Paper Title

Depression Prediction using Emotion Detection and Text Mining using Machine Learning

Authors

Supriya Sanjay Yanare , Abhishek Bhujang Nimbalkar , Kavita Sunil Munji , Nisha Bhausaheb Pawar

Keywords

Security, Reliability, Data Integrity, Block chain, health care, brain tumor.

Abstract

Suicide is one of the most serious social health issues that exists in today's culture. Suicidal ideation, also known as suicidal thoughts, refers to people's plans to commit suicide. It can be used as a suicide risk measure. India is among the top countries among in the world to have annual suicide rate. Social networks have been developed as a first rate factor for its users to communicate with their interested buddies and proportion their captions, photos, and videos reflecting their moods, emotions and sentiments. To increase and put in force a version which takes a facial expression images as an enter and symptoms. On the basis of that it predicts the repute of that patient whether or not he/she has been detected or now not detected for depressed. We can train version using photographs & will use it for prediction. Image captioning can be accomplished after prediction for higher visualization of report. We will also use text mining (NLP) technique to predict melancholy the usage of signs furnished with the aid of person. At final we are able to make final choice primarily based on above two techniques. To generate detailed dashboard of user disease status and to design webapp for above system. We will use CNN algorithm for speed up detection of depressed character instances and approach to become aware of high quality answers of mental health troubles. We suggest system learning method as an efficient and scalable technique. We document an implementation of the proposed method. We've evaluated the efficiency of our proposed technique the usage of a set of various psycholinguistic features. We show that our proposed method can extensively improve the accuracy and category blunders price. Key Words: Emotion Recognition, Depression, Convolutional Neural Networks, Text processing, Image processing, Sentiment analysis

How To Cite

"Depression Prediction using Emotion Detection and Text Mining using Machine Learning ", IJNRD - INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (www.IJNRD.org), ISSN:2456-4184, Vol.8, Issue 3, page no.d562-d566, March-2023, Available :https://ijnrd.org/papers/IJNRD2303376.pdf

Issue

Volume 8 Issue 3, March-2023

Pages : d562-d566

Other Publication Details

Paper Reg. ID: IJNRD_189391

Published Paper Id: IJNRD2303376

Downloads: 000118831

Research Area: Engineering

Country: Pune, Maharashtra, India

Published Paper PDF: https://ijnrd.org/papers/IJNRD2303376

Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2303376

About Publisher

ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016

An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator

Publisher: IJNRD (IJ Publication) Janvi Wave

Article Preview

academia
publon
sematicscholar
googlescholar
scholar9
maceadmic
Microsoft_Academic_Search_Logo
elsevier
researchgate
ssrn
mendeley
Zenodo
orcid
sitecreex