorithm with those 

methods reported in the literature. Numerical results indicate that the performance of the proposed algorithm outperforms the 

methods reported in the literature. 

 

Index Terms - Power economic dispatch, prohibited operating zones, shuffled differential evaluation. 

I. INTRODUCTION 

An important optimization task in power system operation is the power economic dispatch (PED) in which generation is allocated 

among the committed units. The objective of PED is to minimize the total generation cost of units, while satisfying the various 

equality and inequality constraints. Physically, a generating unit may have prohibited operating zones between the minimum and 

maximum power outputs. The generators that operate in these prohibited zones may experience amplification of vibrations in 

their shaft bearings. Hence, these vibrations should be avoided in practical application. Since the unit generation output cannot be 

changed instantaneously, the unit in the actual operating processes is restricted by its ramp rate limit [1-3]. Moreover, the units of 

real input–output characteristics include higher order nonlinearities and discontinuities owing to the valve point effects and 

piecewise quadratic cost functions. The valve point effects have been modeled as a circulating commutated sinusoidal component 

in the cost function [4-5]. 

 

Also one of the most important duties of the system operator with regards to maintaining power system security and reliability is 

to monitor system operating reserve and its ability to respond to disturbances within the system [6]. Scheduling sufficient reserve 

capacity helps power systems to overcome unscheduled generator outages and major load forecast errors without load shedding. 

The PED problem with the above considerations is usually a non-smooth/non-convex optimization problem [3].  

 

This kind of optimization problem is very hard, if not impossible, to solve using traditionally deterministic optimization 

algorithms. Several classical techniques have been used for solving the economic dispatch problems. The Lagrangian multiplier 

method [7], which is generally used for solving the PED problem, is not directly applicable. To solve the non-smooth/non-convex 

PED problems, Lee and Breipohl [3] decomposed the non-convex decision space into a number of convex sub-regions and then 

used the Lagrangian multiplier method to solve the problem. The drawback of this approach is the large computational burden to 

obtain an optimal solution when a system has several units with prohibited zones. Fan and McDonald [8] proposed an algorithm 

based on conventional l–d iterative dispatch to obtain the solution. In the recent past, several evolutionary computational 

intelligence techniques have been used for solving the non-smooth/non-convex economic dispatch problems. Su and Chiou [9] 

applied the Hopfield network technique for solving the PED problem with prohibited operating zones, but the Hopfield network 

method requires two-phase computations and was not able to consider power loss. Lin et al. [10] presented integrated 

evolutionary programming, tabu search (TS) and quadratic programming (QP) methods to solve non-convex PED problems. This 

integrated artificial intelligence method also requires two-phase computations.  
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Lin et al. [11] developed an improved TS algorithm for PED with non-smooth cost functions by relaxing the prohibited zones and 

system spinning reserve. Sewtohul et al. [12] proposed genetic algorithms (GAs) to solve the PED problem in light of the valve 

point effect. Wong and Fung [13] developed a simulated annealing based PED algorithm to solve PED considering the 

transmission loss. Sinha et al. [14] used an evolutionary programming (EP) method to solve PED problems. However, the last two 

studies did not consider the prohibited zones. Gaing [15-16] proposed a particle swarm optimization (PSO) method for solving the 

PED problems in power systems.  

  

Recently, powerfull evolutionary optimization algorithm such as differential evolution (DE) techniques developed by Storn and 

Price [17], which is simple, easy to implement, and significantly faster is employed for power system optimization problems. It 

has been demonstrated in the literature [18-22] that the search ability of evolutionary optimization algorithms can be improved by 

the hybridization with local search. Such a hybrid algorithm has often been referred to as memetic algorithms [23]. Memetic 

algorithms are hybrid algorithms that combine both the evolutionary algorithms and local search techniques. For different classes 

of optimization problems, memetic algorithms have been proved to be much faster and more accurate than the evolutionary 

algorithms.  

 

In this chapter, the shuffled differential evaluation algorithm [24-27] for solving the non-smooth/non-convex PED problems 

considering the various physical constraints is presented. The proposed SDE algorithm is applied on 13-unit PED systems from 

the literature to compare the performance of the proposed method with other stochastic optimization methods reported in the 

literature. 

 

II. PROBLEM FORMULATION 

The objective of the PED is to minimize the total generation cost of a power system over some appropriate period while 

satisfying various constraints. The power system balance of conditions for system demand, power losses and entire generator 

power, as well as the generating power constraints, including prohibited zones, ramp rate limit, spinning reserve and valve point 

effect for all units, should be satisfied. In this chapter, the maximum spinning reserve capacity is set at 15–30% of the maximum 

power. The valve point constraint has been modeled on either the piece-wise quadratic cost function or a commutated sinusoidal 

function to represent the valve point loading in the cost function. Therefore the PED problem considering generator constraints 

can be mathematically described as follows 


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where i denotes index of units, Fi, fuel cost function of unit i; iP , power generation of unit i; min,iP , minimum generation limit of 

unit i;   is set of all units i.e., {1,2, . . , N}, N is number of generator units; ia , ib , ic , ie , and if , fuel cost coefficients of 

unit ‘i’. Subject to the following constraints 
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where 
DP denotes total load demand;  lossP , power losses;  ijB , power loss coefficient. 

(ii) System spinning reserve constraints 
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where iS , spinning reserve of unit i;  
RS , system spinning reserve requirement;  max,iP , maximum generation limit of unit i; 

max,iS , maximum spinning reserve of unit i;  , set of all units with prohibited zones. In a unit with prohibited operating zones, 

these zones strictly limit the unit’s ability to regulate system load because load regulation may result in its falling into certain 

prohibited operating zones. Therefore the system spinning reserve requirement must be supplied by way of regulating the units 

without prohibited zones only. 

iii) Generation limits of units 

Ramp rate limits constraints 
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Units without prohibited operating zones 

max,min, iii PPP             (9) 
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where 0

iP , previous output power of unit i;  
iUR , up ramp limit of unit i;  

iDR , down ramp limit of unit i;  l

ijP , lower bound of the 

jth prohibited zone of unit i; u

ijP ; upper bound of the jth prohibited zone of unit i;  
ipz , number of prohibited zones in unit i. 

 

In this study, the treatment of constraints is performed with the penalty function methods. The penalty function methods are 

among the most popular techniques used to handle constraints, are easy to implement and are considered efficient. The penalty 

method is usually a close degree to the nearest solution in a reasonable region, and it can allow an objective function effort to 

arrive at the optimum solution. The penalty method is implemented in this chapter as follows.  

 

When the PED takes account of the prohibited zone constraints, the delimitation point divides the prohibited zone into two sub-

zones, that is the left and right prohibited subzones The delimitation point is set in the middle point of each prohibited zone in this 

work. When a unit operates in one of the prohibited zones, the strategy is to force the unit to move either towards the lower bound 

of that zone from the left sub-zone or towards the upper bound of that zone from the right sub-zone. The unit power must confirm 

to the constraint of (8) when the unit does not include prohibited zones. In addition to prohibited zone constraints, the 

computation results also must confirm to ramp rate limits in (7), the system spinning reserve requirement in (4) and the power 

balance condition in (2). The fuel cost function with these constrains is rewritten from (1) as follows 
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where q1, and q2 are penalty factors when these terms are zero in (10), and no constraints are violated; otherwise, these terms are 

positive values. To solve the above mentioned system, the SDE is described as follows. 

 

III. SHUFFLED DIFFERENTIAL EVOLUTION 

Differential evolution (DE) may occasionally stop proceeding toward the global optimum even though the population has not 

converged to a local optimum even new individuals may enter the population, but the algorithm does not progress by finding any 

better solutions. This situation is usually referred to as stagnation. DE also suffers from the problem of premature convergence, 

where the population converges to some local optima of a multimodal objective function, losing its diversity.  

 

SFLA simple, efficient memetic algorithm but only the worst frog in the memeplex adjusts its position using frog leaping rule 

with memeplex best or global best. It is an insufficient learning mechanism for the swarm, especially that the better frogs have 

fewer learning chances, unless that the worse catches up them. In order to utilize both the properties of DE and SFLA, a novel 

technique called shuffled differential evolution (SDE) has been developed with novel mutation operator for solution of complex 

optimization problems such as non-convex PED.  

 

The proposed algorithm is based on shuffling property of SFLA and DE algorithm. Like other evolutionary algorithm, in SDE 

population is initialized as ],.....,[ 21 PXXX  of P solutions, where P represents the population size. Each solution is represented 

as ]...,,[ ,,2,1 iNiii xxxX   for N-dimensional problem. Fitness is calculated while satisfying constraints and population is sorted 

in descending order of their fitness and partitioned into memeplexes.  

 

Unlike SFLA, within each memeplex all the frogs participate in the evolvement and has local search due to memetic evolution 

with DE operations such as mutation, crossover and selection, and global exploration due to the shuffling property of SFLA. This 

gives an edge to the proposed algorithm over other techniques, while finding global optimal solution. In SDE algorithm a novel 

mutation, DE/Memeplexbest/2 is performed for each frog of memeplex in the memetic evolution. After certain number of 

predefined memetic evolutions all frogs with their fitness are collected from each memeplex and shuffled.  This process is 

repeated for specified number of generations.  

 

3.1 Memetic evolution step of SDE 

 

The proposed SDE uses shuffling property of SFLA and the memetic evolution step of SFLA is replaced by a differential 

evolution steps such as “DE/memeplexbest/2” mutation operation and followed by crossover and selection operations.  

------------------------------------------------------------------------ 

Pseudo code of the Shuffled Differential Evolution (SDE) 

------------------------------------------------------------------------- 

Begin; 

        Initialize the SDE parameters  

Randomly generate a population of solutions (frogs); 

For k = 1 to SI; 

        For each individual (frog); calculate fitness of ith frog; 

 Sort the population in descending order of their fitness; 

Determine the global best frog; 

Divide population into m memeplexes; 

/*memetic evolution step*/ 

For im=1 to m; 

    For ie=1 to IE 

Determine the best frog; 

For each frog 

   Generate new donor vector (frog) with memeplex best/2 mutation operation 

http://www.ijrti.org/


© 2023 IJNRD | Volume 8, Issue 12 December 2023 | ISSN: 2456-4184 | IJNRD.ORG 

 

IJNRD2312284 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 

c869 

   Apply crossover 

   Evaluate the fitness of new frog; 

   If new frog is better than old 

      Replace the old with new one 

  End if  

End for 

          End for 

             End for 

/*end of memetic evolution step*/ 

      Combine the evolved memeplexes; 

      Sort the population in descending order of their fitness; 

      Update the global best frog; 

End for 

End 

 

3.2 “DE/Memeplexbest/2” Mutation  

 

The general convention used for naming the various mutation strategies is DE/x/y/z, where DE stands for differential evolution, x 

represents a string denoting the vector to be perturbed, y is the number of difference vectors considered for perturbation of x, and 

z stands for the type of crossover being used. A new variant of the DE mutation scheme is proposed which is similar to “Scheme 

DE2”. To combine the exploration and exploitation capabilities of DE, a hybrid mutation scheme is propose based on memeplex 

best that utilizes an explorative and an exploitive mutation operator, with an objective of balancing their effects. The explorative 

mutation operator has a greater possibility of locating the minima of the objective function. On the other hand, the exploitative 

mutation operator rapidly converges to a minimum of the objective function. In memeplex evolution step SDE creates a donor 

vector iV  corresponding to each population member or target vector iX  through mutation 

 “DE/memplexbest/2”: )()( 4321 rrrrbi XXFXXFXV               (11) 

where r1,r2,r3, and r4 are integers randomly chosen from the range 1 to n, where n is number of frogs in each memeplex, and all 

random numbers are different from the running index i. These indices are randomly generated once for each donor vector. The 

scaling factor F is a positive control parameter for scaling the difference vectors and bX  represents memeplex best frog. 

  

Crossover: To increase the potential diversity of the population in SDE, same kind of DE crossover schemes are used here. The 

DE algorithm can use two kinds of crossover schemes—exponential and binomial. In the binomial crossover operation, the donor 

vector iV  exchanges its components with the target vector iX  to form the trial vector ],.....,[ ,,2,1 iNiii uuuU   according to the 

following equation. 
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where CR is crossover rate and rand is  a uniformly distributed random number between 0 and 1,  jrand randomly chosen index in 

the range [1,N]  and see that at least one component from iV . 

 

Selection: Selection operation is performed to keep the population size constant over subsequent generations. This procedure is 

same as in DE, used among the set of trial vector and the updated target vector to choose the best based on fitness. Selection as 

per the following equation: 
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3.3 Parameters of SDE  

 

Like all heuristics, parameter selection is critical to SDE performance. The important parameters are the number m of 

memeplexes, the number n of frogs in a memeplex, the number IE of evolution or infection steps in a memeplex between two 

successive shuffling and cross over rate CR, and scaling factor F. Based on experience, the population size P in general, is the 

most important parameter. An appropriate value for P is related to the complexity of the problem. The probability of locating the 

global optima increases with increasing population size. However, as the population size increases, the number of function 

evaluations to reach the goal increases, hence making it more computationally burdensome. The important parameters of SDE 

algorithm are given in Table 1. 

 

In addition, when selecting m, it is important to make sure that n is not too small. If there are too few frogs in each memeplex, the 

advantage of the local memetic evolution strategy is lost. The other parameter, IE, can take any value greater than 1. If IE is 

small, the memeplexes will be shuffled frequently, reducing idea exchange on the local scale. On the other hand, if IE is large, 

each memeplex will be shrunk into a local optimum. The global optimum searching capability and the convergence speed are 

very sensitive to the choice of control parameters F, and CR. Proper values of F and CR are chosen in between 0 and 1. 

 

Table 1  

Description of SDE parameters 

Parameter Description 
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m 

n 

P 

IE 

F 

CR 

SI 

Number of memeplexes 

Number of frogs in each memeplex 

Population size 

Maximum number of internal evolutions 

Scaling factor 

Crossover rate 

Maximum number of generations 

(number of shuffled iterations) 

 

3.4 SDE Algorithm for PED Problem 

 

In this section, a new approach, SDE algorithm is described for solving the reserve constrained economic dispatch problem when 

losses are considered. 

Step 1: Initialization 

Step 1.1: Initialization of problem: choose number of generator units, power demand, specify maximum and minimum 

capacity constraints of all generators, system spinning reserve requirement, cost coefficients of generator units, 

prohibited operating zones. B-coefficients for loss calculation, down and up ramp rates limits.   

Step 1.2: Initialization algorithm parameters: choose population size P, number of memeplexes m, number of frogs in 

each memeplex n such that, m x n=P, Crossover Probability CR, Scaling Factor F and number of memetic evolutions IE, 

and set the maximum number of shuffled iterations SI. 

Step 2: Initialize randomly the individual of the population according to the limits of each generating unit considering the ramp 

rate limits.If losses are absent go to step 4. 

Step 3: Evaluate the system transmission loss using (3)  

Step 4: Adjust the generations of units according to the following procedure for the power balance constraint satisfaction.  

------------------------------------------------------------------------- 

Procedure for Power balance satisfaction with power loss 

------------------------------------------------------------------------- 

If sum_power>Power_D+PLoss 

     Error=Power_D+PLoss-sum_power 

       /*generate integer z randomly in between [1,N] i.e.,z=ceil(1+(N-1)*rand()) */ 

     P(z)=P(z)+Error 

     If P(z)>Pmax(z) 

        Diff=P(z)-Pmax(z) 

        P(z)=Pmax(z) 

        For i =1 To Max 

              If i~=z 

                   P(i)=P(i)+P(i)*diff/N 

             End if 

        End for 

     End if 

    For i =1 To Max 

       If P(i)>Pmax(i) 

          P(i)=Pmax(i) 

     End if  

 End for 

P(z)=Power_D+PLoss-sum(P(i, but i~=z))  

Else If sum_power<Power_D+PLoss 

Error= sum_power- Power_D+PLoss 

          /*generate integer z randomly in between [1,N] i.e.,z=ceil(1+(N-1)*rand()) */ 

         P(z)=P(z)-Error 

         If  P(z)<Pmin(z) 

            Diff= Pmin(z)-P(z) 

            P(z)=Pmin(z) 

          For i =1 To Max 

If i~=z 

              P(i)=P(i)-P(i)*diff/N 

 End if 

          End for 

       End if 

For i =1 To Max 

       If P(i)<Pmin(i) 

          P(i)=Pmin(i) 

     End if  

 End for 

End if 
Step 5: Evaluate the fitness for each particle according to the objective function, including penalty functions as given in (10). The 

fitness function includes the total generation cost FT and the penalty functions.     
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Step 6: Sort the population in descending order of their fitness. Assign the first population (frog) as global frog as gX . Partition 

the memeplexes into m such that each memeplex will have n frogs each. 

Step 7: Set im=0 (memeplex counter) 

Step 8: Increment memeplex counter i.e., im=im+1; 

Step 9: Set ie=0 (internal evolution counter) 

Step 10: Increment internal evolution counter i.e., ie=ie+1; 

Step 11: Set in=0 (frogs counter in a memeplex) 

Step 12: Increment frog count i.e., in=in+1; 

Step 13: Frog undergo DE mutation according to the equation (11), and crossover operations.  

Step 14: Evaluate the system transmission loss if any, and adjust the power generations and calculate the augmented fuel cost 

using (10) and perform selection operation between old frog and newly generated one and select the new frog based on 

their fitness values. 

Step 15: Check number of frogs in a memeplex,i.e., if in ≤ n go to step 12 

Step 16: Check number of internal evolution, i.e., if ie ≤ IE go to step 10 

Step 17: Check number memeplexes, i.e., if im ≤ m go to step 8. Otherwise go to shuffling operation to form new memeplex sets 

Step 18: Combine the memeplexes in to a single population  

Step 19: Go to step 6 for the next iteration. This loop can be terminated after a predefined number of iterations. 

IV. NUMERICAL EXAMPLE AND RESULTS 

This section presents the computation results on 13-unit test system to evaluate the performance of the proposed SDE 

algorithm. A PED problem considering 13-unit power system from the literature has been investigated. In order to simulate the 

valve point effects of the generating units, a recurring sinusoid component is added with the objective function of fuel cost. 

However, many practical constraints of generators, such as ramp rate limits, prohibited operating zones, spinning reserve and 

power transmission loss are also considered in the optimization process. To verify the performance of the proposed algorithm, 13-

unit system was repeatedly tested a hundred times by the SDE method. The results of fuel costs and average CPU times are used 

to compare the performance of the proposed SDE method with power those obtained in recent studies presented in the literature. 

The proposed algorithms were implemented using MATLAB 7.7 running on ‘I3’ Processor, 2.26 GHz, 3GB RAM PC. 

 

Table 2 

Optimal parameters setting of SDE methods for 13-unit systems 

Parameter Numerical value 

P 100 

m 10 

n 10 

F 0.2 

CR 0.2 

IE 5 

SI 150 

 

The population size (P) is 100 and total number of iterations is 150. The scaling factor and cross over parameters are fixed at the 

above values until the end of the total number of iterations. The ‘DE/memeplexbest/2’ mutation operator is used in the SDE. The 

number of memeplexes is 10 and the number of frogs in each memplex is 10. These settings of parameters for the SDE method 

are given in the Table 2.  

 

The fuel cost function is solved for the 13-unit power systems by the proposed SDE algorithm and the data of the test system is 

obtained from [1], which includes thirteen generating units cost function and loss coefficients B matrix, with modification in the 

fuel cost functions to incorporate the spinning reserve, valve point loadings, prohibited zones and ramp rate limits. The total load 

demand of the system is 2520 MW and system provides a required spinning reserve of 180 MW at least. The input data including 

prohibited zones and ramp rate limits of the thirteen units are listed in the Appendix-A along with the fuel cost coefficients of the 

units. To verify the performance of the proposed SDE method, the results were compared with those methods reported in the 

literature which were applied to solve this system.  

 

Fig. 1 displays the computed fuel cost of the 150 iteration. As shown in Fig. 1, the SDE algorithm has the most stable and 

minimum fuel cost. Thus, the SDE algorithm is more reliable to find out the global minimum fuel cost in this 13-unit system. The 

computational results of the SDE algorithm which satisfy the system constraints are listed in Table 3 and Table 4. From the 

computation results shown in Tables 3 and Table 4, it can be seen that the proposed algorithm has the potential to find the global 

solution. Among these approaches, the SDE algorithm results in the minimum fuel cost.  
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Figure 1: Convergence characteristic of 13-unit system for PD= 2520 MW 

 

 

Table 3 

Results of different methods for 13-unit system considering all constraints 

Unit SDE 
ICA-PSO 

[28-29] 

STHDE 

[5] 

HDE 

[5] 

DE 

[5] 

GA 

[5] 

G1  628.3185 628.32   628.3185   628.3290   628.0117 628.4311 

G2 299.1995 299.19   299.2092   299.3286   300.2498 305.0000 

G3 299.1997 294.51   299.2018   304.5139   348.2995 302.6497 

G4 159.7331 159.73   159.7416   159.7930   159.0591 158.9094 

G5 159.7332 159.73   159.7433   159.8114   159.7318 160.4743 

G6 159.7332    159.73   159.7335   159.8572   159.7324 159.7312 

G7 159.7331   159.73   159.7384   159.9505   159.7330 160.1004 

G8 159.7331 159.73   159.7331   109.8658   147.6877 159.6400 

G9 159.7331 159.73   159.7338   159.7405   160.7340 109.6715 

G10 114.7998   114.80   114.8027   114.8171    77.2938 114.5156 

G11 114.7999      116.45   116.7061   115.7702   115.6040 116.2229 

G12 57.1789        55.00    55.2551    94.9711    55.0112   92.0872 

G13 92.4001 92.40 92.41379   92.40933   91.19282   92.4327 

Total power output (MW) 2564.2953 2559.05 2564.33 2559.16 2562.34 2559.87 

Minimum cost ($/hr) 44.2953 39.05 44.3314 39.15823 42.3412 39.8664 

Spinning reserve (MW/hr) 189.4223 -- 186.5761 190.8761 198.3218 198.3218 

Minimum cost ($/hr) 24558.7649 24549.86* 24560.08 24591.76 24819.32 24632.42 

Mean cost ($/hr) 24602.1578 - 24706.63 24739.53 25217.64 24874.93 

Maximum cost ($/hr) 24654.3128 - 24872.44 25074.902 25656.40 25188.59 

CPU time/iter (sec) 0.092 - 2.97826 3.57327 2.58151 2.25174 

* Power balance violation and not considered as feasible solution 

 

Table 4 

Comparison of results for 13-unit system 

Method 
Total power 

output (MW) 

Power loss 

(MW) 

Total spinning 

reserve (MW) 

Minimum cost 

($/hr) 

SDE 2564.30 44.2953 189.4223 24558.77 

GA 2559.87 39.8664 198.3218 24632.42 

DE 2562.34 42.3412 198.3218 24819.32 

HDE 2559.16 39.15823 190.8761 24591.76 

STHDE 2564.33 44.3314 186.5761 24560.08 

ICA-PSO* --- --- --- 24549.86 

* Power balance violation and not considered as feasible solution 
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V. CONCLUSIONS 

In this paper, it has been suggested that employing the SDE algorithm to solve the non-smooth/non-convex ED problems 

considering spinning reserve constraint, and other constraints such as prohibited zones, ramp rate limits, valve point loadings 

gives best solutions. The results obtained proposed SDE optimization algorithm were compared with the results obtained by those 

methods reported in the literature. 13-unit test system has been employed to illustrate the application of the proposed method. 

Computational results show that the proposed SDE algorithm is superior to the other algorithms in terms of computed minimum 

fuel cost and computational complexity. 
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